SEIDEL BORDERENERGETIC GRAPHS

M. H. NEZHAAD¹, M. GHORBANI¹, §

ABSTRACT. A graph G of order n is said to be Seidel borderenergetic if its Seidel energy equals the Seidel energy of the complete graph K_n . Let G be graph on n vertices with two distinct Seidel eigenvalues. In this paper, we prove that G is Seidel borderenergetic if and only if $G \cong K_n$ or $G \cong \overline{K_n}$ or $G \cong K_i \cup K_j$ or $G \cong K_{i,j}$, where i + j = n. We also, show that if G is a connected k-regular graph on $n \ge 3$ vertices with three distinct eigenvalues, then G is Seidel borderenergetic if and only if $G \cong K_{\frac{n}{2}, \frac{n}{2}}$ where n is even. Finally, we determine all Seidel borderenergetic graphs with at most 10 vertices.

Keywords: Seidel matrix, Seidel eigenvalue, Seidel borderenergetic graph.

AMS Subject Classification: 05C50.

1. INTRODUCTION

Here, we recall some definitions that will be used in the paper. Let G be a simple graph with n vertices, m edges and A(G) denotes the adjacency matrix of G. The eigenvalues of graph G are the roots of characteristic polynomial $\chi_G(\lambda) = det(\lambda I - A(G))$, where I is the identity matrix of order n. The energy of a graph is defined as the sum of absolute value of the eigenvalues of A(G), see [10]. The rank of the matrix A(G) denoted by rank(A(G))is equal to the number of linearly independent columns of A(G).

For given graph G its complement is denoted by \overline{G} . For two graphs G_1 and G_2 , the graph $G_1 \cup G_2$ is the disjoint union of G_1 and G_2 . The graph $G - \{v\}$ is a graph obtaining from G by removing the vertex v with all edges connected to v. The complete graph on n vertices is denoted by K_n . A complete bipartite graph with a bipartition of sizes n_1 and n_2 is denoted by K_{n_1,n_2} .

Suppose L = D - A is the Laplacian matrix of graph G, where $D = [d_{ij}]$ is a diagonal matrix with $d_{ii} = deg_G(v_i)$, and $d_{ij} = 0$; otherwise. The spectra of L is a sequence of its eigenvalues an displayed in increasing order, denoted by $LSepc(G) = \{0 = \delta_n, \delta_{n-1}, \ldots, \delta_1\}$.

¹Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785 - 136, I. R. Iran.

e-mail: m.hakiminezhaad@sru.ac.ir; ORCID: https://orcid.org/0000-0002-4638-6565.

e-mail: mghorbani@sru.ac.ir; ORCID: https://orcid.org/0000-0001-9582-1220.

[§] Manuscript received: August 18, 2018; accepted: April 17, 2019.

TWMS Journal of Applied and Engineering Mathematics, Vol.10, No.2 © Işık University, Department of Mathematics, 2020; all rights reserved.

The Laplacian energy of the graph G is defined as

$$LE(G) = \sum_{i=1}^{n} |\delta_i - \overline{d}|,$$

where δ_i 's are the Laplacian eigenvalues of G and \overline{d} is the average degree of G. For the Laplacian energy, we have $LE(K_n) = 2n-2$. Details on the properties of Laplacian energy can be found in [11, 16].

Recently, Gong et al. [9] proposed the concept of borderenergetic graphs, namely graphs of order n satisfying E(G) = 2n - 2. Tura in [23] proposed the concept of Laplacian borderenergetic graphs. In this way, we say G is Laplacian borderenergetic if LE(G) = $LE(K_n)$. More details on borderenergetic and Laplacian borderenergetic graphs can found in [6, 15, 17, 18, 22] as well as [5, 14, 13].

