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FUZZY SUPER RESOLVING NUMBER AND RESOLVING NUMBER

OF SOME SPECIAL GRAPHS

R. SHANMUGAPRIYA1, MARY JINY D.1, §

Abstract. Resolving number of a graph was introduced by Slater in the year 1975,
which is used to navigate the position of the robot uniquely in a graph-structured frame-
work. In this paper, we introduce fuzzy super resolving set, fuzzy super resolving number
and certain crisp graph with ′2n′ vertices and resolving number ′n′, whose resolving set
form a basis for Rn.

Keywords: Fuzzy set, Fuzzy graph, Resolving number of graph, Chromatic number of a
graph, Isomorphic fuzzy graph.

1. Introduction

Fuzzy Mathematics was introduced by Lotfi Asker Zadeh in the year 1965. Later in the
year, 1975 Rosenfield defined fuzzy graphs that have many applications in real life such
as networking, colouring [7], cluster analysis [8], telecommunication [9], traffic network
[6] etc. The concept of resolving number in graph theory is introduced independently by
Slater, Harry and Melter [5]. Slater named it as locating set and locating the number,
Harry and Melter used the word metric dimension.

Robot can navigate its position in Euclidean space using visual detection. Consider
a robot moves in a graph-structured framework, each node is referred to as a landmark.
By assuming that the robot can sense the distance between the landmarks, metric basis
or resolving set is the minimum number of landmark required to determine the robot’s
position uniquely. In a weighted graph, the distance between two nodes is the length of
the shortest path between them. But if the robot can sense each landmark in terms of
less risk factor or dangerous situations or unsafe conditions like temperature, expose to
the weather, radiation etc., motivates us to define a fuzzy resolving set. We assume the
robot needs to identify a path which is high safety and minimum risk level, we define a
fuzzy number indicating the safety level between each landmark having a path and the
robot can move in a fuzzy graph-structured framework. And the fuzzy super resolving
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number indicates the minimum number of landmark required to navigate the robot’s po-
sition uniquely from all landmark in terms of safety level or unsafe condition.

In this paper, instead of the length of the shortest path in graph theory, we consider
the weight or strength of the connectedness between two nodes. We define fuzzy super
resolving set and super resolving number.

2. Definitions

Definition 2.1. Let X be a nonempty set. A fuzzy subset A of X is an ordered pair A =
{(x, µA(x))/x ∈ X} where µA : X → [0, 1] and µA(x) is interpreted as the membership
value of element x in fuzzy set A for each x ∈ X.

Definition 2.2. Graph is an ordered pair (V (G), E(G)) consisting of a set V (G) of vertices
and a set E(G), disjoint from V (G), of edges, together with an incidence function Ψ(G)
that associates with each edge of G an unordered pair of (not necessarily distinct) vertices
of G. [3]

Definition 2.3. Chromatic number of a graph is the minimum number of colours required
to colour the vertices of a graph so that no two adjacent vertices can have the same colour
and it is denoted as χ(G). [3]

Definition 2.4. Fuzzy Graph is an ordered triple G(V, σ, µ), where V is a nonempty
set of vertices together with the functions σ : V → [0, 1] and µ : V × V → [0, 1] such
that for all a, b ∈ V , µ(a, b) ≤ σ(a) ∧ σ(b). The support of µ and σ are represented as
µ∗ = {(a, b)/µ(a, b) > 0} and σ∗ = {u/σ(u) > 0}. The fuzzy subgraph induced by S is
defined as H = (S, τ, ν) where S ⊆ V , τ(x) ⊆ σ(x)∀x ∈ S, ν(x, y) = µ(x, y)∀x, y ∈ S and
it is denoted as 〈S〉. [2]

Definition 2.5. In a fuzzy graph G(V, σ, µ), the sequence of different vertices v1, v2, ...vn
with µ(vi−1, vi) > 0, i = 1, 2, ...n is called a fuzzy path P of length ′n′. The consecutive
pairs are named as the edges of the path. The length of the longest path between v1
to v2 is called the diameter of v1 − v2 denoted as diam(v1, vn). The edge with lowest
membership value in the path is called the weakest edge of the path. The strength or
weight of the path P is defined as the weight or the membership value of the weakest edge
in the path.The weight of connectedness between v1 to vn is the maximum of the weight of
all the paths between v1 to vn and is denoted by µ∞(v1, vn) [3], for our usage we represent
it as w(v1, vn). A strongest path joining v1 and vn has weight µ∞(v1, vn). The fuzzy path
P is called a fuzzy cycle if v1 = vn and n ≥ 3.

