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OPTIMALITY CONDITIONS FOR APPROXIMATE SOLUTIONS OF

SET-VALUED OPTIMIZATION PROBLEMS IN REAL LINEAR

SPACES
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Abstract. In this paper, we deal with optimization problems without assuming any
topology. We study approximate efficiency and Q- Henig proper efficiency for the set-
valued vector optimization problems, where Q is not necessarily convex. We use scalar-
ization approaches based on nonconvex separation function to present some necessary
and sufficient conditions for approximate (proper and weak) efficient solutions.
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1. Introduction

Recently some researchers have turned their study to vector optimization of set-valued
maps [7, 8, 9, 29]. This kind of optimization problems have many applications in sto-
chastic programming, control theory and economic theory. Various concepts of proper
efficiency have been introduced [4, 5, 10, 16, 19, 27, 30], and many researches efforts focus
on concepts of approximate solutions or ε- efficient solutions [12, 15, 20, 21, 28].
The concept of ε-efficiency is practically useful regarding decision-making problems. The
approximate solutions may be produced in applied optimization and numerical algorithms.
Some of the applications of approximate efficiency in radiotherapy treatment planning have
been addressed by Shao and Ehrgott [28].
There are many publications on optimization problems refrain from using topological con-
cepts. Adan and Novo [1, 2, 3] defined concepts of proper efficiency in the sense of Hurwicz
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and Benson, and utilized some algebraic concepts such as algebraic interior, and vector
closure instead of topological interior, and closure to obtain optimality conditions. The re-
lation between approximate solutions and weakly efficient solutions of vector optimization
problems with set-valued maps was discussed in [25]. Optimality conditions for ε-global
properly efficient elements of set-valued optimization problems were established under the
assumption of generalized cone subconvexlikeness in [31]. These set-valued problems are
based on the algebraic interior in real linear spaces.
However, all these papers focus on convex problems, as far as we know, nonconvex vector
optimization has not reached attention of reserchers.
The nonconvex separation function is studied in a real linear space not necessarily en-
dowed with a topology in [13, 18, 24]. Specifically, the main properties of this function
are extended to the linear setting. By using the nonconvex separation function, authors
characterized the weak efficient solutions of vector equilibrium problems defined through
algebraic solid ordering sets in [13].
In this paper, using algebraic notions, we study the concept of approximate proper ef-
ficiency. Moreover, by means of Gerstewitz’s function generated by a convex cone, we
provide the necessary and sufficient optimality conditions for K-weak efficient solutions
and K-Henig proper efficient points. Furthermore, we define Q-Henig proper efficiency for
the set-valued vector optimization problems, where Q is not necessarily convex. Moreover,
nonconvex separation function generated by a nonconvex set is used to obtain optimality
conditions for Q-efficient solutions.
The results of this paper extend those given in the literatures (e.g., [13, 18, 24]) and pro-
vide some new applications for the notions introduced in [1, 2, 3].
The outline of this paper is as follows: main definitions and notations are given in Section
2. In Section 3, we will define the concept of approximate (weak and proper) efficient
solutions. Scalarization tool, including Gerstewitz’s function are utilized to provide some
necessary and sufficient conditions are given in Section 4. Finally, in Section 5, we use
nonconvex separation function to obtain optimality conditions for Q-efficient solutions,
where Q is not a convex set.

2. Preliminaries

Throughout this paper X,Y , and Z are three (real) linear spaces; A is a subset of X,
and K ⊆ Y is a pointed convex proper cone which introduces a partial order on Y by the
equivalence y1 ≤ y2 ⇔ y2 − y1 ∈ K. K is called pointed if K ∩ (−K) = {0} and the cone
generated by A is denoted by cone(A). Moreover, a nonempty set F ⊂ Y is said to be free
disposal with respect to a convex cone K ⊆ Y if F +K = F . The algebraic interior of A
and the vectorial closure of A are denoted by cor(A) and vcl(A), respectively and these
are defined as follows:

cor(A) = {x ∈ A : ∀x′ ∈ X , ∃λ′
> 0, s.t. x+ λx

′ ∈ A, ∀λ ∈ [0, λ
′
]},

vcl(A) = {b ∈ X : ∃x ∈ X ; ∀λ′
> 0, ∃λ ∈ [0, λ

′
], s.t. b+ λx ∈ A}.