In 1966, Van Lint and Seidel in [24] introduced a symmetric (0, -1, 1)-adjacency matrix for a graph G called the Seidel matrix of G as S(G) = J - I - 2A(G), where J is the matrix with entries 1 in every position. Let $\mu_1(G) \leq \mu_2(G) \leq \cdots \leq \mu_s(G)$ be the distinct Seidel eigenvalues of G with multiplicity t_1, t_2, \ldots, t_s , respectively. The multiset $Spec_S(G) = \{ [\mu_1(G)]^{t_1}, [\mu_2(G)]^{t_2}, \dots, [\mu_s(G)]^{t_s} \}$ is called the Seidel spectrum of G. Two non-isomorphic graphs are said to be Seidel co-spectral if their Seidel spectra coincide. In [12] Haemers defined the Seidel energy of G as

$$E_S(G) = \sum_{i=1}^{n} |\mu_i(G)|,$$
(1)

where $\mu_i(G)$'s are the Seidel eigenvalues of G. Two graphs G and G' are said to be Seidel equienergetic if $E_S(G) = E_S(G')$, see [20]. In a trivial manner, co-spectral graphs are equienergetic. If the Seidel eigenvalues of a graph G are $\mu_i(G)$'s, $(1 \leq i \leq n)$, then the Seidel eigenvalues of \overline{G} are $-\mu_i(G)$'s, $(1 \le i \le n)$ and so $E_S(G) = E_S(\overline{G})$. A graph G of order n is said to be Seidel borderenergetic if its Seidel energy equals the Seidel energy of the complete graph K_n , i.e., if $E_S(G) = 2(n-1)$.

Let U_1 and $U_2 = V(G) \setminus U_1$ be the partitioned sets of the vertex set V(G) of a graph G. Let G' be the graph obtained from G by deleting all edges between U_1 and U_2 and inserting all edges between U_1 and U_2 that were not presented in G. Then G' and G are said to be Seidel switching, with respect to U_1 . If G' and G are Seidel switching then S(G') and S(G) are similar and therefore G' and G have the same Seidel eigenvalues, see [12].

Given a set V of m vectors (points in \mathbb{R}^n), the Gram matrix Γ is a real symmetric $(n \times n)$ -matrix of all possible inner products of V, i.e., $\gamma_{ij} = x_i^t x_j$, where x^t denotes the transposed vector of x. The Gram matrix can be written as $\Gamma = H^{t}H$, where H is $(m \times n)$ matrix and m is the rank of Γ . Let θ be the smallest eigenvalue of S(G). Then $\theta < 0$ since $S(G) \neq 0$ and trace(S(G)) = 0. The $\Gamma = I - \frac{1}{\theta}S(G)$ is the Gram matrix of a set of vectors in \mathbb{R}^d , where $d = rank(S(G) - \theta I) = n - m(\theta)$, n is the number of vertices of the graph and $m(\theta)$ is the multiplicity of θ as eigenvalue of S(G), see [2].

Lemma 1.1. [2]. For any graph G on $n \ge 2$ vertices, we have

- i) $\sum_{i=1}^{n} \mu_i(G) = 0,$ ii) $\sum_{i=1}^{n} \mu_i^2(G) = n(n-1).$

Lemma 1.2. [3]. Let G be a k-regular graph on n vertices. Then the Seidel spectrum of G is $\{n - 1 - 2k, -1 - 2\lambda_{n-1}(G), \ldots, -1 - 2\lambda_1(G)\}$, where $\lambda_i(G)$'s $(1 \le i \le n)$ are eigenvalues of G.

Lemma 1.3. [8]. Let G be a connected k-regular graph on n vertices with adjacency matrix A(G). Assume that A(G) has exactly t distinct eigenvalues. Then the Seidel matrix S(G) has at most t distinct eigenvalues.

Lemma 1.4. [8]. Suppose that S(G) is a Seidel matrix of order $n \ge 2$ with spectrum $\{[\mu_1(G)]^{n-t}, [\mu_2(G)]^t\}$ for some t where $1 \le t \le n-1$. Let S(G') be a principal $(n-1) \times (n-1)$ submatrix of S(G). Then the spectrum of S(G') is

$$\left\{ [\mu_1(G)]^{n-t-1}, [\mu_2(G)]^{t-1}, [\mu_1(G) + \mu_2(G)]^1 \right\}.$$

Lemma 1.5. [1]. Let G be a connected graph with least eigenvalue $\lambda(G)$. Then if G is neither complete nor null, then $\lambda(G) \leq -\sqrt{2}$ with equality if and only if $G \cong K_{1,2}$.

