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ADAPTIVE MOVING MESH FOR SOLVING THE KORTEWEG-DE

VRIES-BURGERS EQUATION

ADULGHANI ALHARBI, §

Abstract. This paper presents an adaptive mesh method for solving the Korteweg-
de Vries-Burgers (KdVB) equation numerically. The r-adaptive mesh method which
employs a monitor function and one of the mesh equations (MMPDEs) presented by
[11] which uses to concentrate and move the mesh. This technique correctly resolves the
various structures seen in these problems. Furthermore, it decreases the computational
effort in comparison to the numerical solution using a fixed uniform mesh scheme. Here,
the exact solution of the KdVB equation at a fixed time is utilized to compare with that
employing an adaptive moving mesh and a uniform mesh. By comparing the relative
error for the obtained solutions of the problem, I will check the accuracy of the adaptive
method.

Keywords: KdVB equation; Adaptive mesh; r-adaptive method; Moving mesh PDEs
(MMPDEs); monitor function.
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1. Introduction

The Korteweg-de Vries-Burger’s (KdVB) equation is of the form:

ht + εhhx − νhxx + µhxxx = 0, (1)

where, h = h(x, t), x and t are referred to as the spatial variable and time, respectively.
The parameters ε > 0, ν, and µ are referred to as the flow velocity coefficient, the diffusion
coefficient, and the coefficient of the dispersive term, respectively, with ενµ is a non-
negative number. Such an equation appears from several various physical phenomena
as a model of a non-linear problem containing the effects of non-linearity, dispersion,
and dissipation. Eq. (1) is derived by Johnson [1] as the controlling equation for waves
spreading in a liquid-filled flexible pipe in which the effects of non-linearity, dispersion,
and dissipation have appeared. Van Wijngaarden [2] utilised the equation as a model of
non-linear in the flow of liquids containing gas bubbles. It is used by [3, 4] as a turbulence
model. Moreover, Grua and Hu [5] utilised a steady-state of Eq. (1) to characterise a small
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shock profile in plasmas. Numerous theoretical studies mattering the KdVB equation have
been given enormous interest for the past many decades. Primarily, the solution to the
KdV equation has significantly obtained. Johnson [1] studied the solution to the KdVB
problem in the stage plane utilising a disturbance method in the areas where ν � µ,
µ � ν. Grua and Hu [6] examined the same equation applying a method comparable
to that employed by Johnson [1] and a related comparison was considered by Jeffrey [7].
Canosa, Gazdag and Uretaev [8, 9] presented numerically the approximation solution of
Eq. (1). The uniqueness and existence of the bounded wave solution to Eq. (1) are
investigated by Bona and Schonbek [10], which tends to fixed states at ±∞. The purpose
of this paper is to show that a more general exact solution to the KdVB equation can
indeed be obtained by the Painlevé analysis. Grad and Hu [5] showed that the dissipation
effects dominate over dispersive effect when:

4µ ≤ ν2. (2)

In this case the solution of Eq. (1) is a shock decreasing monotonically from the upstream
to the downstream value of h(x, t).

If: ν2 ≤ 4µ, (3)

the dispersive effects dominate over the dissipative effects and in this case, the shock
becomes oscillatory upstream and monotonic downstream. Here, the non-uniform mesh
scheme is presented by [11, 12, 13] which uses a monitor function and mesh equations
to focus and transfer the mesh points coupled to the problem. This non-uniform mesh
scheme is referred to as r-adaptive methods. These methods are entirely appropriate for
KdVB equation compared to some different techniques. The r-adaptive schemes improve
the mesh points based on a monitor function that directly follows particular solution
components (for instance, the solution involves significant variations, large curvatures, and
shock waves) and therefore could resolve the regions, where the solution has variations,
more accurately. The MMPDEs commonly use the standard form of a non-linear diffusion
equation [11, 12] which coupled to the problems. r-adaptive schemes can be effortlessly
applied using the finite difference method well appropriate for these problems. On the
other hand, h-adaptive techniques are commonly performed utilizing the finite element
method.

