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SEIDEL BORDERENERGETIC GRAPHS

M. H. NEZHAAD1, M. GHORBANI1, §

Abstract. A graph G of order n is said to be Seidel borderenergetic if its Seidel energy
equals the Seidel energy of the complete graph Kn. Let G be graph on n vertices with
two distinct Seidel eigenvalues. In this paper, we prove that G is Seidel borderenergetic
if and only if G ∼= Kn or G ∼= Kn or G ∼= Ki ∪Kj or G ∼= Ki,j , where i + j = n. We
also, show that if G is a connected k-regular graph on n ≥ 3 vertices with three distinct
eigenvalues, then G is Seidel borderenergetic if and only if G ∼= Kn

2
,n
2

where n is even.
Finally, we determine all Seidel borderenergetic graphs with at most 10 vertices.
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1. Introduction

Here, we recall some definitions that will be used in the paper. Let G be a simple graph
with n vertices, m edges and A(G) denotes the adjacency matrix of G. The eigenvalues of
graph G are the roots of charateristic polynomial χG(λ) = det(λI −A(G)), where I is the
identity matrix of order n. The energy of a graph is defined as the sum of absolute value
of the eigenvalues of A(G), see [10]. The rank of the matrix A(G) denoted by rank(A(G))
is equal to the number of linearly independent columns of A(G).

For given graph G its complement is denoted by G. For two graphs G1 and G2, the
graph G1∪G2 is the disjoint union of G1 and G2. The graph G−{v} is a graph obtaining
from G by removing the vertex v with all edges connected to v. The complete graph on n
vertices is denoted by Kn. A complete bipartite graph with a bipartition of sizes n1 and
n2 is denoted by Kn1,n2 .

Suppose L = D−A is the Laplacian matrix of graphG, where D = [dij ] is a diagonal ma-
trix with dii = degG(vi), and dij = 0; otherwise. The spectra of L is a sequence of its eigen-
values an displayed in increasing order, denoted by LSepc(G) = {0 = δn, δn−1, . . . , δ1}.
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The Laplacian energy of the graph G is defined as

LE(G) =

n∑
i=1

|δi − d|,

where δi’s are the Laplacian eigenvalues of G and d is the average degree of G . For the
Laplacian energy, we have LE(Kn) = 2n−2. Details on the properties of Laplacian energy
can be found in [11, 16].

Recently, Gong et al. [9] proposed the concept of borderenergetic graphs, namely graphs
of order n satisfying E(G) = 2n − 2. Tura in [23] proposed the concept of Laplacian
borderenergetic graphs. In this way, we say G is Laplacian borderenergetic if LE(G) =
LE(Kn). More details on borderenergetic and Laplacian borderenergetic graphs can found
in [6, 15, 17, 18, 22] as well as [5, 14, 13].

In 1966, Van Lint and Seidel in [24] introduced a symmetric (0,−1, 1)-adjacency matrix
for a graph G called the Seidel matrix of G as S(G) = J − I − 2A(G), where J is the
matrix with entries 1 in every position. Let µ1(G) ≤ µ2(G) ≤ · · · ≤ µs(G) be the
distinct Seidel eigenvalues of G with multiplicity t1, t2, . . . , ts, respectively. The multiset
SpecS(G) = {[µ1(G)]t1 , [µ2(G)]t2 , . . . , [µs(G)]ts} is called the Seidel spectrum of G. Two
non-isomorphic graphs are said to be Seidel co-spectral if their Seidel spectra coincide. In
[12] Haemers defined the Seidel energy of G as

ES(G) =
n∑
i=1

|µi(G)|, (1)

where µi(G)’s are the Seidel eigenvalues of G. Two graphs G and G′ are said to be Seidel
equienergetic if ES(G) = ES(G′), see [20]. In a trivial manner, co-spectral graphs are
equienergetic. If the Seidel eigenvalues of a graph G are µi(G)’s, (1 ≤ i ≤ n), then the
Seidel eigenvalues of G are −µi(G)’s, (1 ≤ i ≤ n) and so ES(G) = ES(G). A graph G of
order n is said to be Seidel borderenergetic if its Seidel energy equals the Seidel energy of
the complete graph Kn, i.e., if ES(G) = 2(n− 1).

Let U1 and U2 = V (G) \ U1 be the partitioned sets of the vertex set V (G) of a graph
G. Let G′ be the graph obtained from G by deleting all edges between U1 and U2 and
inserting all edges between U1 and U2 that were not presented in G. Then G′ and G are
said to be Seidel switching, with respect to U1. If G′ and G are Seidel switching then
S(G′) and S(G) are similar and therefore G′ and G have the same Seidel eigenvalues, see
[12].