2. Main Results

Here, we characterize all Seidel borderenergetic graphs with at most three Seidel eigenvalues. The following Lemma is essential in the proof of Proposition 2.1.

Lemma 2.1. Let G be graph on $n \ge 2$ vertices with two distinct Seidel eigenvalues. Then

$$Spec_{S}(G) = \left\{ \left[\sqrt{\frac{t_{2}}{t_{1}}(n-1)} \right]^{t_{1}}, \left[-\sqrt{\frac{t_{1}}{t_{2}}(n-1)} \right]^{t_{2}} \right\},\$$

where $t_1 + t_2 = n$.

Proof. Let G be graph on n vertices with two distinct Seidel eigenvalues $[\mu_1(G)]^{t_1}, [\mu_2(G)]^{t_2},$ where $t_1 + t_2 = n$. By Lemma 1.1 (i), we have $t_1\mu_1(G) + t_2\mu_2(G) = 0$, then

$$\mu_2(G) = -\frac{t_1}{t_2}\mu_1(G). \tag{2}$$

By Lemma 1.1 (ii), we have $t_1\mu_1^2(G) + t_2\mu_2^2(G) = n(n-1)$, then

$$\mu_1(G) = -\sqrt{\frac{t_2}{t_1}(n-1)}.$$
(3)

Therefore by using Equations 2, 3, we have

$$Spec_{S}(G) = \left\{ \left[\sqrt{\frac{t_{2}}{t_{1}}(n-1)} \right]^{t_{1}}, \left[-\sqrt{\frac{t_{1}}{t_{2}}(n-1)} \right]^{t_{2}} \right\}.$$

Proposition 2.1. Let G be graph on n vertices with two distinct Seidel eigenvalues. Then G is Seidel borderenergetic if and only if $G \cong K_n$ or $G \cong \overline{K}_n$ or $G \cong K_i \cup K_j$ or $G \cong K_{i,j}$, where i + j = n.

Proof. By Lemma 2.1, we have $E_S(G) = 2\sqrt{t_1t_2(n-1)}$. Thus G is Seidel borderenergetic if $n-1 = t_1t_2$. Since $t_1 + t_2 = n$, then t_1, t_2 are integeres. Withouth loss of generallity, we can suppose that $t_1 = n-1$ and $t_2 = 1$. Then $Spec_S(G) = \{[n-1]^1, [-1]^{n-1}\}$ and so

Gram matrix $\Gamma = I + S(G)$ is of rank 1. Thus, by [21] there are column vectors $v, w \in \mathbb{R}^n$ such that $vw^t = A$. Let $x_1 = [1, s_{1,2}, \ldots, s_{1,n}]$, since

$$\Gamma = \begin{bmatrix} 1 & s_{1,2} & s_{1,3} & \dots & s_{1,n} \\ s_{1,2} & 1 & s_{2,3} & \dots & s_{2,n} \\ s_{1,3} & s_{2,3} & 1 & \dots & s_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ s_{1,n} & s_{2,n} & s_{3,n} & \dots & 1 \end{bmatrix}$$

then

$$x_{1}^{t}x_{1} = \begin{bmatrix} 1 & s_{1,2} & s_{1,3} & \dots & s_{1,n} \\ s_{1,2} & s_{1,2}^{2} & s_{1,2}s_{1,3} & \dots & s_{1,2}s_{2,n} \\ s_{1,3} & s_{12}s_{1,3} & s_{1,3}^{2} & \dots & s_{1,3}s_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ s_{1,n} & s_{1,2}s_{1,n} & s_{1,3}s_{1,n} & \dots & s_{1,n}^{2} \end{bmatrix}$$

By comparing two matrices Γ and $x_1^t x_1$, we have $s_{1u} = \pm 1$ and $s_{uv} = s_{1u} s_{1v}$, $(2 \le u \ne v \le n)$. It not difficult to see that

$$\Gamma = \begin{bmatrix} J_{i \times i} & -J_{(n-i) \times i} \\ -J_{i \times (n-i)} & J_{(n-i) \times (n-i)} \end{bmatrix}$$

and

$$A = \frac{1}{2}(S + I - J) = \begin{bmatrix} 0_{l \times l} & -J_{(n-l) \times l} \\ -J_{l \times (n-l)} & 0_{(n-l) \times (n-l)} \end{bmatrix}$$

