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ZERO FORCING AND POWER DOMINATION FOR

LEXICOGRAPHIC PRODUCT OF TWO FUZZY SOFT GRAPHS

ZAHRA SADRI IRANI1, ASEFEH KARBASIOUN2, §

Abstract. Zero forcing and power domination are iterative processes on graphs where
an initial set of vertices are observed, and additional vertices become observed based on
some rules. In both cases, the goal is to eventually observe the entire graph using the
fewest number of initial vertices. In this paper, we combine the study of zero forcing and
power domination and compute upper bound for zero forcing for lexicographic product
of two fuzzy soft graphs.
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1. Introduction

We know that a graph [2, 15] is a symmetric binary relation on a nonempty set V.
Similarly, a fuzzy graph is a symmetric binary fuzzy relation on a fuzzy subset. The
concept of fuzzy sets and fuzzy relations was introduced by L. A. Zadeh in 1965 [22].
Rosenfeld [19] introduced the concept of fuzzy graph theory. After that fuzzy graph
theory becomes a vast research area. Soft set theory has potential applications in many
different fields including the smoothness of functions, game theory, operational research,
perron integration, probability theory, and measurement theory [12, 14, 16]. Research
works on soft sets are very active and progressing rapidly in these years. Maji et al. [11]
defined theoretical study on the theory of soft sets. In 2015, Mohinta and Samanta [13]
introduced the notions of fuzzy soft graphs, union, intersection of two fuzzy soft graphs
with a few properties related to finite union and intersection of fuzzy soft graphs. The
notion of zero forcing set, as well as the associated zero forcing number of a simple graph
was introduced in [12] to bound of the minimum rank of associated matrices for numerous
families of graphs. Let each vertex of a graph G be given one of two colors, “black” and
“white” by convention. Let S denote the initial set of black vertices of G. The color-change
rule converts the color of a vertex u2 from white to black if the white vertex u2 is the
only white neighbor of a black vertex u1; we say that u1 forces u2, which we denote by
u1 → u2. And a sequence, u1 → u2 · · · → ui → ui+1 → · · · → ut, obtained through
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iterative applications of the color change rule is called a forcing chain. The set S is said
to be a zero forcing set of G if all the vertices of G will be turned black after finitely many
applications of the color-change rule. The zero forcing number of G, denoted by Z(G),
is the minimum of |S| over all zero forcing sets S ⊆ V (G). Independently, Amos et al.
defined k-forcing in [5] to generalize zero forcing. The k-forcing number of G, denoted
Zk(G), is the minimum number of vertices that need to be initially colored so that all
vertices eventually become colored during the discrete dynamical process described by
the following rule. Starting from an initial set of colored vertices and stopping when all
vertices are colored: if a colored vertex has at most k non-colored neighbors, then each
of its non-colored neighbors becomes colored. When k = 1, this is equivalent to the zero
forcing number, usually denoted with Z(G), a recently introduced invariant that gives an
upper bound on the maximum nullity of a graph[9, 20]. In graph theory, a dominating
set for a graph G = (V,E) is a subset D of V such that every vertex not in D is adjacent
to at least one member of D. The domination number γ(G) is the number of vertices in
a smallest dominating set for G. Power domination was introduced by Haynes et al. in
[8]when using graph models to study the monitoring process of electrical power networks.
When a power network is modeled by a graph, a power dominating set provides the
locations where monitoring devices can be placed in order to monitor the power network.

Chang et al. defined k-power domination in [5]using sets of observed vertices. Given a
graph G and a set of vertices S, initially all vertices in S and their neighbors are observed;
all other vertices are unobserved. Iteratively apply the following propagation rule: if
there exists an observed vertex u that has k or fewer unobserved neighbors, then all the
neighbors of u are observed. Once this rule does not produce any additional observed
vertices, if all vertices of G are observed, S is a k-power dominating set of G.

Although k-forcing and k-power domination have been studied independently, an in-
depth analysis of k-power domination leads to the study of k-forcing [7]. Indeed, after
the initial step in which a set observes itself and its neighbors, the observation process in
k-power domination proceeds exactly as the color changing process in k-forcing. Recently
Javid and coauthors studied on zero forcing for some product of two graphs[9]. Lately
authores expand domination to fuzzy graphs [3, 4, 18, 21].

The aim of this paper is compute upper bound for zero forcing of the lexicographic
product of two fuzzy soft graphs and then we get a relation between zero forcing and
power domination for lexicographic product of two fuzzy soft graphs.