We say that A is solid if cor(A) 6= ∅, and A is deemed vectorially closed if A = vcl(A). It
is known that, if cor(K) 6= ∅, then cor(K) ∪ {0} is a convex cone, in addition cor(K) +
K = cor(K) and cor(cor(K)) = cor(K) for solid nontrivial convex cone K. Moreover,
cor(K ×M) = cor(K)× cor(M) and cor(K −M) = cor(K)− cor(M) for solid nontrivial
convex cones K and M [2]. For each q ∈ Y , q-vector closure of A is denoted by vclq(A)
and defined as follows:

vclq(A) = {x ∈ X : ∀λ′
> 0, ∃λ ∈ [0, λ

′
] s.t. x+ λq ∈ A}.

In fact it can be shown that
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vclq(A) = {x ∈ X : ∃λn ≥ 0, λn → 0 s.t. x+ λnq ∈ A, ∀n ∈ N}.
Obviously,

A ⊆ vclq(A) ⊆ ∪q∈Y vclq(A) = vcl(A).

The algebraic dual of Y is denoted by Y
′
, and also the positive dual and the strict positive

dual of K are defined by

K+ = {l ∈ Y ′
: 〈l, a〉 ≥ 0,∀a ∈ K};

K+s = {l ∈ Y ′
: 〈l, a〉 > 0},∀a ∈ K\{0}}.

The following propositions will be used in sequel. The proof of proposition 2.1 was given
in [24, Proposition 2.5] and proposition 2.2 shows that vcle(Q) + (0,∞)e = cor(Q) for
e ∈ cor(K) and it was proved in [13, Proposition 18].

Proposition 2.1. [24] Suppose K ⊂ Y be a convex cone, e ∈ cor(K) and vinte(K) =
K + (0,∞)e. Then vinte(K) = cor(K).

Proposition 2.2. [13] Suppose Q is free disposal with respect to an algebraic solid convex
cone K. Then

vcle(Q) + cor(K) = vcle(Q) + (0,+∞)e = cor(Q),

where e ∈ cor(K).

3. Approximate proper efficiency

Let F be a set-valued map from X to a real space Y and G be a set-valued map from
X to a linear space Z. We define 〈F (x), y∗〉 := {〈y, y∗〉; y ∈ F (x)} and 〈F (A), y∗〉 =
Ux∈A〈F (x), y∗〉. Now, consider the following set-valued vector optimization problems

(UP ) Min{F (x) : x ∈ X},
(CP ) Min{F (x) : x ∈ X, G(x) ∩ (−M) 6= 0},

and the following vector optimization problem:

(P ) Min{F (x) : x ∈ S}.
where the feasible set S can be either

S = X or S = {x ∈ X, G(x) ∩ (−M) 6= ∅},
ans M ⊆ Z is a pointed convex proper cone which introduces a partial order on Z by the
equivalence z1 ≤ z2 ⇔ z2 − z1 ∈M .

In what follows, we discuss efficiency for set-valued optimization problems. Comparing
the approximate weak efficiency defined here with the standard definition shows that here
int(K) has been replaced by cor(K), because as no topology is used. Proper efficiency is
one of the most important concepts in vector optimization. This concept has been studied
by several authors [1, 2, 3, 18, 30, 31]. One can find the approximate proper efficient
solutions for single-valued problems in [18].

Definition 3.1. Let ε ∈ K \ {0}, x0 ∈ S and y0 ∈ F (x0). A solution (x0, y0) is called a
K-efficient solution of (P), denoted by (x0, y0) ∈ EPε(F, S,K), if

(F (x)− y0 + ε) ∩ (−K \ {0}) = ∅, x ∈ S.
Furthermore, if K is solid, (x0, y0) is called a K-weak efficient solution of (P), denoted by
(x0, y0) ∈WEPε(F, S,K), if

(F (x)− y0 + ε) ∩ (−cor(K)) = ∅, x ∈ S.

It is clear that WEPε(F, S,K) = EPε(F, S, cor(K)), where cor(K) 6= ∅.

