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THE ANALYSIS OF INTERLOCKING DIRECTORS VIA

HYPERGRAPHS

ÖMER AKGÜLLER1, MEHMET ALI BALCI1, §

Abstract. Since the dawn of the modern era, the associations that link companies to-
gether in the gathering and control networks have been interconnected. At the level of
corporate governance, companies are linked by common stock directors, joint sharehold-
ers and joint directors (interlocking directors). Although often depicted as atomic, indi-
vidual, unconnected market actors are actually embedded in such networks. In this study,
we examine the network characteristics of interlocking directors of Turkish firms listed
in ISO 500 and Borsa Istanbul Stock Exchange. To capture the higher order relations,
we use hypergraphs to model interlocking directors and their relations. By introducing
a simple graph representation based on the connectedness of agents in a hyper-network,
we also give the community structure that is a cluster of densely connected nodes. The
results we obtain in this study indicate that companies of Turkish market operating in
global scale have central positions in their interlocking director network.
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1. Introduction

In financial markets, one of the observed and challenging patterns is the interlocking
directors. An interlocking director is identified as the individual who affiliates with more
than one board of a company [31]. With the help of developments in the network analysis,
the network of interlocking directors has become subject to many researches [16, 12, 29, 27].

The first studies of the interlocking directors are back to 30s [1]. Later studies suggest
that the interlocking directors can be considered within three models. The first model
is the reciprocity theory of interlocking directors [5]. In this model it is shown that
connecting companies to one another reduces the external uncertainties [23]. For instance,
a risk caused by a supplier can be reduced by directors in cross relation. The second model
is the resource-based theory [21]. In this model, a risk can be reduced by interlocking the
boards and borrowers. Finally, the third model is the class hegemony theory [11, 7]. In the
class hegemony theory, the boards of companies are formed dominantly by the ascendant
individuals in the society. Reciprocal and resource-based theories are effective to study
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the networks properties of interlocking directors, since they allow to treat family-owned
business in which heredity identity of boards are strictly kept.

In order to study statistical patterns in networks, the scale free characteristic called
small-world property, which suggests that degree distribution follows a power law, emerges
as a powerful tool. In the case of interlocking director network, the small-world property
is observed in many countries’ cases such as US [20, 5, 9], UK [20, 9], European Union
[20, 17, 33, 9], South Africa [13], and South Korea [24]. However, there is still a debate on
degree distributions may follow Weibull distribution and mixture of Weibull distribution
and power law [8, 22, 32, 35, 10].

In this study, we aim to model interlocking directors of Turkish companies by using
hypergraphs. Hypergraphs are generalization of simple graphs in which an edge does not
have to contain only two vertices. Such edges are called hyperedges. Hyperedges involve
higher dimensional information rather than the edges of simple graphs [30, 4, 40, 28, 19].
Besides, the degree distributions can be found for both vertices and hyperedges. Therefore,
this let us to analyze the network more deeply. The most common method to obtain a
interlocking director network is bipartite graphs. Hypergraphs emerge as more powerful
tools to capture higher order relations in a system. Besides, to our best knowledge there
are no researches on interlocking director networks using hypergraphs. Since our aim is
to determine how companies are connected through the boards of directors and which
companies are dominant in the market, we determine vertices as Turkish companies and
hyperedges as the directors. There are several simple graph representations of hypergraphs
[38, 2, 3] by including the higher order relations. In this study, we also use clique-complex
representation of a higher graph first presented in [3] to find densely connected companies.
By using this representation, we are allowed to determine most dominant companies.

Rest of the paper is organized as follows: In Section 2, we present some basics on
hypergraphs and their simple graph representations. Besides, we give the definitions of
degree distributions and clustering coefficients for vertices and hyperedges. Moreover, we
define new global and semi-global measures for hypergraph statistics. The data we used in
this study is also detailly discussed in Section 2. In Section 3, we present the experimental
results we obtain for hypergraph model and simple graph representations. Finally, in
Section 4, we present a detailed discussion on our results and give conclusions.

