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BISHOP’S PROPERTY (β) AND WEIGHTED CONDITIONAL TYPE

OPERATORS IN k-QUASI CLASS A∗n

M.R. AZIMI1, I. AKBARBAGLU2, F.ABEDI1, §

Abstract. An operator T is said to be k-quasi class A∗
n operator if

T ∗k
(
|Tn+1|

2
n+1 − |T ∗|2

)
T k ≥ 0, for some positive integers n and k. In this paper,

we prove that the k-quasi class A∗
n operators have Bishop,s property (β). Then, we give

a necessary and sufficient condition for T⊗S to be a k-quasi class A∗
n operator, whenever

T and S are both non-zero operators. Moreover, it is shown that the Riesz idempotent
for a non-zero isolated point λ0 of a k-quasi class A∗

n operator T say Ri, is self-adjoint
and ran(Ri) = ker(T −λ0) = ker(T −λ0)∗. Finally, as an application in the last section,
a necessary and sufficient condition is given in such a way that the weighted conditional
type operators on L2(Σ), defined by Tw,u(f) := wE(uf), belong to k-quasi- A∗

n class.

Keywords: Weighted translation, pre-frame, conditional expectation, measurable func-
tion.
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1. Introduction

Let B(H) denote the C∗-algebra of all bounded linear operators on an infinite dimen-
sional complex Hilbert space H. We shall write ker(T ) and ran(T ) for the null space and
range of T , respectively. The spectrum of an operator T ∈ B(H) is denoted by σ(T ).
The operator T is called isoloid if every isolated point of σ(T ) is an eigenvalue of T . An
operator T ∈ B(H) is said to be
• normaloid, if ‖Tn‖ = ‖T‖n for n ∈ N (equivalently, ‖T‖ = r(T ), the spectral radius of
T );
• n-paranormal, if ‖Tx‖n+1 ≤ ‖Tn+1x‖‖x‖n ( If n = 1, then n-paranormal operators
coincide with paranormal operators);
• n-∗-paranormal, if ‖T ∗x‖n+1 ≤ ‖Tn+1x‖‖x‖n ( If n = 1, then n-∗-paranormal operators
coincide with ∗-paranormal operators);
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• k-quasi-class A, if T k
∗ (|T 2| − |T |2

)
T k ≥ 0 for k ∈ N ( If k = 0 and k = 1, then k-quasi-

class A operators coincide with class A operators and quasi-class A operators respectively,
T 0 is the identity operator);
• k-quasi-∗-class A, if T k

∗ (|T 2| − |T ∗|2
)
T k ≥ 0 for k ∈ N ( If k = 0 and k = 1, then k-

quasi-∗-class A operators coincide with ∗-class A operators and quasi-∗-class A operators
respectively);
• p-hyponormal, if |T |2p− |T ∗|2p > 0 for 0 < p < 1 (If p = 1 then p-hyponormal operators
coincide with hyponormal operators).
• An operator T is said to be k-quasi class A∗n operator if

T ∗k
(
|Tn+1|

2
n+1 − |T ∗|2

)
T k ≥ 0,

for some positive integers n and k. Note that if n = 1 and k = 0, then k-quasi class A∗n
operators coincide with k-quasi-∗-class A operators and class A∗n operators respectively.
Moreover, if T ∈ B(H) is an k-quasi class A∗n operator and M is its invariant subspace,
then the restriction of T i.e., T|M is also k-quasi class A∗n operator([10, Theorem 2.4]).
• An operator T has Bishop’s property (β) at λ ∈ C, if for every open neighborhood G for
λ of complex plane C and for every analytic function fn(z) on G such that (T−z)fn(z)→ 0
uniformly on each compact subset of G, we have fn(z) → 0 uniformly on each compact
subset of G. When T has Bishop’s property (β) at each λ ∈ C, then simply we say that
T has property (β).

Let K be a complex Hilbert space and H⊗K the tensor product of H,K; i.e., the com-
pletion of the algebraic tensor product of H,K with the inner product 〈x1⊗ y1, x2⊗ y2〉 =
〈x1, x2〉〈y1, y2〉 for each x1, x2 ∈ H and y1, y2 ∈ K. Let T ∈ B(H) and S ∈ B(K).
T⊗S ∈ B(H⊗K) denotes the tensor product of T and S defined by (T⊗S)(x⊗y) = Tx⊗Sy
for each x ∈ H and y ∈ K.
The operation of taking tensor product T ⊗S preserves many properties of T ∈ B(H) and
S ∈ B(K), but by no means all of them. For example, the normaloid property is invariant
under the tensor product, while the spectraloid property is not [16]. T ⊗S is normal if and
only if T and S are normal [9, 18]. However, there exist paranormal operators T ∈ B(H)
and S ∈ B(K) such that T ⊗ S is not paranormal [1]. Duggal [3] showed that for nonzero
T ∈ B(H) and S ∈ B(K), T ⊗ S is p-hyponormal if and only if T, S are p-hyponormal.
This result was then extended to ∗-class A operator [4], quasi-class A operators [11] and
k-quasi-∗-class A operators [7].