The r-adaptive methods are a modern improvement and are not applied as often as h
or hp- refinements, they happily are employed in many applications, for example convec-
tive heat transfer [16], meteorological [17, 18] and computational fluid mechanics [14, 15]
problems. The r-adaptive mesh schemes make the basis of common purpose openly free
solvers for only one dimensional PDE, such as MOVCOL [19] and TOMS731 [20]. Never-
theless, they have just examined for the first and second order parabolic PDEs (such as
the Burger’s equation [11, 21, 22, 23, 24, 25, 26]) and to our knowledge, this is the first
try to use r-adaptive mesh methods for solving the KdVB equation.

1.1. Exact Solution of the KdVB Equation. The exact solution of the KdvB equation
appeared for the first time for the two dimensional KdVB equation at [27]. It is modified
to take the simplified form:

h(x, t) =
12ν2

25εµ

1−
exp

(
2ν
5µ(x− ωt)

)
[
exp

(
ν
5µ(x− ωt)

)
+ c
]2
 , (4)

where c is a positive real number, ω = 12ν2

25µ , ε, ν and µ are positive parameters.
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2. Numerical results on an Adaptive Mesh

The numerical solutions of Eq. (1) are sought with the following boundary conditions

hx(0, t) = hx(M, t) = 0, hxx(0, t) = hxx = 0, (5)

and the initial condition Eq. (4) with taking t = 0 using finite difference methods. The
numerical method is performed on an adaptive moving mesh.

Here, the exact solution Eq. (4) is used at a fixed time t = 2 to study the accuracy
of applying non-uniform and uniform meshes. The adaptive mesh method requires to
transform from the computational domain to the physical domain utilising the following
transformation

x = x(ξ, t) : Ωc ≡ [0,M ]→ Ωp ≡ [0,M ], t > 0.

Ωc is called the computational domain, Ωp is the physical domain, ξ is the computational
coordinate, and M is a length of the physical domain. Thus the solution is formed as

h(x, t) = h(x(ξ, t), t).

A moving mesh associated with the solutions h is described as

Jh(ts) : xj(ξ) = x(ξj , t), j = 1, · · · , N + 1 (6)

where the boundary points are provided by

x1 = ξ1, xN+1 = ξN+1. (7)

A uniform mesh on Ωc is given by

J ch (t) : ξj =
(j − 1)M

N
, j = 1, · · · , N + 1. (8)

Applying the chain rule yields

hx =
hξ
xξ
, ht = ht −

hξ
xξ

xt. (9)

Using the above, Eq. (1) can be written as

ht −
hξ
xξ
xt = −

Qξ
xξ
, (10)

Q = µ
1

xξ

(
hξ
xξ

)
ξ

− ν
hξ
xξ

+ ε
h2

2
, (11)

Notice that the third order derivative is approximated requiring a standard 5-point
stencil for h and a 3-point stencil for x. Thus, evaluating Eq. (10) at j = 2, and j = N
requires fictitious points h0 and hN+2. Since h is symmetric in x then for j = 1, N + 1,

h0 = h1, hN+2 = hN+1

The boundary conditions of the solution h(0, t) = β1, h(L, t) = β2 are taken by their
ODE form:

ht,1 = 0, ht,N+1 = 0, (12)

where β1, β2 are constants as the problem required. The transformation x = x(ξ, t)
gained via solving the equation mesh (MMPDEs). Four different MMPDEs are employed,
the so-called MMPDE 4, 5 and 6 and modified MMPDE 5, presented in [11]. The finite
centred differences are used to discretise the derivatives of the spatial variable. The semi-
discretisation of MMPDEs is as follows: ( the reader can also refer to [28, 29, 30])
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MMPDE 4 : (ρ̂xtξ)ξ = −1

τ
(ρ̂xξ)ξ, (13)

MMPDE5 : xt =
1

τ
(ρ̂xξ)ξ, (14)

MMPDE6 : xt,ξξ = −1

τ
(ρ̂xξ)ξ, (15)

Modified MMPDE5 : xt =
1

ρ̂τ
(ρ̂xξ)ξ. (16)