Given a set V of m vectors (points in Rn), the Gram matrix Γ is a real symmetric
(n × n)-matrix of all possible inner products of V , i.e., γij = xtixj , where xt denotes the
transposed vector of x. The Gram matrix can be written as Γ = HtH, where H is (m×n)-
matrix and m is the rank of Γ. Let θ be the smallest eigenvalue of S(G). Then θ < 0
since S(G) 6= 0 and trace(S(G)) = 0. The Γ = I − 1

θS(G) is the Gram matrix of a set of

vectors in Rd, where d = rank(S(G)− θI) = n−m(θ), n is the number of vertices of the
graph and m(θ) is the multiplicity of θ as eigenvalue of S(G), see [2].

Lemma 1.1. [2]. For any graph G on n ≥ 2 vertices, we have

i)
∑n

i=1 µi(G) = 0,
ii)
∑n

i=1 µ
2
i (G) = n(n− 1).
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Lemma 1.2. [3]. Let G be a k-regular graph on n vertices. Then the Seidel spectrum
of G is {n − 1 − 2k,−1 − 2λn−1(G), . . . ,−1 − 2λ1(G)}, where λi(G)’s (1 ≤ i ≤ n) are
eigenvalues of G.

Lemma 1.3. [8]. Let G be a connected k-regular graph on n vertices with adjacency
matrix A(G). Assume that A(G) has exactly t distinct eigenvalues. Then the Seidel
matrix S(G) has at most t distinct eigenvalues.

Lemma 1.4. [8]. Suppose that S(G) is a Seidel matrix of order n ≥ 2 with spectrum
{[µ1(G)]n−t, [µ2(G)]t} for some t where 1 ≤ t ≤ n− 1. Let S(G′) be a principal (n− 1)×
(n− 1) submatrix of S(G). Then the spectrum of S(G′) is{

[µ1(G)]n−t−1, [µ2(G)]t−1, [µ1(G) + µ2(G)]1
}
.

Lemma 1.5. [1]. Let G be a connected graph with least eigenvalue λ(G). Then if G is
neither complete nor null, then λ(G) ≤ −

√
2 with equality if and only if G ∼= K1,2.

2. Main Results

Here, we characterize all Seidel borderenergetic graphs with at most three Seidel eigen-
values. The following Lemma is essential in the proof of Proposition 2.1.

Lemma 2.1. Let G be graph on n ≥ 2 vertices with two distinct Seidel eigenvalues. Then

SpecS(G) =
{[√ t2

t1
(n− 1)

]t1
,
[
−
√
t1
t2

(n− 1)
]t2}

,

where t1 + t2 = n.

Proof. LetG be graph on n vertices with two distinct Seidel eigenvalues [µ1(G)]t1 , [µ2(G)]t2 ,
where t1 + t2 = n. By Lemma 1.1 (i), we have t1µ1(G) + t2µ2(G) = 0, then

µ2(G) = − t1
t2
µ1(G). (2)

By Lemma 1.1 (ii), we have t1µ
2
1(G) + t2µ

2
2(G) = n(n− 1), then

µ1(G) = −
√
t2
t1

(n− 1). (3)

Therefore by using Equations 2, 3, we have

SpecS(G) =
{[√ t2

t1
(n− 1)

]t1
,
[
−
√
t1
t2

(n− 1)
]t2}

.

�

Proposition 2.1. Let G be graph on n vertices with two distinct Seidel eigenvalues. Then
G is Seidel borderenergetic if and only if G ∼= Kn or G ∼= Kn or G ∼= Ki ∪Kj or G ∼= Ki,j ,
where i+ j = n.

Proof. By Lemma 2.1, we have ES(G) = 2
√
t1t2(n− 1). Thus G is Seidel borderenergetic

if n − 1 = t1t2. Since t1 + t2 = n, then t1, t2 are integeres. Withouth loss of generallity,
we can suppose that t1 = n− 1 and t2 = 1. Then SpecS(G) = {[n− 1]1, [−1]n−1} and so



392 TWMS J. APP. ENG. MATH. V.10, N.2, 2020

Gram matrix Γ = I +S(G) is of rank 1. Thus, by [21] there are column vectors v, w ∈ Rn
such that vwt = A. Let x1 = [1, s1,2, . . . , s1,n], since

Γ =


1
s1,2
s1,3

...
s1,n

s1,2
1
s2,3

...
s2,n

s1,3
s2,3
1
...

s3,n

. . .

. . .

. . .

. . .

· · ·

s1,n
s2,n
s3,n

...
1

 ,
then

xt1x1 =


1
s1,2
s1,3

...
s1,n

s1,2
s21,2
s12s1,3

...
s1,2s1,n

s1,3
s1,2s1,3
s21,3

...
s1,3s1,n

. . .

. . .

. . .

. . .