Since A is the adjacency matrix of $K_{i,n-i}$, by a Seidel switching we have $G \cong \overline{K}_n$ or $K_{i,j}$, where i + j = n. By Eq. 1, $E_S(G) = E_S(\overline{G})$ and so $G \cong K_n$ or $K_i \cup K_j$, where i + j = n - 1. Conversely, we have

$$Spec_{s}(K_{n}) = Spec_{s}(K_{i} \cup K_{j}) = \{[1-n]^{1}, [1]^{n-1}\},\$$

$$Spec_{s}(\overline{K}_{n}) = Spec_{s}(K_{i,j}) = \{[n-1]^{1}, [-1]^{n-1}\}.$$
This yields that $E_{s}(K_{n}) = E_{s}(\overline{K}_{n}) = E_{s}(K_{i} \cup K_{j}) = E_{s}(K_{i,j}) = 2n-2.$

Corollary 2.1. Let G be a graph on n vertices with two distinct Seidel eigenvalues. Then graph $G - \{v\}$ is Seidel borderenergetic if and only if $G - \{v\} \cong K_{n-1}$ or \overline{K}_{n-1} or $K_i \cup K_j$

Proof. Let G be graph on n vertices with two distinct Seidel eigenvalues $[\mu_1]^{t_1}$, $[\mu_2]^{t_2}$, where $t_1 + t_2 = n$ and $t_1, t_2 \in \mathbb{N}$. By Lemmas 1.4, 2.1, the Seidel spectrum of graph $G - \{v\}$ can be computed as follows:

$$\Big\{\Big[\sqrt{\frac{t_2}{t_1}(n-1)} - \sqrt{\frac{t_1}{t_2}(n-1)}\Big]^1, \Big[\sqrt{\frac{t_2}{t_1}(n-1)}\Big]^{t_1-1}, \Big[-\sqrt{\frac{t_1}{t_2}(n-1)}\Big]^{t_2-1}\Big\}.$$

The following cases hold:

or $K_{i,j}$, where i + j = n - 1.

Case 1: If $t_2 \ge t_1$, then

$$E_S(G - \{v\}) = 2\sqrt{n-1} \left(\sqrt{t_1 t_2} - \sqrt{\frac{t_1}{t_2}}\right)$$

Thus $G - \{v\}$ is Seidel borderenergetic if $n - 2 = \sqrt{n - 1} \left(\sqrt{t_1 t_2} - \sqrt{\frac{t_1}{t_2}} \right)$. Then

$$\frac{t_1}{t_2}(n-1)(t_2-1)^2 - (n-2)^2 = 0.$$

Since $t_2 = n - t_1$, we have

$$\frac{t_1 - 1}{n - t_1} \left(t_1 \left(n(5 - 2n) + t_1(n - 1) - 3 \right) + n(n - 2)^2 \right) = 0.$$

If $t_1 - 1 = 0$ then $t_1 = 1$ and $t_2 = n - 1$. If $t_1(n(5-2n) + t_1(n-1) - 3) + n(n-2)^2 = 0$, then

$$t_1 = \frac{1}{2(n-1)}(2n^2 - 5n + 3 + \sqrt{5n^2 - 14n + 9}),$$

or

$$t_1 = \frac{-1}{2(n-1)}(-2n^2 + 5n - 3 + \sqrt{5n^2 - 14n + 9}),$$

and both of them are impossible.

Case 2: If $t_2 < t_1$, then

$$E_S(G - \{v\}) = 2\sqrt{n-1} \left(\sqrt{t_1 t_2} - \sqrt{\frac{t_2}{t_1}}\right).$$
(4)

A similar argument shows that $t_1 = n - 1$ and $t_2 = 1$. Then

$$Spec_S(G - \{v\}) = \{[n-2]^1, [-1]^{n-2}\}.$$

This completes the proof.

A strongly regular graph srg(n, k, e, f) is a k-regular graph of order n whenever it is not complete or edgeless and every pair of adjacent (non-adjacent) vertices has e(f) common neighbours. It is a well-known fact that every regular graph with exactly three distinct eigenvalues is strongly regular, see [2].

