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SOLVING TRI-LEVEL LINEAR PROGRAMMING PROBLEM BY A

NOVEL HYBRID ALGORITHM

S.F. TAYEBNASAB1, F. HAMIDI1, M. ALLAHDADI1, §

Abstract. This paper presents a revised hybrid algorithm to solve a tri-level linear
programming problem, a generalization of a bi-level one, involving three decision makers
at the upper, middle, and lower levels. The decision-making priority is from top to
bottom and the decision of each decision maker affects the decision space of others.
A hybrid algorithm has been already proposed to solve this problem, but it does not
ensure to converge whereas the proposed novel revised algorithm lacks this drawback
and ensures convergence.
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1. Introduction

Tri-level programming that lies under a family of multi-level programming [13] derived
from Stackelberg game theory [12], is a model developed for the modeling of decentralized
decision-making problems that involve decision makers distributed throughout a tri-level
hierarchy. The tri-level decision making has been developed in a tri-level hierarchy to
achieve an interaction and compromise among the decision makers who are called the
leader in the upper level and the followers in the middle and lower levels. To optimize their
objectives, decision-makers start making their personal decisions in the upper level and
continue in the middle and then in the lower levels [16]. The existing tri-level programming
studies have focused mainly on the results of linear models. For instance, Bard and
Falk [2] stated the necessary optimal conditions for tri-level linear programming (TLP)
problems based on the Stackelberg game theory, generalized the rational reaction sets for
each decision maker, and presented the cutting plane algorithm to solve TLP problems.
White [15] introduced the penalty function method for TLP problems. Other methods
including that of Kuhn-Tucker [1, 8], branch and bound algorithm [8, 3], and Kth-best
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algorithm [16] have been developed to solve bi-level linear programming (BLP) and TLP
problems. Wen et al. [14] presented a hybrid method to solve TLP problems. Lai et al.
[10] give a tri-level model to mitigate coordinated attacks on electric power systems, Gu
et al. [6] offer a tri-level model for a private road competition problem. Moreover, some
meta-heuristic algorithms and fuzzy approaches have been proposed for solving multi-
level programming problems (See [7, 11] for example). This paper has been so organized
as to present the mathematical form of the TLP problem and the required definitions in
Section 2, provide the solution methods for the sequential and revised sequential linear
complementary problems in Section 3, explain the novel TLP problem algorithm (and a
numerical example to show how it runs) in Section 4, and, finally, conclude the findings
in Section 5.

2. Tri-level linear programming

In a tri-level hierarchical decision making problem, each decision maker optimizes its
objective in each level, and variables in each level are controlled by the decision-makers in
the same level. Since selecting values for variables of each level can affect decisions made
at other levels, the objective function can change in each level. Effort is now made to
introduce the TLP problem which is a generalization of the BLP problem.
Consider the following TLP problem:

level3 max (f3 = c31x1 + c32x2 + c33x3 : (x3))

level2 s.t. : max (f2 = c21x1 + c22x2 : (x2|x3))
level1 s.t. : max (f1 = c11x1 : (x1|x2, x3)) (1)

s.t. : Ax1 +Bx2 + Cx3 ≤ b
x1, x2, x3 ≥ 0,

where, max(f3 = c31x1 +c32x2 +c33x3 : (x3)) shows the maximization of f3 on x1, x2 , and
x3 , but in the third level problem only x3 is controlled, max(f2 = c21x1 + c22x2 : (x2|x3))
shows the maximization of f2 on x1 and x2 for the fixed value of x3, but in the second level
problem only x2 is controlled, max(f1 = c11x1 : (x1|x2, x3)) shows the maximization of f1
on x1 for the fixed values of x2 and x3 , x1 is the vector of the decision variables for the
first level problem with dimensions n1×1 , x2 is the vector of the decision variables for the
second level problem with dimensions n2× 1 , x3 is the vector of the decision variables for
the third level problem with dimensions n3 × 1 , A is the technological coefficients matrix
for the first level variables with dimensions m×n1 ,B is the technological coefficients matrix
for the second level variables with dimensions m × n2 ,C is the technological coefficients
matrix for the third level variables with dimensions m × n3 , c11 , c21 , and c31 are the
cost coefficients vectors for the first level variables in respectively the first, second, and
third level problems with dimensions 1× n1 , c22 and c32 are the cost coefficients vectors
for the second level variables in respectively the second and third level problems with
dimensions 1 × n2 , c33 is the cost coefficients vector for the third level variables in the
third level problem with dimensions 1×n3 , and b is the system resources capacity vector
with dimensions m× 1 .
It is worth noting that TLP is a tri-level linear resource control problem that controls the
third level of x3 which in turn changes the resource space of the first and second level by
the Ax1 +Bx2 ≤ b− Cx3 constraint and controls the second level of x2 that changes the
resource space of the first level by fixing x2 and the Ax1 ≤ b−Bx2 − Cx3 constraint.

