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ASSOCIATED FUNCTIONS OF NON-SELFADJOINT

STURM-LIOUVILLE OPERATOR WITH OPERATOR COEFFICIENT

G. MUTLU, §

Abstract. Sturm-Liouville operator equation with selfadjoint operator coefficent has
been studied in detail. In this paper, we consider the Sturm-Liouville operator equation
with non-selfadjoint operator coefficent. Namely, we examine the non-selfadjoint Sturm-
Liouville operator L which is generated in L2(R+, H) by the differential expression

L(Y ) = −Y ′′ + Q(x)Y, 0 < x <∞,

with operator coefficient together with the boundary condition Y (0) = 0, where Q(x)
is a non-selfadjoint, completely continuous operator in a separable Hilbert space H for
each x ∈ (0,∞) . We find the associated functions corresponding to the eigenvalues and
spectral singularities of L. Moreover, we prove that the associated functions correspond-
ing to the eigenvalues belong to L2 (R+, H) while the associated functions corresponding
to the spectral singularities do not.

Keywords: Sturm-Liouville operator equation, associated functions, operator coefficient,
non-selfadjoint operators.
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1. Introduction

Spectral analysis of non-selfadjoint differential and difference operators have been stud-
ied intensively in last decades. In particular, non-selfadjoint operators with a continuous
spectrum were first investigated by Naimark [22, 23]. He showed that the continuous spec-
trum of the non-selfadjoint Sturm-Liouville operator on the half line is [0,∞) and there
are some points in the continuous spectrum called spectral singularities which are not the
eigenvalues of the operator. He also obtained the sufficient conditions which guarantee
the finiteness of the eigenvalues and spectral singularities. Lyance used the spectral singu-
larities in the spectral expansion in term of the associated functions of this operator [19].
More information can be found in [21, 25] about non-selfadjoint differential operators and
in [12, 20] about spectral singularities. Keldysh developed a new method for evaluating
the resolvent of an abstract completely continuous non-selfadjoint operator of finite or-
der and also proved the completeness of eigenfunctions for some classes of non-selfadjoint
operators [13, 14].
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Spectral properties of the selfadjoint matrix differential and difference equations are
studied in [7, 8, 11]. As for the non-selfadjoint case, discrete spectrum and the spectral
singularities of the non-selfadjoint Sturm-Liouville operator with matrix coefficients were
investigated in [4, 9, 24]. Further, in [2, 5, 6], the authors examined the spectral properties
of a finite system of non-selfadjoint Sturm-Liouville differential operators.

For the Sturm-Liouville operator equations, first works were conducted in [10, 15, 16,
17, 18] in the selfadjoint case. More explicitly, the authors considered the following op-
erator. Let H be a separable Hilbert space (dimH ≤ ∞) and L2 (R+, H) denote the
space of vector-valued functions f(x) (0 < x < ∞) which are strongly-integrable in each

finite subinterval of (0,∞) and such that
∫∞
0 ‖f(x)‖2 dx < ∞. Consider the differential

expression in L2 (R+, H)

l0(y) = −y′′
+Q(x)y, 0 < x <∞, (1)

where Q(x) is a selfadjoint, completely continuous operator in H for each x ∈ (0,∞) .
Expression (1) is called Sturm-Liouville operator equation. The discrete spectrum of the
operator generated by (1) and the boundary condition y(0) = 0 has been studied in detail
in [10, 15, 16, 17, 18].

In our previous paper [3], we investigated the spectral properties of the Sturm-Liouville
operator equation on the half-line with non-selfadjoint operator coefficients, on the con-
trary to [10, 15, 16, 17, 18] and also generalized the results in [2, 4, 9, 24] to the oper-
ator coefficient case. More explicitly, we considered the following non-selfadjoint Sturm-
Liouville operator equation. Let H be a separable Hilbert space (dimH ≤ ∞) and
H1 := L2 (R+, H) . Consider the differential expression in H1

L(y) = −y′′ +Q(x)y, 0 < x <∞, (2)

where Q(x) is a non-selfadjoint, completely continuous operator in H for each x ∈ (0,∞) .
We considered the operator L which is generated by (2) and the boundary condition
y(0) = 0. We found the point spectrum and spectral singularities of L and showed that L
has a finite number of eigenvalues and spectral singularities under the condition∫ ∞

0
eεt ‖Q(t)‖ dt <∞, ε > 0.