Proposition 2.2. Let G be connected k-regular graph on $n \ge 3$ vertices with three distinct eigenvalues. Then G is Seidel borderenergetic if and only if $G \cong K_{\frac{n}{2},\frac{n}{2}}$ where n is even.

Proof. Suppose that G is connected k-regular graph on n vertices with three distinct eigenvalues $k > \lambda_1 > \lambda_2$. Thus G is strongly regular. By [4], the spectrum of G is $\{[k]^1, [\lambda_1]^{t_1}, [\lambda_2]^{t_2}\}$ where t_1, t_2 satisfy in the following equations:

$$t_1 + t_2 = n - 1, (5)$$

$$t_1\lambda_1 + t_2\lambda_2 = -k,\tag{6}$$

$$t_1 = \frac{-(n-1)\lambda_2 + k}{\lambda_1 - \lambda_2},\tag{7}$$

$$t_2 = \frac{(n-1)\lambda_1 + k}{\lambda_1 - \lambda_2}.$$
(8)

By Lemma 1.2, the Seidel spectrum of G is $\{[n-1-2k]^1, [-1-2\lambda_1]^{t_1}, [-1-2\lambda_2]^{t_2}\}$ and by Lemma 1.3, the Seidel matrix S(G) has at most three distinct eigenvalues. If the Seidel matrix S(G) has two distinct eigenvalues, then by Proposition 2.1, we have $G \cong K_{\frac{n}{2},\frac{n}{2}}$ where n is even. Let Seidel matrix S(G) has three distinct eigenvalues. Then the Seidel energy of G is

$$E_S(G) = |n - 1 - 2k| + t_1| - 1 - 2\lambda_1| + t_2| - 1 - 2\lambda_2|.$$

By Lemma 1.5, $\lambda_2 < -\sqrt{2}$ and the following cases hold:

Case 1: Suppose $\lambda_1 \ge 0$ and $k \le \frac{1}{2}(n-1)$. By Equations 5, 6 we have

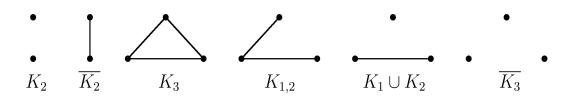


FIGURE 1. Seidel borderenergetic graphs of order 2, 3.

$$E_S(G) = (n - 1 - 2k) + t_1(1 + 2\lambda_1) + t_2(-1 - 2\lambda_2)$$

= $2t_1(1 + \lambda_1).$

Thus, G is Seidel borderenergetic if $n - 1 = t_1(1 + 2\lambda_1)$. By Eq. 5, $\lambda_1 = \frac{t_2}{2t_1}$. Then by Eq. 6, $k = -t_2(\frac{1}{2} + \lambda_2)$ and by Eq. 7, we have $\lambda_2 = -\frac{1}{2}$, which is impossible.

Case 2: Suppose $\lambda_1 \ge 0$ and $k > \frac{1}{2}(n-1)$. By Equations 5, 6 we have

j

$$E_S(G) = (2k - n + 1) + t_1(1 + 2\lambda_1) + t_2(-1 - 2\lambda_2)$$

= -2t_2(1 + 2\lambda_2).

Thus, G is Seidel borderenergetic if $n - 1 = -2t_2(1 + 2\lambda_2)$ and this yields that $\lambda_2 = -(1 + \frac{t_1}{2t_2})$. By Eq. 6, $k = t_1(\frac{1}{2} - \lambda_1) + t_2$. By Eq. 7, $\lambda_1 = \frac{1}{2} + \frac{t_2}{t_1}$ which yields that k = 0, a contradiction.

Case 3: Suppose that $\lambda_1 < 0$ and $k \leq \frac{1}{2}(n-1)$. By Equations 5, 6 we have

$$E_S(G) = (n-1-2k) + t_1(-1-2\lambda_1) + t_2(-1-2\lambda_2) = 0.$$

Thus, G is Seidel borderenergetic if 2(n-1) = 0 and so n = 1, a contradiction.