Definition 3.2. Consider ε ∈ K \ {0}, x0 ∈ S and y0 ∈ F (x0). If
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(F (x)− y0 + ε) ∩ (−cor(C)) = ∅, x ∈ S,

where 0 6= C 6= Y is an ordering convex cone such that K \ {0} ⊂ cor(C), then (x0, y0)
is called a K-Henig proper efficient solution of (P). The set of K-Henig proper efficiient
solutions of problem (P) will be denoted by HPε(F, S,K). Hereafter, whenever we talk
about the K- weak efficiency, it is assumed that K is solid, i.e., cor(K) 6= ∅. Also, notice
that 0 /∈ cor(K) because K 6= Y . In fact, it can be shown that if 0 /∈ cor(K), then K = Y .
By definition, it is clear that if (x0, y0) ∈ HPε(F, S,K), then (x0, y0) ∈ EPε(F, S,K) and
(x0, y0) ∈WEPε(F, S,K).

4. Scalarization

One of the most important tools to solve optimization problems is scalarization. This
concept plays a vital role in sketching the numerical algorithms and duality results. Ger-
stewitz’s function is well known and widely used in optimization problems [17, 22]. When
underlying space Y is a topological vector space and K ⊂ Y is a closed convex (solid)
cone, Gerstewitz’s function and its properties have been studied in [6, 11, 31]. This func-
tion introduced in [13, 22, 23, 24, 26] has different names such as Gerstewitz’s function,
smallest strictly monotonic function, shortage function, nonlinear scalarization function.
Gerstewitz’s function was generated by a general convex cone in a linear space in [24].
In this section, we present necessary and sufficient conditions to characterize approximate
(weak/proper) efficient solutions of set-valued vector optimization problems in a linear
space without any topology. Here, we also consider Gerstewitz’s function ξe generated by
the convex cone K. Now, let e ∈ cor(K). The function ξe(y) : Y → R can be defined as

ξe(y) = inf{t ∈ R : y ∈ te−K}, (1)

which is generated by K and e. Notice that since the set {t ∈ R : y ∈ te−K} is nonempty,
closed, and bounded from below. Also, ξe is finite [32, Lemma 2.2], and

ξe(y) = sup{h(y) : h ∈ K+, ξ(e) = 1} ∀y ∈ Y ,

where, K+ is the positive polar cone of K [18]. One can find the proof of Proposition 4.2
in [24]. The Proposition 4.1 states that ξe is sub-additive and positively homogeneous [24,
Lemma 2.8].

Proposition 4.1. [24] (i) For any y1, y2 ∈ Y , ξe(y1 + y2) ≤ ξe(y1) + ξe(y2) except that
the right side becomes ∞−∞
(ii) For any y ∈ Y and α ≥ 0 we have ξe(αy) = αξe(y).

Proposition 4.2. [24] Let y ∈ Y and r ∈ R. Then we have
(i) S(ξe, r, <) = re− vinte(K).
(ii) S(ξe, r,≤) = re− vcle(K).
(iii) S(ξe, r,=) = re− (vcle(K) \ vinte(K)).
(iv) S(ξe, r,≥) = Y \ (re− vinte(K)).
(v) S(ξe, r, >) = Y \ (re− vcle(K)).

Definition 4.1. Consider the scalar problem

Min{ξe(F (x)) : x ∈ S}.
A point (x0, y0), where x0 ∈ S and y0 ∈ F (x0), is said to be an ε-minimum solution of the
scalar problem if

ξe(F (x)− y0 + ε) ≥ 0, ∀x ∈ S,
and if

ξe(F (x)− y0 + ε) > 0, ∀x ∈ S,
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then (x0, y0) is a strict ε-minimum solution.

Theorem 4.1. Let ε ∈ K, e ∈ cor(K), x0 ∈ S and y0 ∈ F (x0). Then (x0, y0) is an
ε-minimum solution to problem

Min{ξe(F (x)) : x ∈ S}, (2)

if and only if (x0, y0) ∈WEPε(F, S,K).

Proof. Since (x0, y0) is an ε-minimum solution of (2), we have

ξe(y − y0 + ε) ≥ 0 ∀(y ∈ F (x), x ∈ S).