2. Definitions and notation

Let V be a nonempty finite set and ρ : V → [0, 1] and let µ : V × V → [0, 1] such
that µ(u, v) ≤ ρ(u) ∧ ρ(v) then the pair G = (ρ, µ) is called a fuzzy graph. The order
of G is ordG =

∑
ui∈V ρ(ui) . Two vertices u and v are adjacent or neighbors in G if

µ(u, v) ≤ ρ(u)∧ ρ(v). The (open) neighborhood of a vertex v is the set NG(v) = {u ∈ V :
{u, v} ∈ E}, and the closed neighborhood of v is the set NG[v] = NG(v) ∪ {v}. Similarly,
for any set of vertices S, NG(S) = ∪v∈SNG(v) and NG[S] = ∪v∈SNG[v]. The degree of
a vertex v is degG(v) =

∑
uv∈E(G) µ(u, v). The maximum and minimum degree of G are

∆(G) = max{degG(v) : v ∈ V } and δ(G) = min{degG(v) : v ∈ V }, respectively; a graph
G is regular if δ(G) = ∆(G). We will omit the subscript G when the graph G is clear from
the context.

Fuzzy soft graph over a graph (V,E) which is a triple (ρ, µ,A) where:

(1) A is a nonempty set of parameters.
(2) (ρ,A) is a fuzzy soft set over V .
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(3) (µ,A) is a fuzzy soft set over E.
(4) (ρ(a), A(a)) is a fuzzy(sub)graph on (V,E) for all a ∈ A. That is,

µ(a)(xy) ≤ min(ρ(a)(x), ρ(a)(y))

for every a ∈ A and x, y ∈ V
Note that the fuzzy soft graph G = (ρ(a), µ(a)) will be denoted by H(a) Also, it is evident
that a fuzzy soft graph is a parametrized family of fuzzy graphs. Let k be a nonnegative
integer. The definition of k-power domination on a graph G will be given in terms of a
family of sets, (P i

G,k(S))i ≥ 0, associated to each set of vertices S in G.

P 0
G,k(S) =N [S]

P i+1
G,k (S) =P i

G,k(S) ∪ {N(v) : v ∈ P i
G,k(S) and 1 ≤ |NG(v)\P i

G,k(S)| ≤ k}for i ≥ 0.

A set S ⊆ V is a k-power dominating set of G if there is an integer l such that P i
G,k(S) = V .

A minimum k-power dominating set is a k-power dominating set of minimum cardinality.
The k-power domination number is the cardinality of a minimum k-power dominating set
and is denoted by γP,k(G). We say that a set S ⊂ V (G) is a power dominating set of a
graph G if at the end of the process above PD(S) = V (G). A minimum power dominating
set is a power dominating set of minimum cardinality, and the power domination number,
γP (G) of G is the cardinality of a minimum power dominating set.

Then if t = {v1, v2, . . . , vn} ⊆ V is a power dominating set for fuzzy graph G = (ρ, µ),
then

γP (G) =
n∑

i=1

ρ(xi)

The concept of zero forcing can be explained via a coloring game on the vertices of
G. The color change rule is: If u is a black vertex and exactly one neighbor w of u is
white, then change the color of w to black. We say u forces w and denote this by u→ w.
A zero forcing set for G is a subset of vertices B such that when the vertices in B are
colored blue and the remaining vertices are colored white initially, repeated application
of the color change rule can color all vertices of G black. A minimum zero forcing set is
a zero forcing set of minimum cardinality, and the zero forcing number Z(G) of G is the
cardinality of a minimum zero forcing set. Let T denote the set of black vertices. The color
changing process in k-forcing can be formally described by associating to T the family of
sets recursively defined by the following rules.

F 0
G,k(T ) =T,

F i+1
G,k (T ) =F i

G,k(T ) ∪ {N(v) : v ∈ F i
G,k(T ) and 1 ≤ |NG(v)\F i

G,k(T )| ≤ k}for i ≥ 0.

