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A SPLIT-STEP FOURIER SCHEME FOR THE DISSIPATIVE

KUNDU-ECKHAUS EQUATION AND ITS ROGUE WAVE DYNAMICS

C. BAYINDIR1, H. YURTBAK2, §

Abstract. We investigate the rogue wave dynamics of the dissipative Kundu-Eckhaus
equation. With this motivation, we propose a split-step Fourier scheme for its numerical
solution. After testing the accuracy and stability of the scheme using an analytical
solution as a benchmark problem, we analyze the chaotic wave fields generated by the
modulation instability within the frame of the dissipative Kundu-Eckhaus equation. We
discuss the effects of various parameters on rogue wave formation probability and we also
discuss the role of dissipation on occurrences of such waves.
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1. Introduction

The Eckhaus equation is a nonlinear partial differential equation which is an extended
version of the well-known nonlinear Schrödinger equation (NLSE). This equation was
introduced by Kundu [1] and Eckhaus [2] independently, therefore it is commonly known
as Kundu-Eckhaus equation (KEE). The KEE admits many different types of analytical
solutions including but not limited to the single, dual and N-solitary waves, seed solutions
and rogue wave solutions [3, 4, 5, 6]. KEE is used to model various phenomena such
as fiber optical waveforms, water waves, fluids, ion-acoustic waves just to name a few
[3, 4, 5, 6].

One of the most striking features of the nonlinear systems such as the KEE is their ability
to sufficiently describe unexpectedly large waves. These waves, which are unexpected and
have heights on the order of at least two times the significant wave height in a chaotic wave
field, are known as rogue waves. Rogue waves appear in optics, hydrodynamics, plasmas
and in finance [5, 6, 7, 8].

The effect of losses or gain are taken into consideration in some nonlinear models i.e.
the dissipative nonlinear Schrödinger equation [9]. However, to our best knowledge, such
effects are not studied within the frame of the KEE before. With this motivation, we
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study the dissipative Kundu-Eckhaus equation (dKEE) in this paper. We first derive a
simple analytical solution and then use that solution as a benchmark problem to analyze
the stability and accuracy of a split-step scheme we propose for the numerical solution of
the dKEE. We show that modulation instability leads to rogue wave formation within the
frame of the dKEE. We discuss the effect of the dissipation parameter on the probability
of occurrences of rogue waves.

2. Methodology

The dissipative Kundu-Eckhaus equation (dKEE) can be written as
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where t is the time and ξ is the space parameter. In this equation, the parameter µ1

is the dispersion constant, the parameter µ2 is the cubic nonlinearity constant and the
parameter µ4 is the quintic nonlinearity and Raman scattering constant. The parameter
µ3 controls the dissipation or gain, depending on its sign [9]. Seeking a solution to the
dKEE in the form of

U(ξ, t) = a (t) ei[kξ−Ω(t)] (2)

one can obtain a simple solution as
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where A and c are constants. We use this simple exponential solution as a benchmark
problem to test the stability and accuracy of the split-step Fourier scheme we implement
in the next section.

2.1. A Split-Step Fourier Method for the Numerical Solution of the dKEE. In
this section we propose a split-step Fourier method (SSFM) for the numerical solution
of the dKEE. As in the other spectral methods [10, 11, 12], the SSFM calculates the
spatial derivatives using FFT routines in periodic domains [13, 14, 15, 16, 17, 18, 19].
However, temporal derivatives are calculated using a stepping procedure. In SSFM, the
governing equation is splitted into two parts generally, namely the linear and nonlinear
part. Various order splittings are possible for the utilization of the SSFM. As a possible
first order splitting, we split the nonlinear part of the dKEE as

iUt = −(µ2 |U |2 + µ2
4 |U |

4 − 2iµ4(|U |2)ξ + iµ3)U (4)

which can be integrated to give

Ũ(ξ, t0 + ∆t) = ei(µ2|U0|2+µ24|U0|4−2iµ4(|U0|2)ξ+iµ3)∆t U0 (5)

where ∆t is the time step and U0 = U(ξ, t0) is the initial condition. One can evaluate the
spatial derivate in this equation using the Fourier transforms

Ũ(ξ, t0 + ∆t) = ei(µ2|U0|2+µ24|U0|4−2iµ4F−1{ikF [|U0|2]}+iµ3)∆t U0 (6)

where k is the Fourier transform parameter. In here, F and F−1 denote the forward
and inverse Fourier transforms, respectively. All Fourier transforms are evaluated using
efficient FFT routines in this study. The remaining linear part of the dKEE can be written
as

iUt = −µ1Uξξ (7)
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Using the Fourier series one can evaluate the linear part as

U(ξ, t0 + ∆t) = F−1
[
e−iµ1k

2∆tF [Ũ(ξ, t0 + ∆t)]
]

(8)

where k is as before. Therefore, pluging Eq.(6) into Eq.(8), the complete form of the
SSFM for the numerical solution of the dKEE can be written as

U(ξ, t0 + ∆t) = F−1
[
e−iµ1k

2∆tF [ei(µ2|U0|2+µ24|U0|4−2iµ4F−1[ikF [|U0|2]]+iµ3)∆t U0]
]

(9)

Throughout this study, the number of spectral components are selected as N = 1024 and
∆t = 10−4 which does not cause any instability in the SSFM simulations.