· · ·

s1,n
s1,2s2,n
s1,3s3,n

...
s21,n

 .
By comparing two matrices Γ and xt1x1, we have s1u = ±1 and suv = s1us1v, (2 ≤ u 6=
v ≤ n). It not difficult to see that

Γ =

[
Ji×i

−Ji×(n−i)
−J(n−i)×i
J(n−i)×(n−i)

]
,

and

A =
1

2
(S + I − J) =

[
0l×l

−Jl×(n−l)
−J(n−l)×l

0(n−l)×(n−l)

]
.

Since A is the adjacency matrix of Ki,n−i, by a Seidel switching we have G ∼= Kn or

Ki,j , where i + j = n. By Eq. 1, ES(G) = ES(G) and so G ∼= Kn or Ki ∪ Kj , where
i+ j = n− 1. Conversely, we have

Specs(Kn) = Specs(Ki ∪Kj) = {[1− n]1, [1]n−1},

Specs(Kn) = Specs(Ki,j) = {[n− 1]1, [−1]n−1}.
This yields that Es(Kn) = Es(Kn) = Es(Ki ∪Kj) = Es(Ki,j) = 2n− 2. �

Corollary 2.1. Let G be a graph on n vertices with two distinct Seidel eigenvalues. Then
graph G−{v} is Seidel borderenergetic if and only if G−{v} ∼= Kn−1 or Kn−1 or Ki∪Kj

or Ki,j , where i+ j = n− 1.

Proof. Let G be graph on n vertices with two distinct Seidel eigenvalues [µ1]
t1 , [µ2]

t2 ,
where t1 + t2 = n and t1, t2 ∈ N. By Lemmas 1.4, 2.1, the Seidel spectrum of graph
G− {v} can be computed as follows:{[√ t2

t1
(n− 1)−

√
t1
t2

(n− 1)
]1
,
[√ t2

t1
(n− 1)

]t1−1
,
[
−
√
t1
t2

(n− 1)
]t2−1}

.

The following cases hold:

Case 1: If t2 ≥ t1, then

ES(G− {v}) = 2
√
n− 1

(√
t1t2 −

√
t1
t2

)
.

Thus G− {v} is Seidel borderenergetic if n− 2 =
√
n− 1

(√
t1t2 −

√
t1
t2

)
. Then

t1
t2

(n− 1)(t2 − 1)2 − (n− 2)2 = 0.

Since t2 = n− t1, we have
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t1 − 1

n− t1

(
t1
(
n(5− 2n) + t1(n− 1)− 3

)
+ n(n− 2)2

)
= 0.

If t1− 1 = 0 then t1 = 1 and t2 = n− 1. If t1
(
n(5− 2n) + t1(n− 1)− 3

)
+n(n− 2)2 = 0,

then

t1 =
1

2(n− 1)
(2n2 − 5n+ 3 +

√
5n2 − 14n+ 9),

or

t1 =
−1

2(n− 1)
(−2n2 + 5n− 3 +

√
5n2 − 14n+ 9),

and both of them are impossible.

Case 2: If t2 < t1, then

ES(G− {v}) = 2
√
n− 1

(√
t1t2 −

√
t2
t1

)
. (4)

A similar argument shows that t1 = n− 1 and t2 = 1. Then

SpecS(G− {v}) = {[n− 2]1, [−1]n−2}.

This completes the proof. �

A strongly regular graph srg(n, k, e, f) is a k-regular graph of order n whenever it is not
complete or edgeless and every pair of adjacent (non-adjacent) vertices has e(f) common
neighbours. It is a well-known fact that every regular graph with exactly three distinct
eigenvalues is strongly regular, see [2].

Proposition 2.2. Let G be connected k-regular graph on n ≥ 3 vertices with three
distinct eigenvalues. Then G is Seidel borderenergetic if and only if G ∼= Kn

2
,n
2

where n is
even.

Proof. Suppose that G is connected k-regular graph on n vertices with three distinct
eigenvalues k > λ1 > λ2. Thus G is strongly regular. By [4], the spectrum of G is
{[k]1, [λ1]

t1 , [λ2]
t2} where t1, t2 satisfy in the following equations:

t1 + t2 = n− 1, (5)

t1λ1 + t2λ2 = −k, (6)

t1 =
−(n− 1)λ2 + k

λ1 − λ2
, (7)

t2 =
(n− 1)λ1 + k

λ1 − λ2
. (8)

By Lemma 1.2, the Seidel spectrum of G is {[n−1−2k]1, [−1−2λ1]
t1 , [−1−2λ2]

t2} and
by Lemma 1.3, the Seidel matrix S(G) has at most three distinct eigenvalues. If the Seidel
matrix S(G) has two distinct eigenvalues, then by Proposition 2.1, we have G ∼= Kn

2
,n
2

where n is even. Let Seidel matrix S(G) has three distinct eigenvalues. Then the Seidel
energy of G is

ES(G) = |n− 1− 2k|+ t1| − 1− 2λ1|+ t2| − 1− 2λ2|.