Let T ∈ B(H). Pick an isolated point λ0 in σ(T ). Then there exists a positive number
r > 0 such that {λ ∈ C : |λ− λ0| ≤ r} ∩ σ(T ) = {λ0}.

Let γ be the boundary of {λ ∈ C : |λ− λ0| ≤ r}. Then

Ri =
1

2πi

∫
γ
(λ− T )−1dλ

is called the Riesz idempotent of T for λ0. It is well known that ([13]).

R2
i = Ri, RiT = TRi, σ(T|ran(Ri)) = {λ0} and ker(T − λ0I) ⊆ ran(Ri).

We know that the Riesz idempotent Ri is not an orthogonal projection and a necessary
and sufficient condition for Ri to be orthogonal is that Ri is self-adjoint. In [17], Stampfli
showed that if T satisfies the growth condition G1, then the Riesz idempotent Ri for
an isolated spectral point λ0 of a hyponormal operator T is self-adjoint and ran(Ri) =
ker(T − λ0). Stampfli’s result was then extended to p-hyponormal operators by Cho and
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Tanahashi [2]. Moreover, incase λ0 6= 0 the Stampfli’s result was extended to class A
operators by Uchiyama and Tanahashi [21], to quasi class A operators by Jeon and Kim
[12], to k-quasi-class A operators by Tanahashi, Jeon, Kim, Uchiyama [19], to paranormal
operators by Uchiyama [20] and to k-quasi -∗- class A operators by Mecheri [14].
This paper comprises of four sections. In Section 2, we study Bishop’s property (β) for
k-quasi class A∗n operators. In Section 3, for non-zero operators T and S, a necessary and
sufficient condition is given on which T ⊗ S is a k-quasi class A∗n operator. In Section 4,
it is proved that a corresponding Riesz idempotent of a k-quasi class A∗n operator, is self-
adjoint and ran(Ri) = ker(T −λ0) = ker(T −λ0)∗. Finally in the last section i.e., Section
5, we will study A∗n and k-quasi- A∗n classes of the weighted conditional type operators on
L2(Σ) defined by Tw,u(f) := wE(uf).

2. Bishop’s property (β) for k-quasi class A∗n operators

In this section, we study the Bishop’s property (β) for k-quasi class A∗n operators.
First, it may be worth reminding the reader some important results. If T is a class A∗n
operator, then T is a n-∗-paranormal operator ([10, Theorem 2.5]). Furthermore, each
n-∗-paranormal operators satisfy property (β)([4, Proposition 2.4]).

Theorem 2.1. [10, Theorem 2.3] Let T ∈ B(H) be a k-quasi class A∗n operator. T k does
not have a dense range and T has the following representation

T =

(
T1 T2
0 T3

)
on H = ranT k ⊕ kerT ∗k .

Then, T1 is of class A∗n, T k3 = 0 and σ(T ) = σ(T1) ∪ {0}.

Theorem 2.2. [10, Theorem 3.1] If T ∈ B(H) is an k-quasi class A∗n operator and
(T − λ)x = 0, then (T − λ)∗x = 0 for all λ 6= 0.

The following theorem is a structural result.

Theorem 2.3. Let T ∈ B(H) be k-quasi class A∗n. Then T has Bishop’s property (β).

Proof. Let λ ∈ C and G be an open neighborhood for λ of complex plane C and fn(z) be
analytic on G. Suppose that (T − z)fn(z) → 0 uniformly on each compact subset of G.
Then, using the representation of Theorem 2.1, we have(

T1 − z T2
0 T3 − z

)(
fn1(z)
fn2(z)

)
=

(
(T1 − z)fn1(z) + T2fn2(z)

(T3 − z)fn2(z)

)
−→ 0.