Definition 2.6. Complete fuzzy graph (CFG) is a fuzzy graph G(V, σ, µ) such that
µ(ab) = σ(a) ∧ σ(b) for all a, b ∈ σ∗, µ∞(a, b) = µ(a, b) for all a, b ∈ V and G has no
cut vertices. [2]

Definition 2.7. The adjacency matrix A of a fuzzy graph G(V, σ, µ) is an n × n matrix
defined as Xij = µ(vi, vj) for i 6= j and when i = j,Xij = σ(vi).

Definition 2.8. An isomorphism h : G→ G′ is a bijective map h : V → V ′ which satisfies
(i) σ(v) = σ′(h(v))∀v ∈ V , (ii) µ(u, v) = µ′(h(u), h(v))∀u, v ∈ V and is denoted as G ∼= G′.
[10]

Definition 2.9. The co-weak isomorphism h : G → G′ is a bijective map h : V → V ′,
which satisfies µ(u, v) = µ′(h(u), h(v))∀u, v ∈ V . [10]
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Definition 2.10. Let G(V, σ, µ) be a fuzzy graph, the complement of G is defined as
Ḡ(V, σ, µ̄) where µ̄(u, v) = σ(u)∧ σ(v)− µ(u, v)∀u, v ∈ V . A fuzzy graph is said to be self
complementary if G ∼= Ḡ. [10]

Result 1: Two fuzzy graphs are isomorphic if and only their complement are isomorphic.
[10]

3. Fuzzy Super Resolving Number of a Fuzzy Graph

In this part, we introduce resolving number in graph theory into the fuzzy graph. We de-
fine for an ordered fuzzy subset H = {(x1, σ(x1)), (x2, σ(x2)), ...(xk, σ(xk))}, |H| ≥ 2 of the
fuzzy set σ in a fuzzy simple connected graph G(V, σ, µ) with the number of vertices n ≥ 3,
the representation of (y, σ(y)) ∈ σ−H = {(xk+1, σ(xk+1)), (xk+2, σ(xk+2)),· · · (xn, σ(xn))}
with respect to H is an ordered K-tuple {w(y, x1), w(y, x2)...w(y, xk)}, where w(x, y) is
the weight of the connectedness between x and y.The Fuzzy subset H is called a Fuzzy
Resolving set of G, if every two element of σ−H have distinct representation with respect
to H. A fuzzy resolving set of minimum cardinality is the fuzzy resolving number of G
denoted as Fr(G). A fuzzy resolving set is called a Fuzzy Super Resolving set if any two
element of σ have distinct representation with respect to H . We take w(x, x) = σ(x) and
the minimum cardinality of all super resolving set is the super resolving number denoted
as Sr(G).
The crisp set of the fuzzy resolving set H is denoted as S = {x1, x2, ...xn}. If the in-
duced fuzzy subgraph 〈S〉 is connected, then H is called the total fuzzy resolving set.
The minimum cardinality of all fuzzy total resolving set of G is called the fuzzy to-
tal resolving number of G. The representation of the elements (yj , σ(yj)) ∈ σ − H =
{(xk+1, σ(xk+1)), (xk+2, σ(xk+2)), ...(xn, σ(xn))} with respect to the resolving set H =
{(x1, σ(x1)), (x2, σ(x2)), ...(xk, σ(xk))} is an orderedK-tuple {w(yj , x1), w(y, x2)...w(yj , xk)},
j = k + 1, k + 2, ...n which are arranged in a row form a matrix of order n− k × k called
Fuzzy Resolving Matrix and is denoted as Rn−k×k. and the representation of elements
in σ with respect to the super resolving set are arranged in a row form a Fuzzy Super
Resolving Matrix denoted as Sn×k.
Note 1: 2 ≤ Fr(G) ≤ n− 1.
Note 2: Though out this paper, we consider a connected graph G with number of vertices
n ≥ 3.

Example 3.1. Consider the following Fuzzy Graph G.