By Proposition 4.2, we have

y − y0 + ε /∈ (−vinte(K)) ∀(y ∈ F (x), x ∈ S)

Since e ∈ cor(K), by Proposition 2.1

y − y0 + ε /∈ (−cor(K)) ∀(y ∈ F (x), x ∈ S)

Thus,

(F (x)− y0 + ε) ∩ (−cor(K)) = ∅ ∀x ∈ S

Therefore, by definition 3.1, (x0, y0) ∈ WEPε(F, S,K). Conversely, suppose that (x0, y0)
is not an ε-minimum of scalar problem (2). Then there exist x ∈ S and y ∈ F (x) such
that

ξe(y − y0 + ε) < 0.

From Propositions 4.2 and 2.1, it follows that

y − y0 + ε ∈ −vinte(K) = −cor(K).

On the other hand,

y − y0 + ε ∈ F (x)− y0 + ε.

Therefore,

y − y0 + ε ∈ (F (x)− y0 + ε) ∩ (−cor(K)),

which is a contradiction, since (x0, y0) ∈WEPε(F, S,K). �

The following result provides necessary and sufficient conditions for K-Henig proper
efficiency.

Theorem 4.2. Let K be a convex cone, ε ∈ K, x0 ∈ S and y0 ∈ F (x0). If e ∈ cor(K)
and (x0, y0) is a strict ε-minimum solution to the problem

Min {ξe(F (x)) : x ∈ S}, (3)

then (x0, y0) ∈ HPε(F, S,K). Conversely, if there exists a convex cone C such that K \
{0} ⊆ cor(C) and (x0, y0) ∈ HPε(F, S,K), then (x0, y0) is an ε-minimum solution to the
problem (3).

Proof. Since (x0, y0) is a strict ε-minimum solution of (3), we have

ξe(y0 − y − ε) < 0 ∀(x ∈ S, y ∈ F (x)).
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By Propositions 4.2 and 2.1, we have y0 − y − ε ∈ (−vinte(K)) = (−cor(K)). Therefore,

〈y0 − y − ε, l〉 < 0 ∀(x ∈ S, y ∈ F (x), l ∈ K+s) (4)

Now, consider l ∈ K+s, we have

〈k, l〉 > 0 ∀k ∈ K \ {0}. (5)

By setting V = {k ∈ K; 〈k, l〉 = 1} and U = {y ∈ Y ; | 〈y, l〉 |< 1/2}, one has V + U ⊂
{y ∈ Y ; 〈y, l〉 ≥ 1/2}. Let C = cone(V + U). If y ∈ C, then 〈y, l〉 ≥ 0. We will show
K \ {0} ⊆ cor(C). On the contrary, suppose that there exists k ∈ K \ {0} such that
k /∈ cor(C). Therefore,

∃y ∈ Y, ∀λ > 0, ∃λ ∈ [0, λ
′
]; k + λy /∈ C.

Thus,

〈k + λy, l〉 = 〈k, l〉+ λ〈y, l〉 < 0.

If λ
′ −→ 0, then λ −→ 0 and 〈k, l〉 ≤ 0, which contradicts to (5). Hence, K \{0} ⊆ cor(C)

and then we have

(F (x)− y0 + ε) ∩ (−C \ {0}) = ∅ x ∈ S.

Therefore, (x0, y0) ∈ HPε(F, S,K). Conversely, since (x0, y0) ∈ HPε(F, S,K), then
(x0, y0) ∈ WEPε(F, S,K). From Theorem 4.1 we conclude that (x0, y0) is ε-minimum
for the problem (3). �

5. A Nonconvex Separation Function

The main idea of this section obtained from [13, 24], where some preliminary properties
of Gerstewitz’s function such as subadditivity and positively homogeneous are proved in
the setting of a real linear space. Gerstewitz’s function can also be generated by any
set, as opposed to a convex set and recalls the nonconvex separation function in [13]. In
this section, we also consider the nonconvex separation function ϕeQ generated by a set Q

to obtain optimality conditions for Q-efficient (Q-weak efficient) solutions and Q-Henig
proper efficient solutions. Let ∅ 6= Q ⊂ Y , ϕeQ : Y → R ∪ {±∞} is definedd as follows

ϕeQ = inf{t ∈ R : y ∈ te−Q} (6)

In the following theorem, some properties of the nonconvex separation function are given.