A set T ⊆ V is a k-forcing set of G if there is an integer t such that F t
G,k(T ) = V . A

minimum k-forcing set is a k-forcing set of minimum cardinality. The k-forcing number of
G is the cardinality of a minimum k-forcing set and is denoted by Zk(G). If v ∈ F i

G,k(T )

and |N(v)\F i
G,k(T )| ≤ k then v is said to k-force (or simply force if k is clear from

the context) every vertex in N(v)\F i
G,k(T ). Then if t = {v1, v2, . . . , vn} ⊆ V is a zero

forcing set for fuzzy graph G = (ρ, µ), then Z(G) =
∑n

i=1 ρ(xi). Let G and H be two
graphs. The lexicographic product of G and H, denoted by G1 ◦ G2, is the graph with
vertex set V (G) × V (H) = {(a, v)|a ∈ V (G) and v ∈ V (H)}, where (a, v) is adjacent
to (b, w) whenever ab ∈ E(G) or a = b and uw ∈ E(H). For any vertex a ∈ V (G)
and b ∈ V (H), we define the vertex set H(a) = {(a, v) ∈ V (G1 ◦ G2)|v ∈ V (H)} and
G(b) = {(v, b) ∈ V (G1 ◦ G2)|v ∈ V (G)}. It is clear that the graph induced by H(a)
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called a layer H(a), is isomorphic to H and the graph induced by G(b), called a layer
G(b) is isomorphic to G, denoted by H(a) ∼= H and G(b) ∼= G respectively. We write
H(a) ∼= H(b) when each vertex of H(a) is adjacent to all vertices of H(b) and vice versa,
and H(a) 6∼ H(b) means that no vertex of H(a) is adjacent to any vertex of H(b) and vice
versa.

3. Preliminaries

The following observations follow directly from the definitions of k-power domination
and k-forcing, and provide the initial connection between both concepts. In any graph G,
if T is a k-forcing set, all sets are k-forcing sets of G; if S is a k-power dominating set of
G, the sets are also k-forcing sets of G. In any graph G, if T is a k-forcing set of G then T
is also a k-power dominating set. The converse is not necessarily true, but S is a k-power
dominating set if and only if N [S] is a k-forcing set. The proofs of the next results are
omitted.

Lemma 3.1. Let T be a k-forcing set of a graph G. Let A ⊆ T .

(1) If A is k-forcing set of T in G, then A is a k-forcing set of G;
(2) If A is k-power dominating set of T in G, then A is a k-power dominating set of

G.

Lemma 3.2. [10] Let S be a k-power dominating set of a graph G. Let A ⊆ S.

(1) If A is k-forcing set of N [S] in G, then A is a k-forcing set of G.
(2) If A is k-power dominating set of N [S] in G, then A is a k-power dominating set

of G

Lemma 3.3. [10] Let G be a graph and X ⊆ V such that G[X] is connected and every
vertex x ∈ X adjoin by at least k + 1. Let u be an arbitrary vertex in X. Then {u} is
a (minimum) k-power dominating set of N [x] in G. In addition if x adjoin by at least k
vertices, then {u} is also a (minimum) k-forcing set of N [X] in G.

Corollary 3.1. [10] Let G if there is u ∈ V (G) that adjoin by k+1 vertices, then k-power
domination set has one vertices be a connected graph. If in addition there is a vertex by
at least k neighbors then k-forcing set has one vertices.

Corollary 3.2. [10] Let G be a connected graph, X ⊆ V and uj ∈ V (G[X]j) for every
j = 1, . . . , c(G[X]). Let S = {u1, . . . , uc(G[X])}. If for every x ∈ X, x adjoin by at most
k + 1 vertices then S is a minimum k-power dominating set of N [X] in G; if in addition
for j = 1, . . . , c(G[X]), uj adjoin by at most k vertices, then S is a minimum k-forcing set
of N [X] in G.

Lemma 3.4. [6] If G is connected there is u ∈ V (G) by at least k + 2 neighbors, then
there exists a minimum k-power dominating set S such that for all v ∈ S, v adjoin by at
least k + 2 vertices.

Lemma 3.5. [10] Let G be a connected graph and let X ⊆ V (G). There exists S ⊆ X

such that S is a minimum k-power dominating set of X̂.

Lemma 3.6. [10] Let G be a connected graph and let X ⊆ V (G). If S ⊆ X is a minimum

k-power dominating set of X̂, then S is a k-power dominating set of NG[X] in G.

Theorem 3.1. [10] Let G be a connected graph and let P1, P2, . . . , Pr be a partition of G.
Then

γP,k(G) ≤
r∑

i=1

γP,k(P̂l)
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Lemma 3.7. [20] Let {u1, u2, . . . , ut} be a power dominating set for a graph G with no
isolated vertices. Then

Z(G) ≤
t∑

i=1

d(ui)

Theorem 3.2. [10] Let G be a connected graph and let P1, P2, . . . , Pr be a partition of V .