2.1. Points and definitions. First, we define S1 , S2 , and S3 as follows:
S1 = {x : Ax1 + Bx2 + Cx3 ≤ b} is a convex set of Rn where x = (x1, x2, x3) and
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n = n1 + n2 + n3.
S2 = {x : x ∈ S1 ∩ {x ∈ Rn|c11x̂1 = max(f1 = c11x1 : (x1|x̂2, x̂3))}} is a set of rational
reactions of f1 on S1 that does not need to be convex.
S3 = {x : x ∈ S2 ∩ {x ∈ Rn|c21x̂1 + c22x̂2 = max(f2 = c21x1 + c22x2 : (x2|x̂3))}} is a set of
rational reactions of f2 on S3 that does not need to be convex.
Therefore, the TLP can be shown as:

max (c31x1 + c32x2 + c33x3 : (x3))
s.t. : max (c21x1 + c22x2 : (x2|x3))

s.t. : x ∈ S2
or

max (c31x1 + c32x2 + c33x3 : (x3))
s.t. : x ∈ S3

which is, in fact, the optimization of the linear function on a non-convex region.

Theorem 2.1. : if x is the extreme point of S3 , then it will be the extreme point of S2
as well as S1.

Proof: refer to [14].

3. Sequential linear complementary problem (SLCP) method

To solve BLP problems, Bialas and Karwan [5] presented the generally non-convergent
SLCP method; then, Judice and Faustino [9] modified it for convergence. Next, both are
reviewed.
Consider the following BLP problem:

min
y∈Rm

+={y∈Rm:y≥0}
cx+ dy

s.t. min
x∈Rn

+={x∈Rn:x≥0}
ax (2)

s.t. A1x+A2y ≥ b

and

min
y∈Rn

+={x∈Rn:x≥0}
ax (3)

s.t. A1x+A2x ≥ b,

where A1 and A2 are r × nand r ×mdimensional matrices, respectively.
If S = {(x, y) ∈ Rn×m : A1x + A2y ≥ b, x, y ≥ 0} set is bounded, the dual model of (3)
will be:

max (b−A2y)tu

s.t. At
1u ≤ a (4)

u ≥ 0.

If α and β are the slack variables vectors corresponding to the primal and dual constraints,
respectively, writing KKT conditions for (3) will result in the following BLP-equivalent
nonconvex optimization problem:
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min cx+ dy

s.t. α = −b+A1x+A2y

β = a−At
1u (5)

xtβ = utα = 0

x, y, u, α, β ≥ 0.

Therefore, the (x, y) absolute minimum of the BLP can be found by solving the non-convex
program (5). In the SLCP method, the following parametric LCP is obtained by defining
parameter λ and replacing the objective function of (5) with the cx+ dy ≤ λ constraint:

LCP(λ) (6)αβ
ν0

 =

−ba
0

 +

0
0
1

λ+

 0 A1 A2

−At
1 0 0

0 −c −d

ux
y


x, y, u, α, β, ν0 ≥ 0, xtβ = utα = 0.

The SLCP algorithm involves finding the LCP(λ) solution (λ is the smallest value of λ)
so that the LCP(λ) may have a solution for which the SLCP method solves a sequence of
the LCP(λk) where {λk} is a decent sequence defined as follows:

Upper bound of cx+ dy on S = λ0

λk = cxk−1 + dyk−1 − |γk(cxk−1 + dyk−1)|, (7)

where (xk−1, yk−1) is the solution to LCP(λk−1) and γk is a small positive number. The
process will end in iteration k if LCP(λk) does not yield a solution. In such a case, the
solution of LCP(λk) ,(xk−1, yk−1), will confirm the following inequality:

0 ≤ cxk−1 + dyk−1 − V AL ≤ |γ(cxk−1 + dyk−1)|, (8)

where V AL is the value of the objective function in the optimal solution. Hence, if the
defined set S is bounded and nonempty, the algorithm will find the optimal −ε solution of
the BLP:

ε = |γk(cxk−1 + dyk−1)|. (9)

If γk is small, the (xk−1, yk−1) solution from LCP(λk−1) is usually the BLP optimal solu-
tion.