Theorem 5.1. [13] Consider 0 6= e ∈ Y and ∅ 6= Q ⊂ Y . We have the following properties
of ϕeQ
i) S(ϕeQ, 0,≤) = (−∞, 0]e− vcleQ,
ii) S(ϕeQ, 0, <) = (−∞, 0)e− vcleQ,
iii) S(ϕeQ, 0,=) = (−vcle(Q)) \ ((−∞, 0)e− vcle(Q)),

iv) S(ϕeQ, 0,≥) = Y \ ((−∞, 0]e− vcle(Q)).

Definition 5.1. Consider the scalar problem

Min{ϕeQ(F (x)) : x ∈ S}
A point (x0, y0), where x0 ∈ S and y0 ∈ F (x0), is said to be an ε-minimum solution of the
scalar problem if

ϕeQ(F (x)− y0 + ε) ≥ 0 ∀x ∈ S,

and if

ϕeQ(F (x)− y0 + ε) > 0 ∀x ∈ S,
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then (x0, y0) is a strict ε-minimum solution.

The notion of Q-minimal solution of vector optimization problems via topological con-
cepts presented in [14], where Q is some nonempty open (not necessarily convex) cone.
Moreover, these Q-minimal points were characterized by the Hiriart-Urruty function.
Here, we define the concept of Q-efficient (Q-weak efficient) solutions and Q-Henig proper
efficient solutions in vector optimization.

Definition 5.2. Let x0 ∈ S, y0 ∈ F (x0) and 0 6= Q ⊂ Y . A solution (x0, y0) is called a
Q-efficient solution of (P), denoted by EPε(F, S,Q), if

(F (x)− y0 + ε) ∩ (−Q \ {0}) = ∅, x ∈ S.

Furthermore, if cor(Q) 6= ∅, then (x0, y0) is called a Q-weak efficient solution of (P),
denoted by WEPε(F, S,Q), if

(F (x)− y0 + ε) ∩ (−cor(Q)) = ∅, x ∈ S.

Definition 5.3. Consider x0 ∈ S and y0 ∈ F (x0). If there exists 0 6= Q ⊂ Y such that
K \ {0} ⊆ cor(Q) and

(F (x)− y0 + ε) (−Q \ {0}) = ∅ x ∈ S,
then (x0, y0) is called a Q-Henig proper efficient solution of (P). The set of Q-Henig proper
efficient solutions of problem (P) will be denoted by HPε(F, S,Q).

Proposition 5.1. Let Q ⊂ Y and consider the following set

H̄ := {Q ⊂ Y : K \ {0} ⊆ cor((0,∞)e+ vcle(Q))}
where e ∈ cor(K). Then we have H̄ 6= ∅.

Proof. Assume Q ⊂ Y and q ∈ cor(Q). There exists λ > 0 such that q− [0, λ]e ∈ Q. Thus,
q ∈ [0, λ]e+Q ⊆ [0, λ]e+ vcle(Q), Therefore,

cor(Q) ⊆ (0,+∞)e+ vcle(Q).

Now, consider K \ {0} ⊆ cor(cor(Q)). Since cor(Q) ⊆ (0,∞)e+ vcle(Q), we have

cor(cor(Q)) ⊆ cor((0,+∞)e+ vcle(Q)),

then Q ∈ H̄. �

Theorem 5.2. Let x0 ∈ S, y ∈ F (x0) and e ∈ cor(K).
(i) If (x0, y0) is a strict ε-minimum solution to the problem

Min {ϕeQ(F (x)) : x ∈ S}, (7)

then (x0, y0) ∈ EPε(F, S,Q).
(ii) If (x0, y0) is an ε-minimum solution to the problem (7), then (x0, y0) ∈WEPε(F, S,Q).

Proof. (i) Suppose (x0, y0) is not a Q-efficient solution for (P). Thus, there exists x ∈ S
such that

(F (x)− y0 + ε) ∩ (−Q \ {0}) 6= ∅

This implies that there exists y ∈ F (x) such that

y − y0 + ε ∈ (F (x)− y0 + ε) ∩ (−Q \ {0}).