Case 4: Suppose $\lambda_1 < 0$ and $k > \frac{1}{2}(n-1)$. By Equations 5, 6 we have

$$E_S(G) = (2k - n + 1) + t_1(1 + 2\lambda_1) + t_2(-1 - 2\lambda_2)$$

= 2(2k - n + 1).

Thus, G is Seidel borderenergetic if k = n - 1, a contradiction. Hence, if G has three distinct Seidel eigenvalues, then G is not Seidel borderenergetic. This completes the proof.

Corollary 2.2. If G is a k-regular graph with exactly distinct three Seidel eigenvalues, then G is not Seidel borderenergetic.

2.1. The smallest Seidel borderenergetic graphs. Here, we introduce all non-isomorphic Seidel borderenergetic graphs of order n where $2 \le n \le 10$ and we determine their Seidel eigenvalues. Our computations are done by software package nauty developed by McKay [19] and the The GNU MPFR library [7]. See Table 3 and Figures 3-10.

Conjecture 2.1. Let G be graph on n vertices. Then G is Seidel borderenergetic if and only if $G \cong K_n$ or $G \cong \overline{K}_n$ or $G \cong K_i \cup K_j$ or $G \cong K_{i,j}$, where i + j = n.

								-
TABLE 1.	Seidel	borderenergetic	graphs o	f order i	n and	their	Seidel	Spectra.

	~ .	
n	Graphs	S-Spectra
2	$K_2, \overline{K_2}$	$\{[1]^1, [-1]^1\}$
3	$K_3, K_1 \cup K_2$	$\{[2]^1, [-1]^2\}$
	$K_{1,2}, \overline{K_3}$	$\{[1]^2, [-2]^1\}$
4	$K_4, K_1 \cup K_3, K_2 \cup K_2$	$\{[-3]^1, [1]^3\}$
	$\overline{K_4}, K_{1,3}, K_{2,2}$	$\{[-1]^3, [3]^1\}$
5	$K_5, K_1\cup K_4, K_2\cup K_3$	$\{[-4]^1, [1]^4\}$
	$\overline{K_5}, K_{1,4}, K_{2,3}$	$\left \{ [-1]^4, [4]^1 \} \right $
6	$K_6,K_1\cup K_5,K_2\cup K_4,K_3\cup K_3$	$\{[-5]^1, [1]^5\}$
	$\overline{K_6}, K_{1,5}, K_{2,4}, K_{3,3}$	$\{[-1]^5, [5]^1\}$
7	$K_7,K_1\cup K_6,K_2\cup K_5,K_3\cup K_4$	$\{[-6]^1, [1]^6\}$
	$\overline{K_7}, K_{1,6}, K_{2,5}, K_{3,4}$	$\{[-1]^6, [6]^1\}$
8	$K_8,\overline{K_8},K_{1,7},K_{2,6},K_{3,5},K_{4,4}$	$\{[-7]^1, [1]^7\}$
	$K_1 \cup K_7, K_2 \cup K_6, K_3 \cup K_5, K_4 \cup K_4$	$\{[7]^1, [-1]^7\}$
9	$K_9,\overline{K_9},K_{1,8},K_{2,7},K_{3,6},K_{4,5}$	$\{[-8]^1, [1]^8\}$
	$K_1 \cup K_8, \ K_2 \cup K_7, \ K_3 \cup K_6, \ K_4 \cup K_5$	$\{[8]^1, [-1]^8\}$
10	$K_{10}, \overline{K_{10}}, K_{1,9}, K_{2,8}, K_{3,7}, K_{4,6}, K_{5,5}$	$\{[-9]^1, [1]^9\}$
	$K_1 \cup K_9, K_2 \cup K_8, K_3 \cup K_7, K_4 \cup K_6, K_5 \cup K_5$	$\{[9]^1, [-1]^9\}$

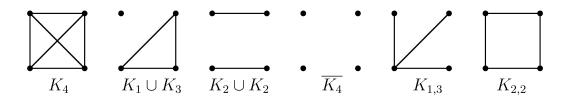


FIGURE 2. Seidel borderenergetic graphs of order 4.