3.1. The SLCP algorithm. The SLCP algorithm is as follows:
Step 1- let k = 0 and λ0 be the upper bound of cx+ dy on S.
Step 2- Solve LCP(λk). If it yields a solution, go to Step 3. Otherwise, let (xk, yk) be its
solution:

λk+1 = cxk + dyk − |γk+1(cx
k + dyk)|,

where γk+1 is a constant value. Let k = k + 1 and repeat Step 2.
Step 3- If k = 0 , the BLP is infeasible. Otherwise, (xk−1, yk−1) is the optimal −ε solution
of the BLP where ε is obtained from (9).
The efficiency of the SLCP algorithm depends mainly on how LCP(λk) is solved. We
will now describe the BRES algorithm using an artificial variable. Consider LCP(λk) as
follows:
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(a). w = q +Mz +Ny

(b). w, z, y ≥ 0 (10)

(c). ziwi = 0, i = 1, ..., r + n,

where

w =

αβ
ν0

 ∈ Rr+n+1, z =

ux
 ∈ Rr+n, q =

−ba
λk

 ∈ Rr+n+1,M =

 0 A1

−At
1 0

0 −c


(r+n+1)×(r+n)

,

N =

A2

0
−d


(r+n+1)×m

.

Let z0 be an artificial variable andpbe a nonnegative vector on the condition that pi > 0
for each i where qi < 0. Consider the following:

min z0

s.t. w = q + z0p+Mz +Ny

z,w, y, z0 ≥ 0 (11)

ziwi = 0, i = 1, ..., r + n.

The BRES algorithm is a revision of phase 1 of a two-phase simplex with an artificial
variable [4]. The optimal solution of (11) can be obtained only by using the solutions
that satisfy the constraints in (11). To ensure this condition, the non-basic variable zi or
wi with positive decrease cost coefficient can be nominated as the entering variable if its
complementary zi or wi is also non-basic or becomes so in this iteration. Accordingly, the
BRES algorithm may have three endings:
TERM = 1 - Optimal solution (w, z, y) for (11) with z0 = 0.
TERM = 2 - Optimal solution (w, z, y) for (11) with z0 > 0.
TERM = 3 - A non-optimal basic solution for (11) while there is no candidate for the
entering variable.

In case 1 (TERM = 1), (w, z, y) is the solution to LCP (10). In case 2 (TERM = 2),
this LCP does not yield a solution. In case 3 (TERM = 3), there is no conclusion on
whether there is a solution; the revised BRES method has been designed for both the first
two as well as case 3.
After some introductory points, effort will be made to address the revised BRES method.
In model (10), Like linear programming, solutions (z, w, y) that satisfy linear constraints
(a) and (b) are called feasible. The solution will be complementary if variables zi and wi

satisfy constraint (c). The enumeration method tries to find the complementary solution
using only the system’s basic feasible solutions (a). For this purpose, the following tree
(Figure 1) is examined, where i1, i2, ... are integer numbers from {1, ..., r+n} set. In node
1, the initial feasible solution is found through Phase 1 of a two-Phase simplex algorithm
with an artificial single variable. Each of the other nodes is generated by solving a sub-
problem that involves the minimization of zi or wi under the LCP linear constraints and
some zi = 0 or wi = 0 constraints. For instance, to generate node 4 of tree (Figure 1), it
is necessary to solve the following linear program (12):
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Figure 1. Tree of the BRES algorithm.

min zi2

s.t. w = q +Mz +Ny

z,w, y ≥ 0 (12)

zi1 = 0.

Such a linear program is solved by a revision of Phase 2 of a two-Phase simplex method
and two cases may occur:
1. If the minimized variable equals zero, it will be taken zero in all the paths down the
tree.
2. If the minimized variable value is positive, the node has been fathomed and the branch-
ing is accomplished.
The enumeration method solves the LCP through generating consecutive tree nodes ac-
cording to the process described above. The algorithm either finds the LCP solution
(which will be the first feasible complementary solution) or proves that it does not have a
solution (all the tree nodes have been fathomed).