Since (x0, y0) is a strict ε-minimum solution of the problem (7), we have

ϕeQ(y − y0 + ε) > 0. (8)

On the other hand, y − y0 + ε ∈ (−Q \ {0}). Hence,
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y − y0 + ε ∈ (−vcle(Q)) ⊂ (−∞, 0]e− vcle(Q),

by Theorem 5.1, one has

ϕeQ(y − y0 + ε) ≤ 0,

which is a contradiction to (8).
(ii) Since (x0, y0) is an ε-minimum solution of the problem (7), we have

ϕeQ(y − y0 + ε) ≥ 0 ∀(y ∈ F (x), x ∈ S). (9)

By Theorem 5.1, one has

(y − y0 + ε) /∈ (−∞, 0]e− vcle(Q).

Since (−cor(Q)) ⊆ (−∞, 0]e− vcle(Q), then (y − y0 + ε) /∈ (−cor(Q)). Therefore,

(F (x)− y0 + ε) ∩ (−cor(Q)) 6= ∅ ∀x ∈ S.

�

Theorem 5.3. Let x0 ∈ S, y0 ∈ F (x0), and Q is free disposal with respect to the convex
cone K ⊆ Y . If (x0, y0) ∈WEPε(F, S,Q), then (x0, y0) is an ε-minimum for the problem

Min{ϕeQ(F (x)), ∀x ∈ S}. (10)

Proof. Suppose (x0, y0) is not an ε-minimum for the problem (10). Then there exists x ∈ S
and y ∈ F (x) such that

ϕeQ(y − y0 + ε) < 0,

and by Theorem 5.1 we obtain

y − y0 + ε ∈ (−∞, 0)e− vcle(Q).

Now, since Q is free disposal with respect to the convex cone K ⊆ Y , then by Proposition
2.2 one has (−∞, 0)e− vcle(Q) = −cor(Q). Hence,

y − y0 + ε ∈ (−cor(Q)).

On the other hand, y − y0 + ε ∈ F (S)− y0 + ε. Consequently,

y − y0 + ε ∈ (F (S)− y0 + ε) ∩ (−cor(Q)),

which contradicts to the assumption. Therefore, (x0, y0) is an ε-minimum of the scalar
problem (10). �

It can be seen that Theorem 5.3 is also valid for (x0, y0) ∈ EPε(F, S,Q). From Theo-
rems 5.2 and 5.3 we conclude the following corollary.

Corollary 5.1. Let e ∈ cor(K) and ∅ 6= Q ⊂ Y be free disposal with respect to the convex
cone K. A point (x0, y0) is a Q-weak efficient solution for (P) if and only if (x0, y0) is an
ε-minimum of the scalar problem

Min{ϕeQ(F (x)) : x ∈ S}.

Theorem 5.4. Let x0 ∈ S, y0 ∈ F (x0) and Q ∈ H̄. If e ∈ cor(K) and (x0, y0) is an
ε-minimum solution to the problem

Min{ϕeQ(F (x)) : x ∈ S}, (11)

then there exists ∅ 6= Q
′ ⊆ Y such that (x0, y0) ∈ HPε(F, S,Q

′
).
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Proof. Since (x0, y0) is an ε-minimum solution to the problem (11), then we have

ϕeQ(y − y0 + ε) ≥ 0, ∀(y ∈ F (x), x ∈ S). (12)

By Theorem 5.1, one has

y − y0 + ε ∈ Y \ (−∞, 0)e− vcle(Q), ∀(y ∈ F (x), x ∈ S).

Put Q
′

= (0,∞)e+ vcle(Q), then it is clear that

(F (x)− y0 + ε) ∩ (−Q′ \ {0}) = ∅ ∀x ∈ S

Moreover, since cor(cor(Q)) ⊂ cor(Q′
) and Q ∈ H̄, one has

K \ {0} ⊆ cor(Q′
).

Hence, (x0, y0) ∈ HPε(F, S,Q
′
). �

Theorem 5.5. Let x0 ∈ S and y0 ∈ F (x0). If there exists Q subset of Y which is free
disposal with respect to the convex cone K ⊂ Y , K \ {0} ⊆ cor(Q), and

(F (x)− y0 + ε) (−Q \ {0}) = ∅ ∀x ∈ S
then (x0, y0) is an ε-minimum for the problem

Min {ϕeQ(F (x)), ∀ ∈ S}.