Since T3 is nilpotent, T3 has Bishop’s property (β). Indeed,

(T3 − z)fn(z) → 0, and hence T k−13 (T3 − z)fn(z) → 0, which implies in turn that (T k3 −
TK−13 z)fn(z) → 0. But we know that T k3 = 0, so (TK−13 z)fn(z) → 0. Hence fn2(z) → 0
uniformly on every compact subset of G. Then (T1 − z)fn1(z) → 0. Since T1 is of class
A∗n, T1 has Bishop’s property (β) by [10, Theorem 2.5] and [4, Proposition 2.4]. Hence,
fn1(z) → 0 uniformly on every compact subset of G. Thus, T has Bishop’s property
(β). �

3. Tensor product of k-quasi class A∗n operators

In the following, we extend the result of Gao and Li [7] to k-quasi-class A∗n operator T .
We start with the following result.
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Theorem 3.1. Let T ∈ B(H) be a k-quasi class A∗n operator for a positive integer k.
Then the bellow assertions hold.
(1) ‖Tn+1+mx‖

2
n+1 ‖Tmx‖2(1−

1
n+1

) ≥ ‖T ∗Tmx‖2 for all x ∈ H and all positive integers
m ≥ k.
(2) If Tm = 0 for some positive integer m ≥ k, then T k = 0.

Proof. Since

k − quasi classA∗n ⊆ (k + 1)− quasi classA∗n,
we just need to prove the case m = k. Choose x ∈ H arbitrarily and then observe that

〈T ∗k|T ∗|2T kx, x〉 = 〈TT ∗T kx, T kx〉 = ‖T ∗T kx‖2

and

〈T ∗k|Tn+1|
2

n+1T kx, x〉 = 〈(T ∗(n+1)Tn+1)
1

n+1T kx, T kx〉.
Now, by the Hölder-McCarthy inequality we have

〈(T ∗(n+1)Tn+1)
1

n+1T kx, T kx〉 ≤ ‖Tn+1+kx‖
2

n+1 ‖T kx‖2(1−
1

n+1
).

But T is a k-quasi class A∗n operator and hence we get that

‖Tn+1+kx‖
2

n+1 ‖T kx‖2(1−
1

n+1
) ≥ ‖T ∗T kx‖2.

(2) If m = k, it is clear that T k = 0. If T k+1 = 0, then Tn+1+k = 0. Therefore, by (1) we
have T ∗T k = 0. Now for each x ∈ H consider that

‖T kx‖ = 〈T ∗T kx, T k−1x〉 = 0.

Hence, T k = 0. �

The following theorem gives a necessary and sufficient condition for T⊗S to be a k-quasi
class A∗n operator, whenever T and S are both non-zero operators.

Theorem 3.2. Let T, S ∈ B(H) be non-zero operators. Then T ⊗ S is k-quasi class A∗n
operator if and only if one of the following holds:
a) T and S are k-quasi class A∗n operators.
b) T k = 0 or Sk = 0.

Proof. Suppose that (a) or (b) holds. We are going to show that T ⊗ S is k-quasi class
A∗n operator i.e.,

(T ⊗ S)∗k
(
|(T ⊗ S)n+1|

2
n+1 − |(T ⊗ S)∗|2

)
(T ⊗ S)k ≥ 0.

It is worth noting that (T ⊗ S)∗(T ⊗ S) = T ∗T ⊗ S∗S and |T ⊗ S|q = |T |q ⊗ |S|q, for each
positive real number q. Hence by using these facts, the above statement equivalently can
be recast as follows

T ∗k
(
|Tn+1|

2
n+1 − |T ∗|2

)
T k ⊗ S∗k|Sn+1|

2
n+1Sk

+T ∗k|T ∗|2T k ⊗ S∗k
(
|Sn+1|

2
n+1 − |S∗|2

)
Sk ≥ 0.

But the operators S∗k|Sn+1|
2

n+1Sk and T ∗k|T ∗|2T k are positive. Now if (a) or (b) holds,
then the above statement is evidently positive which means that T ⊗S is k-quasi class A∗n
operator.
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Conversely, suppose that T ⊗ S is k-quasi class A∗n operator. Then for every x, y ∈ H we
have,

〈T ∗k
(
|Tn+1|

2
n+1 − |T ∗|2

)
T kx, x〉〈S∗k|Sn+1|

2
n+1Sky, y〉 (1)

+〈T ∗k|T ∗|2T kx, x〉〈S∗k
(
|Sn+1|

2
n+1 − |S∗|2

)
Sky, y〉 ≥ 0.