Where, ρ̂(x, t) is a monitor function and τ > 0 is a relaxation parameter. τ is the
timescale over which the mesh responds to variations in ρ̂(x, t). Experts observed that
taking small enough value of the relaxation parameter τ , makes the mesh responds to
variations in ρ̂(x, t) [21]. MMPDE 5 and modified MMPDE 5 and their discretization
provided in Eqs. (14,16) are usually extremely stiff and, in practice, it is suggested to
employ a more normal system,

Regularised MMPDE5 : xt − γ1xt,ξξ =
1

τ
(ρ̂xξ)ξ, (17)

Regularised modified MMPDE5 : xt − γ1xt,ξξ =
1

ρ̂τ
(ρ̂xξ)ξ. (18)

Here, the parameter γ1 > 0 may be related to ρ̂ (read Budd et al. [12] and references
therein). The boundary conditions of the mesh are taken by

xt,1 = 0, xt,N+1 = 0. (19)

The initial condition

x(ξ, 0) =
(j − 1)M

N
, j = 1, 2, . . . , N + 1, (20)

which represents a uniform mesh as an initial condition on the physical domain Ωp ≡
[0,M ].

Finally, ρ̂(x, t) is given by

Arc-length monitor function : ρ̂(x, t) =

√
1 + β|ĥx|2. (21)

Curvature monitor function : ρ̂(x, t) =

√
1 + β|ĥxx|2. (22)

Here, β is user-defined parameters. If ĥ is not smooth, the discretised monitor function
computed as above can change abruptly and slow down the computation. It is usually to
work in the context of adaptive mesh methods to smooth the monitor function to have
a smoother mesh and get the MMPDEs gently to integrate. Huang [11, 31] proposed an
effective smoothing scheme, which is given by

ρ̂j :=

√√√√∑j+p
k=j−p ρ̂

2
kγ
|k−j|∑j+p

k=j−p γ
|k−j|

, j = 1, . . . , N + 1 (23)

where γ ∈ (0, 1) is a positive smoothing parameter, and p is a positive integer number
referred to as the smoothing index. Many sweeps of the scheme may be implemented for
each integration step.
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Eqs. (10,11) and MMPDE, shape a system of ODEs for h(x, t), and x(ξ, t) with the
initial and boundary conditions provided later. Note that the stiff solver DASPK [32] em-
ployed which utilizes an iterative scheme based on some numerical methods for the solution
of the linearized system including preconditioning using Incomplete LU decomposition of
the Jacobian matrix.

2.1. Numerical results. The non-uniform mesh scheme Eqs. (10,11) are used for dis-
cretising Eq. (1). This problem is derived from the boundary conditions given by Eq. (5)
and the initial condition is chosen as

h(x, t = 0) =
12ν2

25εµ

1−
exp

(
2ν
5µx
)

[
exp

(
ν
5µx
)

+ c
]2
 , x ∈ [0,M ]. (24)

The numerical solution of this problem is sought to determine the evolution of the film
thickness h(x, t) using the Finite Difference technique and the Method of Lines. in all the
solutions shown here, the value of the parameters are ν = 1 × 10−2, µ = ν2/4, ε = 6,
γ = 0.5, c = 1, M = 5; the parameter values of Eq.(23) are p = 1, γ = 5 × 10−1. It is
then utilised to examine the accuracy and the convergence of the obtained results both a
non-uniform and a uniform meshes.

Figure 1(a, b) illustrate the time development of h(x, t) to the travelling wave solution
and the corresponding trajectories x(ξ, t), respectively, obtained applying the non-uniform
mesh scheme with N = 500 (so, initial ∆x = 10−2). In this simulation, MMPDE 2 (using
τ = 10−2) with the curvature monitor function (using β = 103) are used. The results are
presented for t ranging among 1 to 3.

Figure 1(a) shows that the adaptive moving mesh scheme captures the essential features
of the solution, including the steep front, with less number of points (N = 500 here
compared to N = 5000 for the uniform mesh computation (not shown here)). Figure 1(b)
presents that the monitor function redistributes the mesh points such that the area close
to the steep front takes more points than elsewhere (∆x ≈ 10−4 in the steep front area
and ∆x ≈ 2× 10−1 elsewhere; the initial ∆x = 10−2 uniform everywhere).