2. Material and Methods

2.1. Hypergraphs and Representations. Hypergraphs are generalization of graphs in
such way that allowing edges contain more than two vertices. Hypergraphs are being
widely studied since last few decades as efficient tools to represent and model complex
concepts and structures. Specifically, an undirected hypergraph H = (V,E) is consisting
of tuple where V is set of vertices and E is set of hyper-edges. Each hyper-edge e ∈ E
may contain arbitrarily many vertices; thus e ⊂ P V . By this definition, a hypergraph
can be considered as a set system. Throughout this study we only consider undirected
hypergraphs. We strongly recommend readers to [15] for details on directed hypergraphs.
An undirected simple graph is a special case for a hypergraph, in which the cardinality of
a hyper-edge is restricted to two.

For a hypergraph H = (V,E), the degree dV (v) of v ∈ V is the number of hyper-edges
containing v. By following same fashion, the degree dE(e) of a hyper-edge e ∈ E can be
defined as the number of vertices belongs to e. It is straightforward that if dE(e) = 2 for
all e ∈ E, then H is a simple graph. The vertex degree distributions of a simple graph
give us a glimpse into the structure of a network modelled by respected graph. The degree
distributions are also helpful to distinguish different types of networks [25]. However,
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the degree distribution ignores how vertices are connected for a simple graph. In the
hypergraph setting, an edge degree may be different than two. Therefore, it is possible to
determine hyper-edge distributions. By counting how many vertices and edges have each
degree, we can form the vertex degree distribution PdV (v)(k), defined by

PdV (v)(k) = fraction of vertices in H with the degree k (1)

and the hyperedge degree distribution PdE(e)(k), defined by

PdE(e)(k) = fraction of hyperedges in H with the degree k. (2)

The more details on degree distributions for hypergraphs can be found in [39].
The correlation between the vertex and hyperedge connectivity let us to define more

hypergraph statistics. In [14], the most common clustering coefficient for simple graphs is
extended to hypergraph setting. The set of hyperedges that contain v ∈ V is called the
neighborhood of v and denoted by N(v). Similarly, the neighborhood of the hyperedge
e ∈ E is the union of the neighborhoods of the vertices contained in e and denoted by N(e).
Then, the hypergraph clustering coefficient CCV (u, v) for the pair of vertices u, v ∈ V is
defined by

CCV (u, v) =
|N(u) ∩N(v)|
|N(u) ∪N(v)|

. (3)

The CCV determines how hyperedges are overlapped. By the analogy, it is possible to
determine the hypergraph clustering coefficient CCE(ei, ej) for the pair of hyperedges
ei, ej ∈ E by

CCE(ei, ej) =
|N(ei) ∩N(ej)|
|N(ei) ∪N(ej)|

. (4)

Beside the presented local measures, one may ask to identify global or semi-global
measures for hypergraph statistics. Before presenting a global measure for ensemble of
hyper-paths, we need to give some basic definitions. For a hypergraph H = (V,E), the
sequence of vertices and hyperedges v1, e1, v2, e2, . . . , vk−1, ek, vk is called a hyper-walk
between the vertices v1, vk ∈ V for 1 ≤ i ≤ k− 1. AH = AAT −DV is called the adjacency
matrix of H for A is the |V | × |E| type binary matrix in which entries are defined by
A(i, j) = 1 if vi ∈ ej , A

T is the transpose of A, and DV is the diagonal matrix whose
entries are degrees of corresponding vertices. In order to express the relation between the
powers of AH and the hyper-walks, we present the following theorem.

Theorem 2.1. Let H = (V,E) be a hypergraph with the adjacency matrix AH and vi, vj ∈
V . Then, the number of hyper-walks from vi to vj of length k in H is the entry in position

(i, j) of the matrix Ak
H .