In this paper, we obtain the associated (principal) functions of L corresponding to the
eigenvalues and the spectral singularities. In particular, we prove that the associated
functions corresponding to the eigenvalues belong to L2 (R+, H) whereas the associated
functions corresponding to the spectral singularities do not.

2. Some notions on the non-selfadjoint Sturm-Liouville operator equation

Let us recall some results obtained in [3] for the sake of completeness.
Let H be a separable Hilbert space and H1 = L2 (R+, H) denote the space of vector-
valued funtions f(x) (0 < x <∞) which are strongly-integrable in each finite subinterval

of (0,∞) and such that
∫∞
0 ‖f(x)‖2 dx < ∞. Then, H1 is a Hilbert space [26] with inner

product

(f, g)1 =

∫ ∞
0

(f(x), g(x))Hdx.

Consider the differential expression in H1

l(y) = −y′′ +Q(x)y, 0 < x <∞, (3)
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where Q(x) is a non-selfadjoint, completely continuous operator in H for each x ∈ (0,∞) .
We consider the operator L which is generated by (3) and the boundary condition

y(0) = 0. (4)

The domain D(L) of L is the subspace of H1, consisting all y ∈ H1 such that;
(i) y is twice strongly-differentiable,
(ii) L(y) ∈ H1,
(iii) y(0) = 0.
Consider the equations

−y′′ +Q(x)y = λ2y, 0 < x <∞, (5)

−Y ′′ +Q(x)Y = λ2Y, 0 < x <∞. (6)

where y(x) is a vector-valued function and Y (x) is an operator-valued function i.e, Y (x)
is an operator in H for each x ∈ (0,∞) .

Lemma 2.1. Every sequence of solutions of Equation (5) can be represented as an operator-
valued function which satisfies Equation (6). Conversely, one can construct a sequence of
vector-valued functions which satisfy Equation (5) for a given operator-valued solution of
the Equation (6).

Proof. Since H is a separable Hilbert space, there exists an orthonormal basis (un)n∈N .
Suppose vector-valued functions (yn(x))n∈N satisfy Equation (5). We can construct an
operator-valued function Y (x) such that Y (x)un = yn(x) for every n ∈ N. It is obvious
that Y (x) satisfies Equation (6).
Conversely, suppose operator-valued function Y (x) satisfies Equation (6). Let yn(x) =
Y (x)un for every n ∈ N. Then, it is clear that (yn(x)) satisfies Equation (5) for every
n ∈ N. �

As a result of above lemma, there is a one to one correspondance between the solutions
of (5) and (6). Therefore, it is enough to consider only one of the equations (5) and (6).
We shall use the notations

σ(x) =

∫ ∞
x
‖Q(t)‖ dt, σ1(x) =

∫ ∞
x

t ‖Q(t)‖ dt.

Let us assume ∫ ∞
0

t ‖Q(t)‖ dt <∞. (7)

Under the condition (7), Equation (6) has a bounded solution E(x, λ) satisfying the con-
dition

lim
x→∞

eiλxE(x, λ) = I, Im(λ) ≤ 0. (8)

E(x, λ) is called the Jost solution of Equation (6) (see Theorem 2 in [3]). We have the
representation

E(x, λ) = e−iλxI +

∫ ∞
x

e−iλtK(x, t)dt, Im(λ) ≤ 0. (9)

where the operator kernel satisfies

‖K(x, t)‖ ≤ cσ(
x+ t

2
) (10)

where c > 0 is constant (see Theorem 3 in [3]).
The point spectrum of L is (see Theorem 6 in [3])

σd(L) =
{
λ2 : Im(λ) < 0, E(λ) := E(0, λ) is not invertible

}
.
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Let us recall

E(λ) = I +

∫ ∞
0

e−iλtK(0, t)dt, Im(λ) ≤ 0.

Let

A(λ) :=

∫ ∞
0

e−iλtK(0, t)dt.

Then, A(λ) ∈ σ∞ for Im(λ) ≤ 0 and A(λ) is analytic operator function in Im(λ) < 0.