3.2. Revised BRES method. Consider node 1 generation from tree (Figure 1) (i.e.
finding the first feasible LCP solution discussed earlier). This is done by solving the
following linear program:

min z0

s.t. w = q + z0p+Mz +Ny (13)

z, w, y, z0 ≥ 0,

where p is a non-negative vector on the condition that for each i where qi < 0 , pi > 0
and z0 is an artificial variable. Since the objective is to find a complementary feasible so-
lution, the BRES algorithm can be used to solve such a linear program. If this algorithm
ends with TERM = 1 , the solution to LCP (10) has been found, and if it ends with
TERM = 2 , the LCP does not have a solution and the enumeration process will stop. If
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TERM = 3 occurs, the z0 value can still reduce if one step of the simplex pivot (belonging
to the column with positive decrease cost coefficient) is executed. When TERM = 3 , the
revised BRES algorithm involves the execution of such a pivot step and reuse of the BRES
method and then the process is repeated; this algorithm can also be used to generate any
other k node. Since, as discussed earlier, generating a node involves minimizing variable
zi , or wi , the revised BRES algorithm for generating node k is as follows:
Step 1- Let NCP be the number of the (zi, wi) pairs of complementary variables where
both wi and zi are basic in the solution (if k = 0 , NCP = 0).
Step 2- Use the BRES algorithm; if the feasible complementary solution has been found,
let TERM = 1 and NCP = 0, go to Step 4. If the BRES algorithm ends with TERM = 1
or TERM = 2 ,go to Step 4; otherwise, (TERM = 3), go to Step 3.
Step 3- Let NCP = NCP + 1 and then run one step of the simplex pivot (belonging to
the column with positive decrease cost coefficient). Go to Step 2.
Step 4- If TERM = 1 and NCP = 0 , the LCP solution has been found and the enu-
meration process will stop, if TERM = 1 and NCP > 0 , node k will be generated, and
if TERM = 2 , node k cannot be generated and is fathomed.
The revised BRES method is implemented in the following example (for more details, refer
to [9]).

Example 3.1.

min
y1

−y1
s.t.

min
x1

x1

s.t. : 2x1 + y1 ≥ 10

2x1 − y1 ≥ −6

x1 − 2y1 ≥ −21

−2x1 − y1 ≥ −38

−2x1 + y1 ≥ −18

x1, y1 ≥ 0.

4. Revised hybrid algorithm

Now, a novel hybrid method is proposed that makes use of the Kth-best algorithm and
the revised BRES instead of the BRES method, and ensures the method convergence be-
cause, as noted in Section 3, the BRES method is not always convergent.
Step 1- Let k = 1 and α = 0. To obtain the optimal solution of x̂[1] , solve problem (T1)
by the simplex method. Let T = ∅ and W = {x̂[1]}. Go to Step 2.

(T1) : max (c31x1 + c32x2 + c33x3 : (x3))

s.t. : x ∈ S1.

Step 2- Solve problem (T2) through the bounded simplex method.

(T2) : max c11x1

s.t. : x ∈ S1 ∩ {x ∈ Rn|x2 = x̂2, x3 = x̂3}.
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Suppose this problem has the optimal solution (x1, x̂2, x̂3). If x1 6= x̂1 , then x̂ /∈ S2 ;
therefore, x̂ is not in S3. Go to Step 3. If x1 = x̂1 , then x̂ ∈ S2. Go to Step 5.
Step 3- Suppose W[k] represents a set of extreme points. x adjacent to x̂[k] so that
c3x ≤ c3x̂[k]. Update T and W as follows:

T = T ∪ {x̂[k]},W = (W ∪W[k]) \ T.
Step 4- Let k = k + 1 and select x̂[k] so that c3x̂[k] = max{c3x|x ∈W}. Go to step 2.
Step 5- (First-best check) - Find the optimal solution to the following problem:

(T3) : max c21x1 + c22x2

s.t. : x ∈ S1 ∩ {x ∈ Rn|x3 = x̂3}.

Suppose the problem has an optimal solution (x̂∗1, x̂
∗
2, x̂3). Check if point (x̂∗1, x̂

∗
2, x̂3) be-

longs in S2 by solving the following problem:

(T4) : max c11x1

s.t. : x ∈ S1 ∩ {x ∈ Rn|x2 = x̂2, x3 = x̂3.