If P̂l has a minimum k-power dominating set in Pi for every i = 1, 2, . . . , r then

Zk(G) ≤
r∑

i=1

Zk(P̂l)

Lemma 3.8. [7] In every connected graph G with there are some vertex adjoin by at least
k+2 vertices, there exists a minimum k-power dominating set S in which every vertex has
at least k + 1 S-private neighbors.

Lemma 3.9. [10] In every connected graph G with there are some vertex adjoin by at least
k+ 2 vertices there exists a minimum k-power dominating set S in which every vertex has
at least k + 1 external S-private neighbors.

4. Main result

Operations on graphs such as union, intersection, composition and etc. are methods
to extend them. S. Mohinta in [13] showed that the union and intersection of fuzzy soft
graphs is again fuzzy soft graph. In this section we show lexicographic product of two
fuzzy soft graphs is fuzzy soft graphs and compute upper bound for zero forcing of the
lexicographic product of two fuzzy soft graphs and then we get a relation between zero
forcing and power domination for lexicographic product of two fuzzy soft graphs.

Definition 4.1. Let G = (V1 × V2, E) denotes the lexicographic product of graph G1 =
(V1, E)with graph G2 = (V2, E), where

E = E
′ ∪ {(u1u2, v1v2) ∈ E1, u2 6= v2}

and where E
′

is defined as in

E
′

= {(uu2, vv2)|v ∈ V1, u2v2 ∈ E2} ∪ {(u1w, v1w)|w ∈ V2, u1v1 ∈ E1}

Consider the fuzzy soft graphs Gi = (ρi, µi, Ai) on (Vi, Ei), i = 1, 2. The lexicographic
product of two fuzzy soft graphs G1 = (ρ1, µ1, A1) and G2 = (ρ2, µ2, A2) denoted by G1 ◦
G2 = (ρ, µ,A1 ×A2) where:{

ρ = (ρ1 ◦ ρ2) : A1 ×A2 → FS(V1 × V1)
ρ = (ρ1 ◦ ρ2)(a, b)(u1, u2) := (ρ1ρ2)(a, b)(u1, u2)

and

µ = (µ1 ◦ µ2) : A1 ×A2 → E

µ = (µ1 ◦ µ2)(a, b) :=

{
µ1µ2(a, b), (u1u2, v1v2) ∈ E

′

min{µ2(b)(u2), µ2(b)(v2), µ1(a)(u1v1)}, (u1, u2v1v2) ∈ E − E
′

We can generalize the concept of zero forcing for fuzzy graph.

Definition 4.2. Suppose G = (ρ, µ) is a fuzzy graph, and S is a zero forcing in crisp
graph. We define fuzzy zero forcing number Z(G) = ∧

∑
v∈S ρ(v).
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Figure 1. A fuzzy graph

Example 4.1. In figure 1 A = {a, b, g, f, j} and B = {h, d, a, i, j} are two zero forcing
sets by

∑
v∈S ρ(v) = 1.4 and

∑
v∈S ρ(v) = 1.9, then by defintion of zero forcing number

for fuzzy graphs, Z(G) = 1.4.

Proposition 4.1. Consider G = (V1 × V2, E) be the lexicographic product of graph G1 =
(V1, E)with graph G2 = (V2, E). Let Gi be a fuzzy soft graph on Gi = (Vi, µi), i = 1, 2.
Then G1 ◦G2 = (ρ1 ◦ ρ2, µ1 ◦ µ2, A1 ×A2) is a fuzzy soft graph on G = (V1 × V2, E)

Proof. For all a ∈ A1, b ∈ A2, (u1u2, v1v2) ∈ E − E
′

:

(µ1 ◦ µ2)(a, b)(u1u2, v1v2) = min{ρ2(b)(u2), ρ2(b)(v2), µ1(a)(u1v1)}
≤ min{ρ2(b)(u2), ρ2(b)(v2),min(ρ1(a)(u1), ρ1(b)(v2))}
= min{min(ρ1(a)(u1), ρ2(b)(u2),min(ρ1(a)(v1), ρ2(b)(v2)))}
= min{(ρ1 ◦ ρ2)(a, b)(u1, u2), (ρ1 ◦ ρ2)(a, b)(v1, v2)}

�

If G1 = (ρ1, µ1, A1) and G2 = (ρ2, µ2, A2) are nontrivial graphs and S is zero forcing
set for G1 ◦G2 = (ρ1 ◦ ρ2, µ1 ◦ µ2, A1 ×A2), then |S| ≥ 2.