Proof. This theorem can be proved similar to Theorem 5.3. �

Here, we use the results of previous theorems to obtain optimality conditions for con-
strained problems without convexity assumption. To obtain optimality conditions, we
need a constraint qualification.

Definition 5.4. We say that the Slater constraint qualification for constrained problems
holds if there exists x ∈ S such that G(x) ⊆ (−cor(M)).

Hereafter, the set of all linear operators from Z into Y is denoted by O(Z, Y ), and Γ is
denoted by

Γ = {T ∈ O(Z, Y ) : T (M) ⊆ K}
where M and K are as above. The following theorem will be used in sequel.

Theorem 5.6. Consider 0 6= e ∈ Y and suppose that ∅ 6= Q ⊆ Y be closed under addition
and Q is finite. Then

ϕeQ(y1 + y2) ≤ ϕeQ(y1) + ϕeQ(y2),

for all y1, y2 ∈ Y , except that these make the right side into an indeterminate form∞−∞.

Proof. From definition of ϕeQ and Lemma 3 in [15], we have

yi ∈ ϕeQ(yi)e− vcle(Q) i = 1, 2.

Now, we can use ϕevcle(Q) = ϕeQ to obtain

yi ∈ ϕevcle(Q)(yi)e− vcle(Q), i = 1, 2.

Obviously,

y1 + y2 ∈ (ϕevcle(Q)(y1) + ϕevcle(Q)(y2))e− vcle(Q),

which implies

ϕevcle(Q)(y1 + y2) ≤ ϕevcle(Q)(y1) + ϕevcle(Q)(y2),
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and hence we have

ϕeQ(y1 + y2) ≤ ϕeQ(y1) + ϕeQ(y2).

�

Constrained problems are studied in [2,20]. In particular, the relation between ”Hurwicz
victorial proper efficient solutions” and ”Benson victorial proper efficient solutions” in
unconstrained and constrained problems were studied in [2, Theorem 4.3]. Moreover,
in [20, Theorem 4.12] authors discussed the relation between ”Benson victorial proper
efficient solutions” in unconstrained and constrained problems. In the following theorem
we obtain optimality condition for Q-efficient solutions in the constrained problems.

Theorem 5.7. Consider the constrained vector optimization problem (CP), given in sec-
tion 3. Suppose convex cones K and M are pointed and e ∈ cor(K). Let ∅ 6= Q ⊆ Y be
free disposal with respect to the algebraic solid convex cone K, x0 ∈ S, and y0 ∈ F (x0).
(i) Assume that T ∈ Γ, 0 ∈ Q, and Q is closed under addition. If we have

ϕeQ(F (x)− y0 + T (z) + ε) > 0, ∀(x ∈ S, z ∈ G(x)), (13)

then (x0, y0) ∈ EPε(F, S,Q) for the CP.
(ii) If for any x ∈ S we have

ϕeQ(F (x)− y0 + T (z) + ε) ≥ 0, ∀z ∈ G(x), (14)

then (x0, y0) ∈WEPε(F, S,Q) for the CP.

Proof. (i) Suppose that (x0, y0) 6= EPε(F, S,Q) for the CP. Then by definition, there exists
x ∈ S such that

(F (x)− y0 + ε) ∩ (−Q\{0}) 6= ∅,

which implies that there exists y ∈ F (x) such that

y − y0 + ε ∈ (−Q\{0}).