The global measure we present for a hypergraph is similar to Katz index [18], and can
be formulated as

KH(vi, vj) =

∞∑
k=1

βk
∣∣∣L<k>

ij

∣∣∣ , (5)

where L<k>
ij is the set of all hyper-walks with length k connecting vi and vj , and β is a

free parameter. By a direct result of Theorem 2.1,

KH(vi, vj) = βAH(i, j) + β2A2
H(i, j) + β3A3

H(i, j) + · · · . (6)

To ensure the convergence of the series expansion in the Equation 6; β must be lower than
the reciprocal of the largest eigenvalue of AH .

The second measure we extend for hypergraphs in this study is a semi-global one and
called local random walk (LRWH). When a random walker is initially put on vertex vi
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with the initial density vector ~πvi(0), density vector evolves as ~πvi(t+1) = P T~πvi(t), where
P is the transition probability matrix. Then, each entry of P is

p(i, j) =
∑
e∈E

a(vi, e)

dV (vi)

a(vj , e)

dE(e)
(7)

where a(u, e) are the entries of the |V | × |E| matrix A. Moreover, P = D−1V AD−1E AT for
DE is the diagonal matrix of edge degrees. Hence, LRWH is defined by

LRWH(vi, vj) = qvip(vi, vj) + qvj (vj , vi), (8)

where qv is the initial configuration function.
Due to huge corpus of methods and algorithms, even though there may be a loss of

information, the simple graph representation of hypergraphs is a very effective analysis
tool. The most common representation is regarding to bipartite graphs. A bipartite graph
is subclass of simple graphs such that the set of vertices decomposed into two disjoint sets
in a way that none of two vertices are within the same set are adjacent [37]. For a
hypergraph H = (V,E), its bipartite graph representation GB = (V1 ∪ V2, EB) is tuple
with V1 = V , V2 = E, and EB is the set of dyadic relations of hyper-edge inclusions. The
second representation we use in this study is related to the connectivity of the vertices
through hyper-edges. Let H = (V,E) be a hypergraph. Then; since each ei ∈ E involves
arbitrarily many vertices, there exist such a simple graph GCi = (ei, ECi) such that each
vertices in ei are adjacent. Therefore, the Boolean sum of GC = GC1

⊕
· · ·
⊕
GCm emerges

as a simple graph representation of H regrading to hyper-connectivity of vertices.
In the studies of interlocking director networks it is common to use bipartite graphs

to represent relations. This representation has two distinct vertex subsets as companies
and directors. Since there always exist a GB = (V ∪ E,EB) for all H = (V,E), we may
conclude that interlocking director networks can also be expressed by a hypergraph. Since
the aim of our study to analyse the characteristics of Turkish companies through their
interlocking directors, we choose the set of vertices as companies and the set hyper-edges
as directors in board in the hypergraph representation.

In network analysis, a number of different characteristics such as small-world prop-
erty, heavy-tailed degree distributions, different topological structures occur commonly.
Another common characteristic is the community structure. Community structure of a
network is a cluster of densely connected vertices. The community structures of net-
works expressed with simple and hyper-graphs are extensively studied. In our study, we
use the GC representation of the hypergraph and determine the communities by using
Girwan-Newman algorithm. This algorithm identifies edges in a network that lie between
communities by maximizing the modularity index, and then leave them behind to obtain
non-overlapping vertex clusters [26]. The modularity index for GC then is defined by

Q =

NC∑
i=1

Ek

m
− 1

4m2

∑
j∈Vk

di(j)

2 , (9)

where Ek is the number of edges in the k-th module, NC is the total number of modules,
m is the total number of edges and d(j) is the vertex degree.

2.2. Data Set. After the new Turkish Commercial Code was introduced, changes related
to the obligations of companies regarding their board of directors have been done by
extinguishing the restriction of three members in board of directors. Also, it is mandatory
to have a board of directors for a joint stock company.
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The data set for this study comprise the affiliations of directors in the top 500 Industrial
Organizations (ISO 500) and the companies operating in BIST (Borsa İstanbul Stock
Exchange Market). The data was collected from the web site of Turkey Public Disclosure
Platform (KAP). Directors’ names were double-checked to be verified. Besides, by using
the public web-sites of each company, we identified if the directors are the same person.