Figure 2(a) presents the solution h(x, t) at t = 2. Observe that the insets display
the steep front area takes more numbers of the mesh points than elsewhere. Figure 2(b)
presents the monitor function compared with the solution shown in figure 2(a). Observe
that the massive values of the curvature region result in the risen number of the mesh
points redistributed in the steep front area of the solution (see also figure 2(a)). Figure
2(c) illustrates the equidistributing coordinate transformation x(ξ, t) at t = 2. Remark
that a massive number of the mesh points in the region of the steep front (located nearby
x = 2) compared to other places. Consequently, the adaptive mesh method gives a mas-
sive number of the mesh points where the solution characterised has a quick change by
significant differences in its variation.

Figure 3 shows three different solutions the exact solution (solid red line), the obtained
solution using a non-uniform mesh (solid blue line), and the numerical solution obtained
on a uniform mesh (solid black line) at a fixed time t = 2. N = 50 points for both schemes
(initial ∆x = 10−1) is used to perform a comparison among the adaptive moving mesh
and the uniform mesh schemes. Remark that the obtained solution applying the adaptive
mesh scheme is quite similar to the exact solution ( the blue line). Even though oscillations
become visible in the obtained solution using the uniform mesh scheme, denoting that the
region of the steep front has not been sufficiently resolved on the uniform mesh (see the
black line). Observe that the adaptive mesh scheme uses the risen number of the mesh
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Figure 1. (a) time evolution of h(x, t) to the travelling wave solution and
(b) the corresponding mesh trajectories x(ξ, t) obtained using the moving
adaptive scheme with N = 500 (initial ∆x = 0.01), MMPDE2 and curva-
ture monitor function. The time t ranges between 1 to 3. The parameter
values are:ν = 1 × 10−2, µ = ν2/4, ε = 6, γ = 0.5, c = 1, M = 5, p = 1,
and τ = 10−2.

points in the steep front region, indicating that the step size of the mesh points takes
about ∆x = 2× 10−3. Nevertheless, the uniform mesh scheme demands about ∆x ≤ 10−3

(N = 5000 points) for the steep front region to be successfully resolved (not displayed
here). The adaptive moving mesh scheme requires less number of points (around N = 100
or initial ∆x = 2× 10−2) to be well-resolved this area.

2.1.1. Error analysis and convergence. Consider the measuring error and convergence of
the adaptive mesh scheme for changing MMPDEs and the monitor functions. Table 1
gives a brief statement of the measuring error and the CPU time taken to arrive t = 2
utilising MMPDEs 4, 7, 6 and modified MMPDE 5 for varying τ with fixing N = 500.
The curvature monitor function with β = 103 is applied. The obtained solution used in
measuring the error and the CPU time is gained at t = 2.

Table 1 appears MMPDE4 and MMPDE6 provide a more accurate solution and demand
less CPU time compared to others. Observe that the mesh equations take a long time and
become much stiffer as the value of τ reduces. Therefore, it can deduce that a value of τ
ranging between 10−3 to 1 is optimal concerning the accuracy and taken time. Observe
that also MMPDE 4 and MMPDE6 are the best concerning the accuracy and taken time
(see Table 1).
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Figure 2. (a) h(x, t = 2), (b) curvature monitor function at t = 2 and
(c) x(ξ, t = 2) obtained using the moving adaptive scheme with N = 500
(initial ∆x = 10−2) and MMPDE4. The parameter values are:ν = 1×10−2,
µ = ν2/4, ε = 6, γ = 0.5, c = 1, M = 5, p = 1, and τ = 10−2. Insets in (a)
show the zoomed-in the steep front. The solid blue line in (c) represents a
uniform mesh.