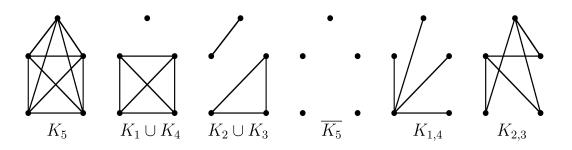


FIGURE 3. Seidel borderenergetic graphs of order 5.

References

- [1] Beineke, L. W., Wilson, R. and Cameron, P. J., (2004), Topics in Algebraic Graph Theory, New York: Cambridge University Press.
- [2] Brouwer, A. E., Haemers, W. H., (2012), Spectra of Graphs, Universitext, Springer, New York.
- [3] Cvetković, D., Doob, M. andSachs, H., (1980) Spectra of Graphs-Theory and Application, Academic Press, New York.

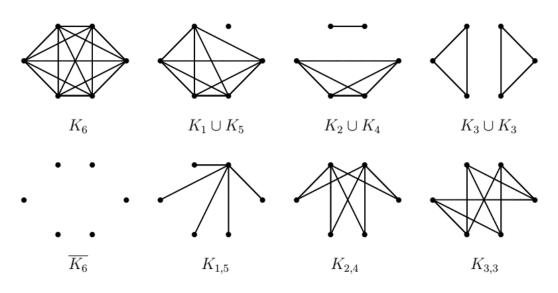


FIGURE 4. Seidel borderenergetic graphs of order 6.

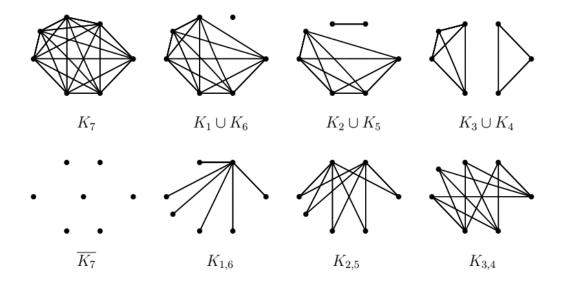


FIGURE 5. Seidel borderenergetic graphs of order 7.

- [4] Deng, B., Li, X. and Gutman, I., (2016), More on borderenergetic graphs, Linear Algebra Appl., 497, pp. 199-208.
- [5] Deng, B. and Li, X., (2017), More on L-Borderenergetic Graphs, MATCH Commun. Math. Comput. Chem. 77, pp. 115-127.
- [6] Furtula, B. and Gutman, I., (2017), Borderenergetic Graphs of Order 12, Iranian J. Math. Chem., 8 (4), pp. 339-343
- [7] GNU MPFR Library, http://www.mpfr.org/mpfr-current/mpfr.html.
- [8] Greaves, G., Koolen, J. H., Munemasa, A. and Szöllősi, F., (2016), Equiangular lines in Euclidean spaces, J. Combin. Theory Ser. A, 138, pp. 208-235.
- [9] Gong, S., Li, X., Xu, G., Gutman, I. and Furtula, B. (2015), Borderenergetic graphs, MATCH Commun. Math. Comput. Chem., 74, pp. 321-332.
- [10] Gutman, I., (1978), The energy of a graph, Ber. Math-Statist. Sekt. Forschungszentrum Graz, 103, pp. 1-22.

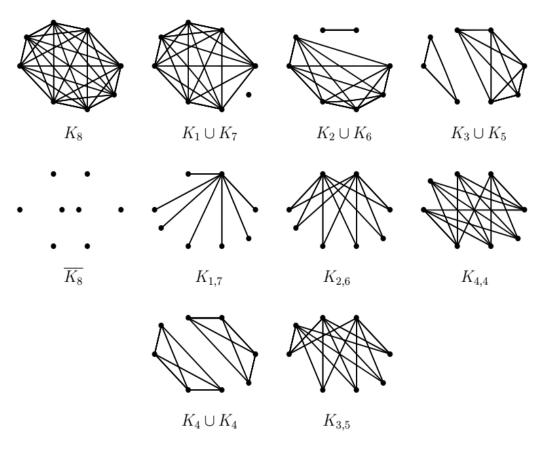
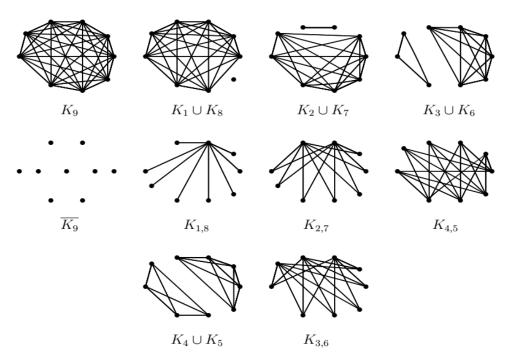
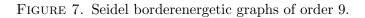


FIGURE 6. Seidel borderenergetic graphs of order 8.