The optimal solution (x1, x̂
∗
2, x̂3) is obtained. If x1 = x̂∗1 , then solution (T3) is in S2. For

S3 − Check, go to Step 6. If x1 6= x̂∗1, then, solution (T3) is not in S2; put α = c21x̂1+c22x̂2
and go to Step 7.
Step 6- If (x̂∗1, x̂

∗
2) = (x̂1, x̂2), then x̂ ∈ S3 and, hence, x̂ is the solution to the tri-level

problem and stop. Otherwise x̂ /∈ S3 , go to Step 3.
Step 7- (CP-check) Solve the following system using the revised BRES method presented
in the SLCP algorithm:

(T5) :Ax1 +Bx2 + y = b− Cx3
(A)tu− ν = (c11)

′

c21x1 + c22x2 ≥ α+ δ

uty = 0, (x1)
tν = 0

x1, x2, y, u, ν ≥ 0,

where δ is a sufficiently small positive number. If finding a feasible solution for (T5) is not
possible, (x̂∗1, x̂

∗
2) is the solution to the bi-level problem (level 2 and level 1) where x3 has

a value equal to x̂3 , then x̂ ∈ S3 and x̂ is the optimal solution to the tri-level problem
and stop. Otherwise x̂ /∈ S3, go to Step 3.

4.1. Convergence of the revised hybrid algorithm. The hybrid algorithm starts
with the Kth-best algorithm [16] to search for the Kth-best extreme point over the entire
feasible solution region of S1 which is bounded and has finite extreme point (note that
S3 ⊂ S2 ⊂ S1). Therefore, since the c3x̂ objective function is non-increasing after the
next optimal solution is found in different iterations, and there are only a finite number of
bases, the algorithm will be fathomed after a finite number of iterations (since the points
being studied are generated by the Kth-best algorithm, there will be no rotation). Note
that in Step 7, the CP-check is also convergent because it has made use of the revised
BRES method (Section 3). Additionally, if the hybrid algorithm stops in Step 7 with the
absolute optimal solution, the algorithm will be fathomed with a small deviation (δ) from
the absolute optimal solution.
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Example 4.1. [14]. Let us solve the following tri-level problem using the proposed revised
hybrid algorithm.

max −4x1 + 3x2 + 7x3 : (x1)

s.t. : max x2 : (x2|x3)
s.t. : max x1 : (x1|x2, x3)
s.t. : x1 + x1 + x3 ≤ 3

x1 + x2 − x3 ≥ 1 (14)

x1 − x2 + x3 ≤ 1

−x1 + x2 + x3 ≤ 1

x3 ≤ 0.5

x1, x2, x3 ≥ 0.

Variable xi is controlled by level i (i = 1, 2, 3).
Step 1- Let k = 1 and α = 0 , solve problem (15) by the simplex method:

x ≡ (x1, x2, x3)
t

max −4x1 + 3x2 + 7x3

s.t. : x1 + x1 + x3 ≤ 3

x1 + x2 − x3 ≥ 1

x1 − x2 + x3 ≤ 1 (15)

−x1 + x2 + x3 ≤ 1

x3 ≤ 0.5

x1, x2, x3 ≥ 0.

The solution to problem (15) is x̂[1] = (0, 1, 0)t. Put:

T = ∅,W = {x̂[1]}
Step 2- Solve problem (16) by the bounded simplex method:

max x1

s.t. : x1 + x1 + x3 ≤ 3

x1 + x2 − x3 ≥ 1

x1 − x2 + x3 ≤ 1 (16)

−x1 + x2 + x3 ≤ 1

x2 = 1

x3 = 0

x1 ≥ 0.

The solution to problem (16) is x = (2, 0, 1)t where x 6= x̂[1] = (0, 1, 0)t hence x̂[1] /∈ S2
and x̂[1] /∈ S3.