It suffices to show that if (a) does not hold, then (b) holds. To the contrary, suppose that
neither T k nor Sk is the zero operator.
Without loss of generality, assume that T is not a k-quasi class A∗n operator. Then there
exists x0 ∈ H such that

〈T ∗k
(
|Tn+1|

2
n+1 − |T ∗|2

)
T kx0, x0〉 = α < 0,

and
〈T ∗k|T ∗|2T kx0, x0〉 = β > 0.

Hence, for all y ∈ H with the aid of (1) we have,

(α+ β)〈S∗k|Sn+1|
2

n+1Sky, y〉 ≥ β〈S∗k|S∗|2Sky, y〉. (2)

This yields that S is k-quasi class A∗n operator. Subsequently, we have

〈S∗k|S∗|2Sky, y〉 = 〈SS∗Sky, Sky〉

= 〈S∗Sky, S∗Sky〉

= ‖S∗Sky‖2

and

〈S∗k|Sn+1|
2

n+1Sky, y〉 = 〈(S∗(n+1)Sn+1)
1

n+1Sky, Sky〉

≤ 〈S∗(n+1)Sn+1Sky, Sky〉
1

n+1 ‖Sky‖2(1−
1

n+1
)

= ‖Sn+1+ky‖
2

n+1 ‖Sky‖2(1−
1

n+1
).

Eventually, for all y ∈ H by (2), it is found that

(α+ β)‖Sn+1+ky‖
2

n+1 ‖Sky‖2(1−
1

n+1
) ≥ β‖S∗Sky‖2. (3)

Since S is k-quasi class A∗n operator, by Theorem 2.1 we can write

S =

(
S1 S2
0 S3

)
on H = ranSk ⊕ kerS∗k,

where S1 is a class A∗n operator. Therefore, for each η ∈ ranSk we may rewrite inequality
(3) as follows

(α+ β)‖Sn+1+k
1 η‖

2
n+1 ‖Sk1η‖

2(1− 1
n+1

) ≥ β‖S∗1Sk1η‖2. (4)

As mentioned above, S1 is a class A∗n operator and then is n-∗-paranormal operator([10,
Theorem 2.5]). Therefore, S1 is normaloid (see [22]). In this circumstance, from inequality
(4) one can easily deduce that

(α+ β)‖S1‖2 = (α+ β)‖S2
1‖ ≥ β‖S∗1‖2 = β‖S1‖2.

This inequality in turn implies that S1 = 0. Then, it is deduced that Sk+1 = 0, because
of

Sk+1 = S1S
ky = 0 for all y ∈ H.

Eventually, by Theorem 3.1, we obtain that Sk = 0 which is a contradiction. �
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4. Riesz idempotent for an isolated point of the spectrum

In this section, we will show that the Riesz idempotent Ri for an isolated spectral point
λ0 of a k-quasi class A∗n operator T is self-adjoint and

ran(Ri) = ker(T − λ0) = ker(T − λ0)∗.
For this, we need the following lemma as a useful tool.

Lemma 4.1. Let T ∈ B(H) be a k-quasi-class A∗n operator. Then T is isoloid.

Proof. Assume that T ∈ B(H) is a k-quasi class A∗n operator with the representation given
in Theorem 2.1. Let z be an isolated point in σ(T ). Since σ(T ) = σ(T1) ∪ {0}, then z is
an isolated point in σ(T1) or z = 0. If z isolated point in σ(T1), then by [10, Theorem
2.5] and [22, Lemma 2.2], z is an eigenvalue of T1. Now assume that z = 0 and z /∈ σ(T1).
Then, we may find a non-zero vector x ∈ ker(T3) such that −T−11 T2x⊕ x ∈ ker(T ). This
fact, shows that z is an eigenvalue of T and the proof is completed. �

Theorem 4.1. Let T ∈ B(H) be a k-quasi class A∗n operator. If λ0 be a non-zero isolated
point of σ(T ) and Ri is the Riesz idempotent for λ0, then

ran(Ri) = ker(T − λ0) = ker(T − λ0)∗.
In particular, Ri is self adjoint.