- [11] Gutman, I. and Zhou, B., (2006), Laplacian energy of a graph, Linear Algebra Appl., 414, pp. 29-37.
- [12] Haemers, W. H., (2012), Seidel switching and graph energy, MATCH Commun. Math. Comput. Chem., 68, pp. 653-659.
- [13] Hakimi-Nezhaad, M., (2017), On borderenergetic and L-borderenergetic graphs, J. Math. Nanosci., 7 (1-2), pp. 71-77.
- [14] Hakimi-Nezhaad, M. and Ghorbani, M., Laplacian Borderenergetic graphs, J. Inf. Optim. Sci., DOI: 10.1080/02522667.2018.1480468.
- [15] Hou, Y. and Tao, Q., (2016), Borderenergetic threshold graphs, MATCH Commun. Math. Comput. Chem., 75, pp. 253-262.
- [16] Li, X., Shi, Y. and Gutman, I., (2012) Graph energy, Springer, New York.
- [17] Li, X., Wei, M. and Gong, S., (2015), A computer search for the borderenergetic graphs of order 10, MATCH Commun. Math. Comput. Chem., 74, pp. 333-342.
- [18] Li, X., Wei, M. and Zhu, M., (2016), Borderenergetic graphs with small maximum or large minimum degrees, MATCH Commun. Math. Comput. Chem., 77, pp. 25-36.
- [19] McKay, B. D., (2006), nauty User's Guide, (version 2.2), Technical Report TR-CS-90-02, Computer Science Department, Australian National University, available at http://cs.anu.edu.au/people/bdm/.
- [20] Ramane, H. S., Gundloor, M. M. and Hosamani, S. M., (2016), Seidel equienergetic graphs, Bulletin of Mathematical Sciences and Applications, 16, pp. 62-69.
- [21] Roman, S., (1992), Advanced Linear Algebra, Graduate Texts in Mathematics, vol. 135. Springer, New York.
- [22] Shao, Z. and Deng, F., (2016), Correcting the number of borderenergetic graphs of order 10, MATCH Commun. Math. Comput. Chem., 75, pp. 263-266.
- [23] Tura, F., (2017), L-borderenergetic graphs, MATCH Commun. Math. Comput. Chem., 77, pp. 37-44.





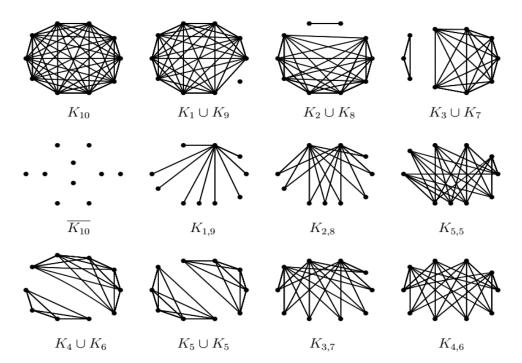


FIGURE 8. Seidel borderenergetic graphs of order 10.

[24] van Lint, J. H. and Seidel, J. J., (1966), Equilateral point sets in elliptic geometry, Nederl. Akad. Wetensch. Proc. Ser. A 69=Indag. Math. 28, pp. 335-348.

Mardjan Hakimi-Nezhaad is a Ph.D student at Shahid Rajaee Teacher Training University. She got her M.Sc from University of Kashan. Her research interests are alegebraic graph theory and mathematical chemistry.

Modjtaba Ghorbani is currently an associate professor at Shahid Rajaee Teacher Training University. His research interests includes finite group theory, character theory of finite groups, mathematical chemistry and algebraic combinatorics.