Figure 4 shows a comparison of the error measured using the L2 norm for the solutions
computed on an adaptive mesh scheme with different monitor functions the arc-length
(solid blue line) and the curvature (solid red line) and the uniform mesh scheme (solid
black line). The numerical solution for both schemes utilised in estimating the error got at
a fixed time t = 2, and the mesh equation MMPDE 4 is applied to focus and move the mesh.
Remark that the numerical solution obtained using the adaptive mesh scheme is higher
accurate concerning the error compared to that obtained using the uniform mesh scheme,
i.e., it achieves a higher accuracy for the same number of mesh points. For instance,
the lowest error measured is 1 × 10−8 for N = 500 points (related to ∆x = 10−2) for
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Figure 3. This figure presents the exact solution (solid red line) and corre-
sponding numerical results for both uniform (solid black line) and adaptive
moving mesh (solid blue line) schemes. The adaptive moving mesh solu-
tion is obtained using MMPDE 2 and the curvature monitor function with
β = 103. The parameter values are: N = 50, ν = 1 × 10−2, µ = ν2/4,
ε = 6, γ = 0.5, c = 1, M = 5, p = 1, and τ = 10−2.

MMPDE N τ CPU Error

500 1 1.07s 1.7× 10−5

500 10−1 1.25s 1 × 10−6

4 500 10−2 4.9s 1 × 10−8

500 10−3 10s 1 × 10−8

500 1 22.5s 5.8× 10−6

7 500 10−1 24.2s 8.8× 10−8

500 10−2 31.2s 3 × 10−8

500 10−3 328.4s 3.6× 10−8

500 1 4.2s 1.5× 10−6

6 500 10−1 6.5s 5.7× 10−8

500 10−2 38.7s 4.4× 10−8

500 1 9.8s 1.3× 10−7

Modified 5 500 10−1 31s 3.5× 10−8

500 10−2 271s 3 × 10−8

500 10−3 4250s 2.8× 10−8

Table 1. Error and CPU time taken to reach t = 2 for MMPDEs 4,
7 and 6, and modified MMPDE 5 varying the relaxation parameter τ .
The numerical solution for h used is obtained at t = 2 and the curvature
monitor function is used with β = 103. The parameter values are: N = 500,
ν = 10−2, µ = ν2/4, ε = 6, γ = 0.5, c = 1, M = 5, and p = 1.

the solution obtained adaptive moving mesh solution with the curvature monitor function
(solid red line). But, the error measured for the solution obtained the uniform mesh for
the same N = 500 is 1 × 10−4. Furthermore, it is useful in the number of the mesh
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Figure 4. The error measured, using L2 norm, for the obtained solutions
using both a uniform mesh (solid black line) and an adaptive mesh with the
arc-length (solid blue line) and the curvature (solid red line) monitor func-
tions. Estimated slopes presented for comparison among several solutions.
The numerical solution is got at t = 2 using MMPDE 4. The parameter
values are: ν = 1 × 10−2, µ = ν2/4, ε = 6, γ = 0.5, c = 1, M = 5, p = 1,
and τ = 10−2.

points implemented to reach a required level of convergence; i.e., it requires only fewer
number of points to reach similar error as the fixed mesh scheme. Observe that the lowest
value of the measured error achieved for the solution obtained using the uniform mesh
is 8 × 10−5 for N = 1000 (corresponding to ∆x = 2 × 10−3). In contrast, the adaptive
mesh needs about N = 100 points (corresponding to ∆x = 0.05) to reach almost the
same error. Additionally, remark that the adaptive mesh scheme applying the curvature
monitor function (solid red line) is more convergent and accurate in varying the number
of points N taken compared to that utilising the arc-length (solid blue line). Therefore,
it can deduce that the adaptive mesh scheme applying the curvature monitor function is
optimal for the problem considered here.