As a final result, we obtained 870 distinct companies and 3926 distinct directors. The
average number of board of directors is 1.28553 and the standard deviation is 0.806805
with skewness of 4.73304 and kurtosis of 34.1799 for analysed companies.

3. Experimental Results

The H = (V,E) hypergraph model for the interlocking directors of Turkish companies
is formed with |V | = 870 and |E| = 3926. The degree distribution of the vertices and
hyper-edges are presented in Figure 1.
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Figure 1. Hyper-edge and vertex degree distributions for the formed hypergraph

Clustering coefficients for both vertices and hyper-edges are determined respect to the
ratio of the intersection and union of topological neighboring. In Figure 2, we present
the probability plot of CC values of the hypergraph respect to normal distribution. The
clustering coefficients are pretty close to normal distribution, hence the hypergraph model
serves as a powerful tool.
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Figure 2. Probability plot of CCV and CCE for the formed hypergraph

The Katz indices for the formed hypergraph H is presented in Figure 3. For the con-
vergence, β parameter needs to be lesser than the reciprocal of the largest eigenvalue of
the adjacency matrix. Since the computational complexity of the largest eigenvalue is too
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Figure 3. Katz indices for different β parameters

high, we estimate the β parameter as to be lesser than the reciprocal of the greatest vertex
degree.

In order to express semi-global similarity measure, we present local random walk dis-
tributions by setting qv = (dV (v))/γ for γ ∈ R. The quantile plot of LRW measure is
presented in Figure 4 for γ = 1, 1.5, 2. The lesser γ values let the shorter hyper-paths to
be more important.

By using the higher order relations encoded in hypergraph model we are able to obtain
two different simple graph representations, namely GB and GC . The simple graph model
of GC is represented in Figure 5 as it is a clique-complex. GC has one big component and
clique components with lesser vertex number. The vertex distributions of GB and GC are
presented in Figure 6. As in the degree distributions of hypergraph model, these degree
distributions of GB and GC both follow Weibull Distribution.
GC representation of H encodes the information how the companies are connected

through their boards of directors. Therefore, GC involves clusters called graph commu-
nities. In order to determine communities in GC , we use the modularity maximization
method. The total number of the obtained communities is 491. The biggest component
of GC involves 9 different communities in itself. The rest are emerge from the connected
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Figure 4. LRW indices for different γ parameters

Figure 5. The GC representation of the hypergraph model

lesser components. Since we aim to analyse the flow of information through the board of
directors, we restrict further cluster analysis on the communities of the biggest component.

In the literature, the most common filtration of complicated data sets are minimum
spanning trees (MST) and planar maximally filtration graphs (PMFG). The common idea
underlying these two approaches is to filter the dense weight matrix while maintaining
global constraints on the topology of the resulting network by preserving the least and
most likely possible subgraph. In particular, in the MST approach, the edges with the
largest weights (eg, correlations) are preserved when the sub-graph is spherically limited
as a spanning tree. Similarly, in PMFG filtering, the largest weights (eg, the greatest
correlation coefficients) are maintained to be the triangulation of a sub-graphical sphere
obtained as a result of filtering. The result is that PMFG filtering contains more infor-
mation than MST, since n − 1 in the MST filtering of a network with |V | = n vertices
has 3n− 6 edges in PMFG filtering [36]. Even though our resulting communities are un-
weighed, we use PMFG filtration to capture maximally relations among vertices in order
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Figure 6. Vertex degree distributions of GB and GC

to measure centralities. Then, we are able to determine the most effective vertices by
centrality measures. In Table 1, we present simple graph centrality measures and metrics
for the each community of the biggest component and in Table 2, we present companies
with the greatest centrality scores.