Now, by Theorem 5.1, this yields

ϕeQ(y − y0 + ε) ≤ 0. (15)

On the other hand, by Theorem 5.6, for z ∈ G(x) we have

ϕeQ(F (x)− y0 + ε) + ϕeQ(T (z)) ≥ ϕeQ(F (x)− y0 + T (z) + ε),

and by assumption

ϕeQ(F (x)− y0 + T (z) + ε) > 0 (16)

Now, equations (15) and (16) yield

ϕeQ(T (z)) > 0, ∀z ∈ G(x). (17)

Moreover, since 0 ∈ Q and T (G(x)) ⊆ −K, we have

T (G(x)) + 0 ⊂ −K −Q

and Q is free disposal with respect to K, so one has

T (G(x)) ⊂ −K −Q = −Q ⊂ (−∞, 0]e− vcle(Q).
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By Theorem 5.1, we deduce

ϕeQ(T (z)) ≤ 0 ∀(z ∈ G(x), x ∈ X) (18)

This is a contradiction by (17). Therefore, (x0, y0) ∈ EPε(F, S,Q) for the CP.
(ii) Suppose that there exist x ∈ S and y ∈ F (x) such that y − y0 + ε ∈ (−cor(Q)). Thus,

y − y0 + T (z) + ε ∈ (−cor(Q))−K = −cor(Q+K) = −cor(Q),

where z ∈ G(x). Since −cor(Q) ⊆ (∞, 0)e− vcle(Q), one has

y − y0 + T (z) + ε ∈ (−∞, 0)e− vcle(Q)

Therefore,

ϕeQ(F (x)− y0 + T (z) + ε) < 0, ∀(x ∈ S, z ∈ G(x)),

which is a contradiction by (14). So, (x0, y0) ∈WEPε(F, S,Q) for the CP.
�

Remark: It is well-know that the Lagrangian mapping L : X × Γ −→ Y , corresponding
to the constrained vector optimization problem, is defined by L(x, T ) = F (x) + T (G(x)),
where T ∈ Γ. Using the map L, one can convert the CP to an unconstrained vector
optimization problem:

Min{F (x) + T (G(x)) : x ∈ X}. (19)

Theorem 5.8. In a constrained vector optimization problem, suppose Q ∈ H̄ be closed
under addition and free disposal with respect to the algebraic solid convex cone K. Let
e ∈ cor(K), 0 ∈ Q and the Slater constraint qualification holds. Moreover, assume that
T (z) = 0 for T ∈ Γ, z ∈ G(x0), and x0 ∈ S. If (x0, y0) ∈ HPε(F, S,Q) for problem given
in (19), then (x0, y0) ∈ HPε(F, S,Q) for the CP.

Proof. As mentioned in Theorem 5.3, since (x0, y0) ∈ HPε(F, S,Q) for problem (19), then
(x0, y0) is an ε- minimum for the following problem

Min {ϕeQ(F (x) + T (G(x)) : x ∈ X}.

Hence, for y ∈ F (x), z ∈ G(x) and z0 ∈ G(x0), one has

ϕeQ(y + T (z)− y0 − T (z0) + ε) ≥ 0.

Now, by Theorem 5.6, we have

ϕeQ(y − y0 + ε) + ϕeQ(T (z)− T (z0)) ≥ ϕeQ(y + T (z)− y0 − T (z0) + ε) ≥ 0.

Since T (z0) = 0 for z0 ∈ G(x0), then

ϕeQ(y − y0 + ε) + ϕeQ(T (z)) ≥ 0. (20)

On the other hand, since 0 ∈ Q and Q is free disposal with respect to K, we have

T (G(x)) ⊆ −K −Q = −Q ⊆ (−∞, 0]e− vcle(Q), ∀x ∈ S

and by Theorem 5.1, we obtain

ϕeQ(T (z)) ≤ 0, ∀(z ∈ G(x), x ∈ S). (21)

Now, (20) and (21) yield

ϕeQ(y − y0 + ε) ≥ 0

and then, by Theorem 5.4, there exists Q ⊆ Y such that (x0, y0) ∈ HPε(F, S,Q) for the
CP. �
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6. Conclusions

In this paper we introduced a new version of efficient solutions in vector optimization
problems with set-valued mapping. First, optimality conditions for approximate (Henig
proper/weak) efficiency in set-valued optimization are provided by using Gerstewitz’s func-
tion generated by a convex cone. Moreover, Q-proper efficient solutions of a vector op-
timization problem have been generalized to a linear space not necessarily endowed with
a topology by using the algebraic concepts of interior and closure. Furthermore, we used
the scalarization technique including the nonconvex separation function generated by a
nonconvex set to characterize Q-weak efficient solutions and Q-Henig proper efficient so-
lutions.
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