Proof. By Lemma 4.1, λ0 is an eigenvalue of T . So ran(Ri) = ker(T −λ0) and ker(Ri) =
ran(T−λ0)(see [13]). Moreover, by Theorem 2.2 we know that ker(T−λ0) ⊆ ker(T−λ0)∗,
so it suffices only to show that ker(T−λ0)∗ ⊆ ker(T−λ0). For this, one can easily to check
that ker(T−λ0) is a reducing subspace of T . But by [10, Theorem 2.4], the restriction of k-
quasi classA∗n operator to its reducing subspaces is also a k-quasi classA∗n operator. Hence,
the operator T can be written as follows: T = λ0⊕T1 onH = ker(T−λ0)⊕(ker(T−λ0))⊥,
where T1 is k-quasi class A∗n operator with ker(T1 − λ0) = 0. Since

λ0 ∈ σ(T ) = {λ0} ∪ σ(T1)

is isolated, only two cases occur: λ0 /∈ σ(T1), or λ0 is an isolated point of σ(T1) and
this contradicts the fact ker(T1 − λ0) = 0. Since T1 is invertible as an operator on
(ker(T − λ0))⊥, we have ker(T − λ0) = ker(T − λ0)∗. Since ker(T − λ0) ⊆ ker(T − λ0)∗,
we have ker(T − λ0) ⊥ ran(T − λ0), and hence ran(Ri) ⊥ ker(Ri). That is, Ri is
self-adjoint. �

5. The weighted conditional type operators satisfying k-quasi class A∗n
In this section, we study A∗n and k-quasi- A∗n classes of the weighted conditional type

operators. A necessary and sufficient condition is given on which the weighted conditional
type operators belong to k-quasi class A∗n. Let (X,Σ, µ) be a complete σ-finite measure
space and let A be a σ- subalgebra of Σ such that (X,A, µ) is also σ-finite. The space
of complex-valued Σ-measurable functions on X is L0(Σ). The support of a measurable
function f is defined by σ(f) = {x ∈ X : f(x) 6= 0} . For any non-negative f ∈ L0(Σ),
corresponds a measure υf (B) =

∫
B fdµ for all B ∈ A, which is absolutely continuous with

respect to µ. Then by the Radon-Nikodym theorem, there exists a unique non-negative
A-measurable function E(f) such that∫

B
E(f)dµ =

∫
B
fdµ for all B ∈ A.

Hence we obtain an operator E from L2(Σ) onto L2(A) which is called conditional expec-
tation operator associated with respect to A. The role of this operator is important in
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this note and we list here some of its useful properties:
(i) If g ∈ L0(A), then E(gf) = gE(f).
(ii) If f ≥ 0, then E(f) ≥ 0; if f > 0, then E(f) > 0.
(iii)|E(f)|p ≤ E(|f |p).
(iv) E(|f |2) = |E(f)|2 if and only if f ∈ L0(A).
For more details see [15].
For measurable weight functions w : X → C and u : X → C the weighted conditional
type operator Tw,u : L2(Σ) → L2(Σ) is defined by Tw,u(f) := wE(uf). This operator is

bounded if and only if (E(|w|2)
1
2 (E(|u|2)

1
2 ∈ L∞(A) and in this case its norm is given by

‖Tw,u‖ = |(E(|w|2)
1
2 (E(|u|2)

1
2 ‖∞ ([6]). In case, w = 1 the operator Tw,u has been widely

discussed in [8]. Moreover, some classes of Tw,u such as class A , ∗-A class, quasi-∗-A class
and its spectra have been studied in [5, 6]. In the following theorem we give a necessary
and a sufficient condition separately on which Tw,u is to be A∗n-class operator.

Theorem 5.1. Let operator Tw,u be a bounded on L2(Σ). Then
(a) If for each f ∈ L2(Σ)

|E(uf)|2|E(uw)|
2n
n+1

(
E(|w|2)

(E(|u|2))n

) 1
n+1

χσ(E(|u|2)) ≥ (E(|u|2))|E(wf)|2,

then Tw,u is A∗n operator.
(b) If Tw,u is A∗n operator, then

|E(u)|2|E(uw)|
2n
n+1

(
E(|w|2)

(E(|u|2))n

) 1
n+1

χσ(E(|u|2)) ≥ E(|u|2)|E(w)|2.

Proof. For each f ∈ L2(Σ), a routine computation shows that

|Tn+1
w,u |

2
n+1 (f) = |E(uw)|

2n
n+1

(
E(|w|2)

(E(|u|2))n

) 1
n+1

χσ(E(|u|2))uE(uf),

and

|T ∗w,u|2(f) = E(|u|2)wE(wf).

Therefore,

〈|Tn+1
w,u |

2
n+1 (f)− |T ∗w,u|2(f), f〉

=

∫
X
|E(uw)|

2n
n+1

(
E(|w|2)

(E(|u|2))n

) 1
n+1

χσ(E(|u|2))ufE(uf)

− E(|u|2)wfE(wf)dµ

=

∫
X
|E(uw)|

2n
n+1

(
E(|w|2)

(E(|u|2))n

) 1
n+1

χσ(E(|u|2))|E(uf)|2

− E(|u|2)|E(wf)|2dµ.