Definition 2.1. An operator R is called the resolvent [14] of the operator A if

(I +R) (I −A) = I.

Now, we apply [14] into our case. Let R(λ) denote the resolvent of −A(λ). We have

I + R(λ) = (I +A(λ))−1 = (E(λ))−1 . According to [14], if I + R(λ) exists for λ = λ0,
i.e., E(λ) is invertible, then I + R(λ) exists over C− except for a set of isolated points,
and is a meromorphic function of λ. Since σd(L) 6= C−, we have at least one λ = λ0 such
that I + R(λ) exists. As a result, I + R(λ) exists over C− except for a set of isolated
points which are the eigenvalues of L, and is a meromorphic function of λ. Hence, we can
represent

(E(λ))−1 = I +R(λ) =
S(λ)

d(λ)
, λ ∈ C−,

where S(λ) is an analytic operator function and d(λ) is an analytic scalar function in C−.
Further, these isolated singular points are poles of I +R(λ) and they are the zeros of the
analytic function d(λ). Therefore, we can rewrite the set

σd(L) =
{
λ2 : Im(λ) < 0, λ is a pole of I +R(λ)

}
=

{
λ2 : Im(λ) < 0, d(λ) = 0

}
.

Theorem 2.1. If
∫∞
0 t ‖Q(t)‖ dt <∞ holds, then σd(L) is bounded and countable. More-

over, the limit points (if exist)of it lie in a bounded subinterval of the real line (see Theorem
8 in [3]).

Now let us assume ∫ ∞
0

eεt ‖Q(t)‖ dt <∞, ε > 0. (11)

Theorem 2.2. Under the condition (11), L has a finite number of eigenvalues (see The-
orem 9 in [3]).

Theorem 2.3. The continuous spectrum of L is σc(L) = R+ (see Theorem 13 in [3])

Now, we introduce the set of spectral singularities σss(L) of L according to [19, 21, 22].

σss(L) =
{
λ2 : λ ∈ R \ {0} , E(λ) := E(0, λ) is not invertible

}
. (12)

Theorem 2.4. Under the condition (11), L has a finite number of spectral singularities
(see Theorem 15 in [3]).

3. Associated Functions

Definition 3.1. Let B(λ) be an operator function defined on D ⊂ C such that B(λ) ∈ σ∞
for each λ ∈ D. If the equation y = B(c)y has a non-trival solution in H then, y is an
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eigenelement and c is an characteristic value of B(λ). We call yk an associated element of
order k to the eigenelement y if yk is obtained as a result of solving the chain of equations

y = B(c)y,

y1 = B(c)y1 +
1

1!

∂B(c)

∂c
y,

...

yk = B(c)yk +
1

1!

∂B(c)

∂c
yk−1 + ...+

1

k!

∂kB(c)

∂ck
y.

In this case, we say that y, y1, ..., yk form a chain of associated elements. We denote the
maximum order of elements associated to y by m. The number m + 1 is defined as the
multiplicity of the eigenelement y. We call yk, yk1 , ..., y

k
mk

(k = 1, 2, ...) a canonical system
of eigenelements and associated elements for λ = c if;
i) y1, y2, ..., yk form a basis of the subspace of eigenelements corresponding to λ = c,
ii) y1 is an eigenelement whose multiplicity attains the possible maximum m1 + 1,
iii) yk is an eigenelement, not expressible as a linear combination of y1, y2, ..., yk−1

whose multiplicity attains the possible maximum mk + 1,
iv) yk, yk1 , ..., y

k
mk

form a chain of associated elements.
Note that the numbers m1, m2, ..., mk do not depend on the choice of the canonical
system. The number N = m1 + 1 + m2 + 1+ ...+mk + 1 is defined as the multiplicity of
the characteristic value λ = c (see [14]).

It is obvious that c2 is an eigenvalue or a spectral singularity of L iff c is a characteristic
value of A(λ). We define the multiplicity of the eigenvalue or the spectral singularity λ = c2

as the multiplicity of the characteristic value λ = c.

Theorem 3.1. Let c2 be an eigenvalue of L. Then, the multiplicity of the eigenvalue
λ = c2 is finite.