Error CPU time taken to t = 2
N Uniform mesh Adaptive mov-

ing mesh
Uniform mesh Adaptive mov-

ing mesh
50 1.4× 10−2 7.4× 10−4 0.1s 0.15s
100 3.7× 10−3 4× 10−5 0.21s 1.37s
200 1.1× 10−3 2.8× 10−7 0.54s 2.4s
400 2× 10−4 2× 10−8 1s 6.6s
500 1× 10−4 1× 10−8 1.10s 11s
1000 8× 10−5 – 3.7s –

Table 2. Comparing the error and CPU time taken to reach t = 2 for
the uniform mesh and adaptive moving mesh (using the curvature monitor
function and MMPDE 4) schemes. The numerical solution is obtained at
t = 2. The parameter values are: N = 500, ν = 10−2, µ = ν2/4, ε = 6,
γ = 0.5, c = 1, M = 5, p = 1 and τ = 10−2.
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Table 2 presents a comparison between the error and taken time computed on both the
uniform mesh and the adaptive mesh (applying the curvature monitor function and the
mesh equation MMPDE4) schemes. The error columns give a brief description of figure
4. Observe that the lowest value of the error estimated applying the adaptive moving
mesh with the curvature monitor function, indicating that the adaptive moving mesh
scheme with the curvature monitor function is the optimal scheme regarding the accuracy,
and obtained with a fewer number of N points compared to the uniform mesh scheme.
However, concerning the CPU time taken, the adaptive mesh scheme requires a long time
to get the solution at t = 2 compared to the uniform mesh scheme for the same N . This
is due to the MMPDE that requires to be simultaneously solved along with the physical
PDE. Therefore, it would require to check the accuracy and the CPU time to decide the
performance of the adaptive mesh scheme compared to the uniform mesh scheme. For
instance, at N = 500 points there is a threefold rise in the time taken by the adaptive
mesh scheme to obtain the solution at t = 2. However, the error records a reduction by
about less than six orders of magnitude. Eventually, I can surely deduce that the adaptive
mesh scheme is more computationally effective than the uniform mesh scheme. Remark
that I cannot compute the solution for N ≥ 1000. Because the minimum ∆x, becomes
quite small, so it results in round-off errors. Hence, the numerical solution missing stability
and being unstable.

3. Conclusions

I have favourably employed the adaptive mesh method based on several the mesh equa-
tions MMPDEs Eqs. (13-15) with the monitor functions Eqs. (21,22) to find numerical
solutions to the KdVB equation Eq. (1). The significant highlight of the results, presented
above, is clearly illustrated in figures 4, 3 and Table 2 which allows straight comparison
with the results of the uniform mesh scheme. Notice that the lowest value of the error
estimated applying the adaptive moving mesh with the curvature monitor function, indi-
cating that the adaptive moving mesh scheme with the curvature monitor function is the
optimal scheme regarding the accuracy, and obtained with a fewer number of N points
compared to the uniform mesh scheme. Alternatively, for a specified error, the adaptive
mesh scheme requires a fewer number of points to resolve the steep front regions that
appear in the solution compared to the uniform mesh scheme. Nevertheless, the adaptive
mesh scheme demands enormously longer time than the uniform mesh scheme due to the
additional mesh equation MMPDE that requires to be simultaneously solved along with
the physical PDEs.

Note that a suitable selection of the monitor function assists in reaching the highest
accuracy. From the excellent results shown above, I can deduce that the curvature monitor
function is the optimal choice for the KdVB problem (see figure 4). A meaningful result is
related to the adaptation of this monitor function to carefully resolve the solution at the
region that its solution changed. The main disadvantage of the adaptive mesh methods is
that it redistributes a fixed number of points, in contrast to hp-adaptive methods which
authorise for dynamic allocation of mesh points. Some problems would require to begin
with a massive number of mesh points if the solution includes many areas. I have also
developed the curvature monitor function to contain many solution components (the reader
can refer to Huang & Russell [11]). This adaptation allows resolving the many intricate
structures in both variations of a solution precisely compared to the uniform mesh scheme
(see Figure 2).

In conclusion, the results obtained above imply significant promise in terms of simplic-
ity in its performance and accuracy(in comparison to the results obtained by El-Danaf
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[33]) for the adaptive mesh methods based on MMPDEs to be used regularly in KdVB
problem. Although I have only examined a particular form of the physical PDEs, the
general framework shown here can be utilized to other PDEs such as a thin-film equation
coupled (see Alharbi [28, 29, 30].
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