Now, if for each f ∈ L2(Σ) we assume that

|E(uf)|2|E(uw)|
2n
n+1

(
E(|w|2)

(E(|u|2))n

) 1
n+1

χσ(E(|u|2)) ≥ (E(|u|2))|E(wf)|2,

then Tw,u is easily A∗n operator.
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Conversely, suppose that Tw,u is A∗n operator, then for every f ∈ L2(Σ) we have∫
X
|E(uw)|

2n
n+1

(
E(|w|2)

(E(|u|2))n

) 1
n+1

χσ(E(|u|2))|E(uf)|2−

E(|u|2)|E(wf)|2dµ ≥ 0.

Pick A ∈ A, with 0 < µ(A) <∞. By replacing f to χA, we have∫
A
|E(uw)|

2n
n+1

(
E(|w|2)

(E(|u|2))n

) 1
n+1

χσ(E(|u|2))|E(u)|2−

E(|u|2)|E(w)|2dµ ≥ 0.

Since A ∈ A is arbitrarily chosen, we get that

|E(u)|2|E(uw)|
2n
n+1

(
E(|w|2)

(E(|u|2))n

) 1
n+1

χσ(E(|u|2)) ≥ (E(|u|2))|E(w)|2.

�

Theorem 5.2. A bounded operator Tw,u on L2(Σ) is a k-quasi class A∗n operator if and
only if

|E(uw)|2k+2k(n+1) ≥ (E|u|2)2n+1(E|w|2)2k(n+1)−1.

Proof. There is no difficulty to check that for each f ∈ L2(Σ),

T ∗kw,u|Tn+1
w,u |

2
n+1T kw,u(f) =

|E(uw)|
2n+2k(n+1)

n+1

(
E(|w|2)

(E(|u|2))n

) 1
n+1

χσ(E(|u|2))uE(uf)

and

T ∗kw,u|T ∗w,u|2T kw,u(f) = E(|u|2)
(
E(|w|2)

)2k
uE(uf).

So, for all f ∈ L2(Σ) we obtain that,

〈T ∗kw,u|Tn+1
w,u |

2
n+1T kw,u(f)− T ∗kw,u|T ∗w,u|2T kw,u(f), f〉

=

∫
X
|E(uw)|

2n
n+1 |E(uw)|2k

(
E(|w|2)

(E(|u|2))n

) 1
n+1

χσ(E(|u|2))ufE(uf)

− E(|u|2)
(
E(|w|2)

)2k
ufE(uf)dµ

=

∫
X

(
|E(uw)|

2n+2k(n+1)
n+1

(
E(|w|2)

(E(|u|2))n

) 1
n+1

χσ(E(|u|2))

−E(|u|2)(E(|w|2))2k
)
|E(uf)|2dµ.

Hence, if we assume that

|E(uw)|2n+2k(n+1) ≥ (E|u|2)2n+1(E|w|2)2k(n+1)−1,

then it is easily seen Tw,u is a k-quasi class A∗n operator.
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Conversely, suppose that Tw,u is a k-quasi class A∗n operator. Then for all f ∈ L2(Σ)
we have ∫

X

(
|E(uw)|

2n+2k(n+1)
n+1

(
E(|w|2)

(E(|u|2))n

) 1
n+1

χσ(E(|u|2))

− E(|u|2)
(
E(|w|2)

)2k) |E(uf)|2dµ ≥ 0.

Let A ∈ A, with 0 < µ(A) <∞. By replacing f to χA, we have∫
A

(
|E(uw)|

2n+2k(n+1)
n+1

(
E(|w|2)

(E(|u|2))n

) 1
n+1

χσ(E(|u|2))

− E(|u|2)
(
E(|w|2)

)2k) |E(u)|2dµ ≥ 0.

Since A ∈ A is chosen arbitrarily, then

|E(uw)|
2n+2k(n+1)

n+1

(
E(|w|2)

(E(|u|2))n

) 1
n+1

χσ(E(|u|2)) ≥ E(|u|2)
(
E(|w|2)

)2k
)

and the proof is completed. �

Remark 5.1. Note that if the inequality

|E(uw)|2k+2k(n+1) ≥ (E|u|2)2n+1(E|w|2)2k(n+1)−1

holds, then by Theorem 5.2 and Theorem 2.3, Tw,u has Bishop’s property (β) on L2(Σ).
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