Proof. It is well known for a completely continuous operator A(λ) and a given character-
istic value that the number of linearly independent eigenelements is finite. Also, the order
of the associated elements for an eigenelement doesn’t exceed the order of the pole of the
resolvent I + R(λ) at λ = c [14]. Hence, each canonical system has a finite number of
elements and c has finite multiplicity. �

Corollary 3.1. Under the condition∫ ∞
0

eεt ‖Q(t)‖ dt <∞, ε > 0,

L has a finite number eigenvalues and spectral singularities with finite multiplicity.

Proof. The result is a combination of Theorems 2.2, 2.4 and 3.1. �

Let λ21, λ
2
2, ..., λ

2
j and λ2j+1, λ

2
j+2, ..., λ

2
v denote the eigenvalues and spectral singulari-

ties with multiplicities m1,m2, ...,mj and mj+1,mj+2, ...,mv, respectively. We define the
operator functions

un,k(x) =
1

n!

{
∂nE(x, λ)

∂λn

}
λ=λk

, n = 0, 1, ..., mk − 1, k = 1, 2, ..., j

vn,k(x) =
1

n!

{
∂nE(x, λ)

∂λn

}
λ=λk

, n = 0, 1, ..., mk − 1, k = j + 1, j + 2, ..., v
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Then, for λ = λk (k = 1, 2, ..., j) we have

l (u0,k) = 0,

l (u1,k) +
1

1!

∂

∂λ
l (u0,k) = 0,

...

l (un,k) +
1

1!

∂

∂λ
l (un−1,k) +

1

2!

∂2

∂λ2
l (un−2,k) = 0, n = 2, 3, ..., mk − 1

where

l (u) = −u” +Q(x)u− λ2u,

and ∂m

∂λm l (u) denotes the differential expressions whose coefficients are the m-th derivatives
with respect to λ of the corresponding coefficients of the differential expressions l (u) .

Then, u0,k(x) is the eigenfunction corresponding to the eigenvalue λ = λ2k and u1,k(x),
u2,k(x), ..., umk−1,k(x) are the associated elements of u0,k(x) for k = 1, 2, ..., j (see [14]).
u0,k(x), u1,k(x), ..., umk−1,k(x) are called the principal functions corresponding to the eigen-
value λ = λ2k for k = 1, 2, ..., j. Similarly, the principal functions corresponding to the
spectral singularities λ = λ2k are v0,k(x) , v1,k(x) , ..., vmk−1,k(x) for k = j + 1, j + 2, ..., v.

Theorem 3.2. un,k ∈ L2 (R+, H) , n = 0, 1, 2, ..., mk − 1, k = 1, 2, ..., j and
vn,k /∈ L2 (R+, H) , n = 0, 1, 2, ..., mk − 1, k = j + 1, j + 2, ..., v.

Proof. From (9) we have for k = 1, 2, ..., j that

un,k(x) =
1

n!
(−1)n (ix)n e−iλkxI +

1

n!

∫ ∞
x

(−1)n (it)n e−iλktK(x, t)dt.

Since Im(λ) < 0 we have for k = 1, 2, ..., j that∫ ∞
0

∥∥∥(−1)n (ix)n e−iλkxI
∥∥∥2 dx =

∫ ∞
0

x2ne2x Im(λk)dx

=
−1

(2 Im(λk))
2n+1Γ (2n+ 1)

< ∞.

For k = 1, 2, ..., j we define

gk(x) =
1

n!

∫ ∞
x

(−1)n (it)n e−iλktK(x, t)dt.

We have from (10) and (11) that

‖K(x, t)‖ ≤ cσ(
x+ t

2
)

= c

∫ ∞
x+t
2

eεse−εs ‖Q(s)‖ ds

≤ ce−ε(
x+t
2 )
∫ ∞

x+t
2

eεs ‖Q(s)‖ ds

≤ ce−ε(
x+t
2 )
∫ ∞
0

eεs ‖Q(s)‖ ds

≤ Ce−ε(
x+t
2 )

(13)
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where

c =
1

2
eσ1(x), C = c

∫ ∞
0

eεs ‖Q(s)‖ ds

are positive constants. From (13) we obtain

‖gk(x)‖ ≤ C

n!