Theorem 4.1. Let G = (ρ1, µ1, A1) be a connected fuzzy soft graph and H = (ρ2, µ2, A2)
be an arbitrary fuzzy soft graph containing k ≥ 1 components H1, H2, . . . ,Hk and mi ≥ 2.
Let Z be a zero forcing set of G1◦G2 and Ti is a zero forcing set for Hi, if Zi(u) = Z∩Hi(u)
then

|Zi(u)| ≥ |Ti|

Proof. Suppose that |Zi(u)| < |Ti| and Zi(u) = {(u, v1), (u, v2), . . . , (u, vt)} for some zero
forcing basis Ti of Hi, where {v1, v2, . . . , vt} ⊆ V (Hi). Then, each black vertex in Hi(u)
has more than one white neighbors and no vertex of Hi(u) can be forced by any vertex in
Hi(w) for any w ∈ V (G), i 6= j. Hence

|Zi(u)| ≥ |Ti|

�

Theorem 4.2. Let G = (ρ1, µ1, A1) be a connected fuzzy soft graph and H = (ρ2, µ2, A2) be
an arbitrary graph containing k ≥ 1 components H1, H2, . . . ,Hk and mi ≥ 2, let G1 ◦G2 =
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(ρ1 ◦ ρ2, µ1 ◦ µ2, A1 × A2) and N = {(uc, vid)|1 ≤ i ≤ k}, such that uc, v
i
d are arbitrary

vertexes of G, H respectively. Then

Z(G1 ◦G2) ≤ (
n∑

i=1

k∑
j=1

mj∑
l=1

ρ(ui, v
j
l )−

k∑
j=1

ρ(uc, v
i
d)

Proof. Let V (G) = {u1, u2, . . . , un} and V (Hi) = {vi1, vi2, . . . , vimi
} for 1 ≤ i ≤ k. Suppose

Z = V (G1 ◦G2)\N . We claim that Z is a zero forcing set of G1 ◦G2. To prove the claim,

assume that Z is initially colored black. Clearly for any vpi 6∼ vjq , in hence (ur, vp
i) 6∼

(ur, v
j
q), 1 ≤ r ≤ n, is in G1 ◦ G2. Since Hi is connected for 1 ≤ i ≤ k, so there exists

at least one vertex vil such that vid ∼ vil in Hi and hence in (ur, v
i
d) ∼ (ur, v

i
l) in G1 ◦G2.

Therefore (uc, v
i
l)→ (uc, v

i
d), for 1 ≤ i ≤ k. Hence,

Z(G1 ◦G2) ≤ (

n∑
i=1

k∑
j=1

mj∑
l=1

ρ(ui, v
j
l )−

k∑
j=1

ρ(uc, v
i
d)

�

Example 4.2. In figure 2, it was shown zero forcing set for lexicographic product of two
fuzzy graphs and zero forcing number is

∑
v∈S ρ(v) = 1.4.

Figure 2. A fuzzy graph

Theorem 4.3. If G = (ρ, µ,A) is a lexicographic product of two connected fuzzy soft
graphs and some vertex in G adjoin by at least k + 2 vertices and S = {u1, u2, . . . , ut} be
a minimum k-power dominating set of G in which every vertex has at least k+ 1 external
S-private neighbors, then

Zk(G) ≤ (γP,k + t∆(G))

Proof. By hypothesis, for each i = 1, . . . , t there exists a set {Xi
1, X

i
2, . . . , X

i
k} of external S-

private neighbors of ui. We prove that T :
⋃t

i=1(N [ui]\{xi1, xi2, . . . , xik}) is a k-forcing set of
G. Since {xi1, xi2, . . . , xik} are external S-private neighbors of ui then {xi1, xi2, . . . , xik}∩S = ∅
which implies ui ∈ T , for every i = 1, . . . , t. In the first step of the k-forcing process each
vertex ui forces xi1, x

i
2, . . . , x

i
k so T is a k-forcing set of N [S] in G. Since S is a k-power

dominating set of G, by observation 3.2 N [S] is a k-forcing set of G. Then T is a k-forcing
set of G. So,

Zk(G) ≤ |T | ≤ (γP,k + t∆(G)).

�
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5. Conclusion

In this paper basic definitions of k-power domination and k-forcing extended for fuzzy
soft graphs and compute upper bound for zero forcing of the lexicographic product of two
fuzzy soft graphs and then we get a relation between zero forcing and power domination
for lexicographic product of two fuzzy soft graphs.
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