Community Closeness Betweenness CC Status Eigenvector
Community 1 0.522431 23.7255 0.284576 0.00982351 0.0196078
Community 2 0.531984 16.6757 0.341905 0.0170813 0.027027
Community 3 0.53307 16.1667 0.35731 0.0179859 0.0277778
Community 4 0.547403 11.1154 0.413555 0.0325587 0.0384615
Community 5 0.587231 5.53333 0.516787 0.105353 0.0666667
Community 6 0.61201 4. 0.57672 0.202357 0.0833333
Community 7 0.699327 2. 0.646561 0.4195 0.111111
Community 8 1. 0. 1. 8.07196× 1015 0.25
Community 9 1. 0. 1. 8.07196× 1015 0.25

Table 1. Graph centrality metrics for PMFG filtrations. The metrics are
mean closeness centrality, mean betweenness centrality, mean clustering
coefficient, mean status centrality, and mean eigenvector centrality, respec-
tively.

4. Conclusions

The corporate governance between the chief executive officers and shareholders is most
effected by a board of directors of a company. Board of directors are known to be parties
managing the major decisions related to the company’s policies. In the case of interlocking
directors, this management of the policies may be the subject to cross-firm relations. In
the case of economic stress such as price fluctuations or supply-demand risks, cross-firm
relations may need to be analyzed. Henceforth, the network theory and statistical analyses
methods emerge as powerful analytical methods.

In this study, we present a hypergraph representation of the interlocking director net-
work of Turkish companies. Our analysis involves 870 companies and 3926 distinct direc-
tors. Our results on degree distributions indicate that both vertex and hyperedge degrees
follow Weibull Distribution for Turkish companies. Beside the degree distribution, we
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Communities Betweenness Closeness Status Eigenvector
Community 1 ETI ETI ETI ETI
Community 2 FORD FORD FORD FORD
Community 3 SODA SANAYI SODA SANAYI SODA SANAYI SODA SANAYI
Community 4 KALE SERAMIK KALE SERAMIK KALE SERAMIK KALE SERAMIK
Community 5 KORTEKS KORTEKS KORTEKS KORTEKS
Community 6 DYO DYO DYO DYO
Community 7 PANORA PANORA PANORA PANORA

Community 8

SARKUYSAN SARKUYSAN
CMS CMS

CMS JANT CMS JANT CMS JANT DEMISAS
DEMISAS

Community 9

BORUSAN BORUSAN

KERIM CELIK KERIM CELIK
BORUSAN

MANNESMAN
BORUSAN
YATIRIM

BORUSAN
MANNESMAN

BORUSAN
MANNESMAN

BORUSAN
YATIRIM

BORUSAN
YATIRIM

Table 2. Companies in PMFGs with the greatest centrality scores.

present a new index called Katz index for hypergraphs in this study. Katz index can be
seen as the global similarity measure. For the lesser β values respect to the largest eigen-
value of the adjacency matrix of the hypergraph model, the similarity of the hyperedge
formations tends to get higher.

Even hypergraph models encode higher order relations, it is possible to represent them
with simple graphs. In this study we consider two different simple graph representation
of the hypergraph model. First representation is bipartite graph in which vertices and
hyperedges of H form distinct vertex set of GB, and edges of the bipartite representation
are formed by the hyperedge inclusion. The second representation we consider is respect
to hyper-connectivity of the companies in the hypergraph model. GC representation has
the vertex set as the companies and has clique-complex structure. Degree distributions of
GB and GC representations both follow Weibull Distribution.

Since GC has the clique-complex structure, it involves clusters by definition. Hence,
in order to analyze clusters, we use the High Modularity method to determine commu-
nities in GC . The central vertices, that are the leading companies in each community,
are determined and the relations of Turkish companies through their board of directors
are presented. The central vertices regarding to aforementioned centrality measures are
emerge as the companies which are operating in global markets. Therefore, the realization
of such companies significate the effectiveness of the method we present.
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