∫ ∞
x

tnexp

(
t Im(λk)− ε

(
x+ t

2

))
dt

≤ C

n!
ex Im(λk)

∫ ∞
0

tne−ε(
x+t
2 )dt

≤ C0e
x Im(λk),

where

C0 =
C

n!

∫ ∞
0

tne−ε
t
2dt

is a positive constant. Therefore, we have∫ ∞
0
‖gk(x)‖2 dx < C2

0

∫ ∞
0

e2x Im(λk)dx <∞,

and hence un,k ∈ L2 (R+, H) , n = 0, 1, 2, ...,mk − 1, k = 1, 2, ..., j.
From (9) we have for k = j + 1, j + 2, ..., v that

vn,k(x) =
1

n!
(−1)n (ix)n e−iλkxI +

1

n!

∫ ∞
x

(−1)n (it)n e−iλktK(x, t)dt. (14)

Since Im(λk) = 0 for k = j + 1, j + 2, ..., v, Equation (14) implies∫ ∞
0

∥∥∥(−1)n (ix)n e−iλkxI
∥∥∥2 dx =

∫ ∞
0

x2ne2x Im(λk)dx

=

∫ ∞
0

x2ndx

= ∞.

Hence vn,k /∈ L2 (R+, H) , n = 0, 1, 2, ...,mk − 1, k = j + 1, j + 2, ..., v. �

Let us define the Hilbert space of vector-valued functions taking values in H, by

Hn =

{
f :

∫ ∞
0

(1 + x)2n ‖f(x)‖2 dx
}
, n = 1, 2, ...

H−n =

{
g :

∫ ∞
0

(1 + x)−2n ‖g(x)‖2 dx
}
, n = 1, 2, ...

Then, it follows Hn+1 $ Hn $ L2 (R+, H) $ H−n $ H−(n+1), n = 1, 2, ...

Theorem 3.3. vn,k ∈ H−(n+1), n = 0, 1, 2, ...,mk − 1, k = j + 1, j + 2, ..., v.

Proof. Since Im(λk) = 0 for k = j + 1, j + 2, ..., v, Equation (14) implies∫ ∞
0

(1 + x)−2(n+1)

∥∥∥∥ 1

n!
(−1)n (ix)n e−iλkxI

∥∥∥∥2 dx =
1

n!

∫ ∞
0

(1 + x)−2(n+1) x2ndx

<∞,
(15)
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and also ∫ ∞
0

(1 + x)−2(n+1)

∥∥∥∥ 1

n!

∫ ∞
x

(−1)n (it)n e−iλktK(x, t)dt

∥∥∥∥2 dx
≤
∫ ∞
0

(1 + x)−2(n+1) 1

n!

∫ ∞
x

t2n ‖K(x, t)‖2 dtdx

≤
∫ ∞
0

(1 + x)−2(n+1) 1

n!

∫ ∞
0

t2nC2e−ε(x+t)dtdx

= C1

∫ ∞
0

(1 + x)−2(n+1) e−εxdx

<∞,

(16)

where

C = c

∫ ∞
0

eεs ‖Q(s)‖ ds

and

C1 =
1

n!

∫ ∞
0

t2nC2e−εtdt =
1

n!

1

ε2n+1
Γ (2n+ 1)

are positive constants. Equations (15) and (16) imply vn,k ∈ H−(n+1), n = 0, 1 2, ...,mk−
1, k = j + 1, j + 2, ..., v. �

Corollary 3.2. vn,k ∈ H−m, where m = max {mj+1,mj+2, ...,mv} , n = 0, 1, 2, ...,mk−
1, k = j + 1, j + 2, ..., v.

Proof. The proof easily follows from Theorem 3.3 and H−n ⊂ H−(n+1). �

4. Conclusions

Sturm-Liouville equations have a fundamental importance in mathematical physics,
especially in quantum mechanics. As a result, the research on these equations are wide-
spread. In particular, there have been many studies about Sturm-Liouville equations
with selfadjoint operator coefficients. However, there are not enough results for the non-
selfadjoint case. In this study, we obtain some important results about the principal func-
tions of the non-selfadjoint Sturm-Liouville operator with operator coefficient with the
aim of contributing the studies on Sturm-Liouville operator equation with non-selfadjoint
operator coefficients.
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