By Lemma 1.5, λ2 < −
√

2 and the following cases hold:

Case 1: Suppose λ1 ≥ 0 and k ≤ 1
2(n− 1). By Equations 5, 6 we have
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Figure 1. Seidel borderenergetic graphs of order 2, 3.

ES(G) = (n− 1− 2k) + t1(1 + 2λ1) + t2(−1− 2λ2)

= 2t1(1 + λ1).

Thus, G is Seidel borderenergetic if n− 1 = t1(1 + 2λ1). By Eq. 5, λ1 = t2
2t1

. Then by

Eq. 6, k = −t2(12 + λ2) and by Eq. 7, we have λ2 = −1
2 , which is impossible.

Case 2: Suppose λ1 ≥ 0 and k > 1
2(n− 1). By Equations 5, 6 we have

ES(G) = (2k − n+ 1) + t1(1 + 2λ1) + t2(−1− 2λ2)

= −2t2(1 + 2λ2).

Thus, G is Seidel borderenergetic if n − 1 = −2t2(1 + 2λ2) and this yields that λ2 =
−(1 + t1

2t2
). By Eq. 6, k = t1(

1
2 − λ1) + t2. By Eq. 7, λ1 = 1

2 + t2
t1

which yields that k = 0,
a contradiction.

Case 3: Suppose that λ1 < 0 and k ≤ 1
2(n− 1). By Equations 5, 6 we have

ES(G) = (n− 1− 2k) + t1(−1− 2λ1) + t2(−1− 2λ2) = 0.

Thus, G is Seidel borderenergetic if 2(n− 1) = 0 and so n = 1, a contradiction.

Case 4: Suppose λ1 < 0 and k > 1
2(n− 1). By Equations 5, 6 we have

ES(G) = (2k − n+ 1) + t1(1 + 2λ1) + t2(−1− 2λ2)

= 2(2k − n+ 1).

Thus, G is Seidel borderenergetic if k = n − 1, a contradiction. Hence, if G has three
distinct Seidel eigenvalues, then G is not Seidel borderenergetic. This completes the proof.

�

Corollary 2.2. If G is a k-regular graph with exactly distinct three Seidel eigenvalues,
then G is not Seidel borderenergetic.

2.1. The smallest Seidel borderenergetic graphs. Here, we introduce all non-isomorphic
Seidel borderenergetic graphs of order n where 2 ≤ n ≤ 10 and we determine their Seidel
eigenvalues. Our computations are done by software package nauty developed by McKay
[19] and the The GNU MPFR library [7]. See Table 3 and Figures 3-10.

Conjecture 2.1. Let G be graph on n vertices. Then G is Seidel borderenergetic if and
only if G ∼= Kn or G ∼= Kn or G ∼= Ki ∪Kj or G ∼= Ki,j , where i+ j = n.
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Table 1. Seidel borderenergetic graphs of order n and their Seidel Spectra.

n Graphs S-Spectra

2 K2, K2 {[1]1, [−1]1}
3 K3, K1 ∪K2 {[2]1, [−1]2}

K1,2,K3 {[1]2, [−2]1}
4 K4, K1 ∪K3, K2 ∪K2 {[−3]1, [1]3}

K4, K1,3, K2,2 {[−1]3, [3]1}
5 K5, K1 ∪K4, K2 ∪K3 {[−4]1, [1]4}

K5, K1,4,K2,3 {[−1]4, [4]1}
6 K6,K1 ∪K5,K2 ∪K4,K3 ∪K3 {[−5]1, [1]5}

K6,K1,5,K2,4,K3,3 {[−1]5, [5]1}
7 K7,K1 ∪K6,K2 ∪K5,K3 ∪K4 {[−6]1, [1]6}

K7,K1,6,K2,5,K3,4 {[−1]6, [6]1}
8 K8, K8, K1,7, K2,6, K3,5, K4,4 {[−7]1, [1]7}

K1 ∪K7, K2 ∪K6, K3 ∪K5, K4 ∪K4 {[7]1, [−1]7}
9 K9, K9, K1,8, K2,7, K3,6, K4,5 {[−8]1, [1]8}

K1 ∪K8, K2 ∪K7, K3 ∪K6, K4 ∪K5 {[8]1, [−1]8}
10 K10, K10, K1,9, K2,8, K3,7, K4,6, K5,5 {[−9]1, [1]9}

K1 ∪K9, K2 ∪K8, K3 ∪K7, K4 ∪K6, K5 ∪K5 {[9]1, [−1]9}

Figure 2. Seidel borderenergetic graphs of order 4.

Figure 3. Seidel borderenergetic graphs of order 5.
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