2.2. Comparisons of the Analytical and Numerical Solutions of the DKEE.
In this section, we provide a comparison of the analytical solution of the dKEE given
by Eq.(3) and its numerical solutions obtained using the SSFM. With this purpose, in
Fig. (1), we compare the real part and absolute value of those complex valued solutions
at t = 0 for A = 0.2, c = 0, µ1 = 1, µ2 = 2, µ3 = 0.1, µ4 = 2/3.
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Figure 1. Comparison of the split-step vs exact solution of the dKEE at t = 0.0
for µ1 = 1, µ2 = 2, µ3 = 0.1, µ4 = 2/3, A = 0.2.

As one can realize by checking the figure, the two solutions at the initial stage is in
agreement. After time stepping is performed using the SSFM, the numerical and analytical
solutions are still in good agreement at t = 7.6, as depicted in Fig. (2). The effect of
non-zero dissipation coefficient becomes significant after time stepping, the waves and
the envelope of the wave field, which can be obtained by using the Hilbert transforming
wavefield, tends to decrease as depicted in the Fig. (2).

Next, we turn our attention to the case where the dissipative effects are stronger. Chang-
ing the dissipation coefficient µ3, and selecting the same parameters as before, that is by
setting A = 0.2, c = 0, µ1 = 1, µ2 = 2, µ3 = 1, µ4 = 2/3, we perform the numerical sim-
ulation again and plot the comparative results for t = 0 in Fig. (3) and for t = 7.6 in
Fig. (4). As one can realize from these figures, the analytical and numerical solutions
are in good agreement and the proposed SSFM for the numerical solution of the dKEE
can be used safely. Additionally, by comparing Fig. (2) and Fig. (4), one can realize the
significant effect of increasing the dissipation parameter, µ3. The value of µ3 = 1 imposes
a very strong dissipation in the frame of the dKEE and the solutions decay within few
dimensionless time units.
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Figure 2. Comparison of the split-step vs exact solution of the dKEE at t = 7.6
for µ1 = 1, µ2 = 2, µ3 = 0.1, µ4 = 2/3, A = 0.2.
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Figure 3. Comparison of the split-step vs exact solution of the dKEE at t = 0.0
for µ1 = 1, µ2 = 2, µ3 = 1, µ4 = 2/3, A = 0.2.

2.3. Statistics of Rogue Waves of the DKEE and the Effect of Dissipation.
Rogue waves are considered as the unexpected and high amplitude waves. They are
generally desired in fiber optical media, however their results can be catastrophic in the
marine environment. There are some studies for their early detection [20]. One of the
triggering mechanisms that transforms sinusoidal wave trains into chaotic wave trains
having abnormally high waves is the Benjamin-Feir instability. This instability is known
as the Benjamin-Feir instability, or more commonly as the modulation instability (MI)
[21, 22, 23, 24, 25]. In order to discuss the effects of dissipation on the rogue wave
formation probability within the frame of the dKEE, we trigger MI in our numerical
simulations. In order to trigger MI, a sinusoidal solution with a white noise is generally
used as an initial condition. Therefore, in order to create random wave fields having rogue
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Figure 4. Comparison of the split-step vs exact solution of the dKEE at t = 7.6
for µ1 = 1, µ2 = 2, µ3 = 1, µ4 = 2/3, A = 0.2.

wave components, we use an initial condition for SSFM in the form of

U0 = eimk0ξ + βa (10)

In here, m is a constant, k0 is the fundamental wave number which is equal to 2π/L, β is
MI parameter and a is a set of uniformly distributed random numbers in the interval of
[−1, 1]. Various values of m and β are considered in this study, which may lead to different
probabilities of rogue wave occurrences.
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Figure 5. A typical chaotic wave field generated in the frame of dKEE for
m = 16, β = 0.4, µ1 = 1, µ2 = 2, µ3 = 0, µ4 = 2/3.