Step 3- The extreme points adjacent to x̂[1] are {(1, 0, 0)t, (1, 2, 0)t, (0.75, 0.75, 0.5t) :
Now we will obtain W[1] which shows a set of extreme points x adjacent to x̂[1] so that
c3x ≤ cx̂[1].
c3 = (−4, 3, 4), c3x̂[1] = 3, c3(1, 0, 0)t = −4
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, c3(1, 2, 0)t = 2, c3(0.75, 0.75, 0.5)t = 2.75 =⇒ W[1] = {(1, 0, 0)t, (1, 2, 0)t, (0.75, 0.75, 0.5)t}
T = T ∪ {x̂[1]} = {(0, 1, 0)t},W = (W ∪W[1]) \ T = W[1].
Step 4- Let k = k + 1 = 2 , find x̂[2] as follows:

c3x̂[2] = max{c3x} = max{−4, 2, 2.75} = 2.75 =⇒ x̂[2] = (0.75, 0.75, 0.5)
Step 2- Solve problem (17):

max x1

s.t. : x1 + x1 + x3 ≤ 3

x1 + x2 − x3 ≥ 1

x1 − x2 + x3 ≤ 1 (17)

−x1 + x2 + x3 ≤ 1

x2 = 0.75

x3 = 0.5

x1 ≥ 0.

The solution to problem (17) is x = (1.75, 0.75, 0.5)t where x 6= x̂[2] = (0.75, 0.75, 0.5)t;
hence x̂[2] /∈ S2.
Step 3- The set of extreme points adjacent to x̂[2] are:

{(0, 1, 0)t, (1.25, 1.25, 0.5)t, (1, 0.5, 0.5)t}
c3x̂[1] = 2.75, c3(0, 1, 0)t = 3, c3(1.25, 1.25, 0.5)t = 2.25, c3(1, 0.5, 0.5)t = 1

=⇒W[2] = {(1.25, 1.25, 0.5)t, (1, 0.5, 0.5)t}, T = T∪{x̂[2]} = {(0, 1, 0)t, (0.75, 0.75, 0.5)t}

W = (W ∪W[2]) \ T =⇒W = {(1, 0, 0)t, (1, 2, 0)t, (1.25, 1.25, 0.5)t, (1, 0.5, 0.5)t}
Step 4- Let k = k + 1 = 3 :
c3x̂[3] = maxx∈W {c3x} = max{−4, 2, 2.25, 1} = 2.25⇒ x̂[3] = (1.25, 1.25, 0.5)t

Step 2- Solve problem (18):

max x1

s.t. : x1 + x1 + x3 ≤ 3

x1 + x2 − x3 ≥ 1

x1 − x2 + x3 ≤ 1 (18)

−x1 + x2 + x3 ≤ 1

x2 = 1.25

x3 = 0.5

x1 ≥ 0.

The solution to problem (18) is x = (1.25, 1.25, 0.5)t where x = x̂[3] ; hence x̂[3] ∈ S2 .
Step 5- Solve problem (19):
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max x1

s.t. : x1 + x1 + x3 ≤ 3

x1 + x2 − x3 ≥ 1

x1 − x2 + x3 ≤ 1 (19)

−x1 + x2 + x3 ≤ 1

x3 = 0.5

x1, x2 ≥ 0.

The solution to problem (19) is (x̂∗1, x̂
∗
2, x̂3)

t = (1.25, 1.25, 0.5)t . The following problem
is solved to check if (x̂∗1, x̂

∗
2, x̂3) belongs in S2:

max x1

s.t. : x1 + x1 + x3 ≤ 3

x1 + x2 − x3 ≥ 1

x1 − x2 + x3 ≤ 1 (20)

−x1 + x2 + x3 ≤ 1

x2 = 1.25

x3 = 0.5

x1 ≥ 0.

The solution to problem (20) is (x1, x̂
∗
2, x̂3)

t = (1.25, 1.25, 0.5)t. Since x1 = x̂∗1, x̂
∗ ∈ S2,

for S3-Check go to Step 6.

Step 6- Since (x̂∗1, x̂
∗
2) = (x̂1, x̂2) , in fact x̂[3] = x̂∗ ; hence, x̂[3] ∈ S3 , and x̂[3] is the

optimal solution to the tri-level problem. Therefore, x? = (1.25, 1.25, 0.5) is the absolute
optimal solution, stop.

5. Conclusions

The tri-level linear programming problem has more complexity compared to the bi-level
one because it is necessary, when designing its solution algorithm, to consider the effects
of the decisions of three decision makers on one another. To solve TLP problems, this
paper combines the Kth-best and the revised BRES methods and proposes a novel hybrid
algorithm a feature of which is to converge on the tri-level optimal solution; the algorithm’s
implementation capability has been illustrated through a numerical example.
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