In Fig. (5), we depict a typical chaotic wave field exhibiting rogue wave components
generated within the frame of dKEE. The parameters of computation are selected as
m = 16, β = 0.4, µ1 = 1, µ2 = 2, µ3 = 0, µ4 = 2/3 for this simulation. It is useful to note
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that we start our simulations with a sinusoid having unit amplitude with a white noise
superimposed on it and during the time stepping we observe that waves having amplitudes
in the interval of |U | ∈ [0, 5] are occurring. The waves having amplitudes |U | > 2 can be
classified as rogue waves for this simulation.
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Figure 6. Amplitude probability distribution in a chaotic wave field for m =
4, β = 0.1, µ1 = 1, µ2 = 2, µ4 = 2/3 for various values of µ3.

In Fig. (6), we plot the amplitude probability distribution in a chaotic wave field for
various values of µ3 using m = 4, β = 0.1, µ1 = 1, µ2 = 2, µ4 = 2/3. Each of the probability
distributions depicted in Figs. (6)-(10) include approximately 105 wave components and
are recorded after a dimensionless adjustment time of t = 5 until to the dimensionless
time of t = 10 at various time steps. Checking this figure, one can realize that even the
dissipation constant of µ3 = 0.1 is strong enough to dissipate rogue waves in the chaotic
wave field. In order to illustrate the effect of the parameter β on rogue wave formation
probability, we depict Fig. (7) using the parameters as m = 4, β = 0.5, µ1 = 1, µ2 =
2, µ4 = 2/3. It is known that a higher value of β leads to an increase in the rogue wave
formation probability [5]. Comparing Fig. (6) and Fig. (7), one can realize that the same
amount of increase in the dissipation parameter, µ3, has a more dominant effect than an
increase in MI parameter β.

Additionally, it is also known that an increase in m leads to an increase in the probability
of rogue wave formation [5]. However, checking Fig. (8), it is possible to argue that the
effect of dissipation constant is again more significant compared to the MI parameter m.
The results depicted in Fig. (8) are computed using m = 16, β = 0.1, µ1 = 1, µ2 = 2, µ4 =
2/3.

In order to check the combined effect of increasing both of the MI parameters β and m,
we depict Fig. (9) for which the parameters of computations are selected as m = 16, β =
0.5, µ1 = 1, µ2 = 2, µ4 = 2/3. Although an increase in both of the β and m lead to
increases in the probability of rogue wave formation, the effect of dissipation coefficient is
still more significant than the combined effect of β and m.

Lastly, we compare the effect of turning the dissipation parameter off. Setting µ3 = 0
turns the dKEE into KEE. As shown in Fig. (10), MI triggers generation of rogue waves
in chaotic wave fields for both of the dKEE and KEE. The value of µ3 = 0.1 dissipates
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Figure 7. Amplitude probability distribution in a chaotic wave field for m =
4, β = 0.5, µ1 = 1, µ2 = 2, µ4 = 2/3 for various values of µ3.
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Figure 8. Amplitude probability distribution in a chaotic wave field for m =
16, β = 0.1, µ1 = 1, µ2 = 2, µ4 = 2/3 for various values of µ3.

all the rogue waves, which would exist in the chaotic wave field with no dissipation. With
dissipation, the probability distribution of rogue wave amplitudes follows the Rayleigh
distribution more closely, however with no dissipation, deviation from the Rayleigh distri-
bution can be observed and the wave amplitude distribution tends to Tayfun distribution.
It is possible to state that, the dissipation has a very significant effect on the rogue wave
formation compared to the other MI parameters. Similar significant effect would be ob-
served for the gain as well, which could be modeled by using negative dissipation values.
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Figure 9. Amplitude probability distribution in a chaotic wave field for m =
16, β = 0.5, µ1 = 1, µ2 = 2, µ4 = 2/3 for various values of µ3.
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Figure 10. Amplitude probability distribution in a chaotic wave field for m =
4, β = 0.1, µ1 = 1, µ2 = 2, µ4 = 2/3 for µ3 = 0.1 and µ3 = 0.

3. Conclusion

In this study, we have studied the effects of dissipation on the probabilities of rogue
wave occurrences in the frame of the dissipative Kundu-Eckhaus equation. With this
motivation, we have developed a split-step Fourier solver for the numerical solution of
the dissipative Kundu-Eckhaus equation and we tested the accuracy and stability of the
scheme using an analytical solution. Additionally, we have showed that the MI triggers the
generation of chaotic wave fields. We have discussed the effects of various MI parameters
and the dissipation coefficient and showed that the probability of rogue wave formation can
significantly depend and be controlled by changing the dissipation coefficient. Our results
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can be used to model the effect of dissipation/gain and damping on rogue wave formation
probabilities in various systems. Possible application areas include but are not limited to
dissipative optical media, dissipative hydrodynamic media such as the ocean exposed to
oil spill and dissipative media in matter physics and Bose-Einstein condensation.
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