Fig.1 G(V, σ, µ)

V = {v1, v2, v3, v4, } σ = {(v1, 0.6), (v2, 1), (v3, .7), (v4, 0.9)}
µ(v1v2) = 0.2;µ(v2v3) = 0.6;µ(v3v4) = 0.1;µ(v4v1) = 0.4;µ(v4v2) = 0.9
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The adjacency matrix of G =

v1 v2 v3 v4
v1
v2
v3
v4


.6 .2 0 .4
.2 1 .6 .9
0 .6 .7 .6
.4 .9 .1 .9



The strength of connectedness between the vertices of G =

v1 v2 v3 v4
v1
v2
v3
v4


.6 .4 .4 .4
.4 1 .6 .9
.4 .6 .7 .6
.4 .9 .6 .9


The fuzzy super resolving number of G can be obtained from the connectedness matrix
by manually searching the minimum subset of σ have distinct representation with respect
to all vertices. That is, Sr(G) = 2.
We denote (v1, σ(v1) = σ1)
The two element subset of σ are H1 = {σ1, σ2}, H2 = {σ1, σ3}, H3 = {σ1, σ4}, H4 =
{σ2, σ3}, H5 = {σ2, σ4}, H6 = {σ3, σ4}.
H1 = {σ1, σ2}, H4 = {σ2, σ3}, H5 = {σ2, σ4} are fuzzy super resolving set. And their

super resolving matrix are


.6 .4
.4 1
.4 .6
.4 .9

 ,

.4 .4
1 .6
.6 .7
.9 .6

 and

.4 .4
1 .9
.6 .6
.9 .9

 respectively.

H1 = {σ1, σ2}, H3 = {σ1, σ4}, H4 = {σ2, σ3}, H5 = {σ2, σ4}, H6 = {σ3, σ4} are fuzzy
resolving set.
σ2/H2 = (w(v2, v1), w(v2, v3)) = (.4, .6)
σ4/H2 = (w(v4, v1), w(v4, v3)) = (.4, .6).
Since σ2/H2 and σ4/H2 are having same representation. H2 is not a fuzzy resolving set.

Theorem 3.1. A fuzzy resolving set does not 2 need to be a fuzzy super resolving set. But
a fuzzy super resolving set is always a fuzzy resolving set.

Proof. Let G be a fuzzy connected graph with n vertices and let H = {σ1, σ2, · · ·σm} be
a resolving set of G, then the representation of σi/H for i = m + 1,m + 2, ...n are all
distinct. However σi/H may or may not be distinct for all i = 1, 2, ...n. That is, H does
not need to be a fuzzy super resolving set.

Now let H = {σ1, σ2, · · ·σm} is a super resolving set of G, then σi/H for i = 1, 2, ...m+
1,m + 2, ...n are all distinct.which imply that, the representation of σi/H for i = m +
1,m + 2, ...n are all distinct. Therefore, all fuzzy super resolving set of G is also a fuzzy
resolving set of G. �

Theorem 3.2. A fuzzy resolving set H of a connected graph G is a fuzzy super resolving
set, if there exists at least one u ∈ S such that w(u, vi) are distinct for all vi ∈ σ∗.

Proof. Let G(V, σ, µ) be a fuzzy connected graph, V = {v1, v2, ...vn} and the fuzzy resolv-
ing set H = {σ1, σ2, ...σk}.
The crisp set corresponding to H is S = {v1, v2, ...vk}.
then, by the definition of resolving set, σk+i/H are all distinct for i = 1, 2, ...n− k.
Since there exists at least one u ∈ S such that w(u, vi) are distinct for every vi ∈ σ∗

[i = 1, 2, ...k, k+ 1, ...n] then the representation of σi/H = (w(vi, v1), w(vi, v2), ...w(vi, vk))
for i = 1, 2, ...k are all distinct (in every representation w(u, vi) will differ) and which is
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also distinct for i = 1, 2, ...k, k + 1, ...n. Which implies that H is a super resolving set of
G. �

Theorem 3.3. The super resolving number of any connected fuzzy graph G is ‘2’, if
w(u, v) 6= w(u,w)[u 6= w] for any v, w ∈ σ∗ and some u ∈ σ∗.

Proof. Let G(V, σ, µ) be a fuzzy connected graph, σ∗ = {v1, v2, ...vn}. Let w(u, v) 6=
w(u,w) for any v, w ∈ σ∗ and some u 6= w ∈ σ∗.
That is, for some u ∈ σ∗, say u = v1, w(v1, v1) = σ(v1), w(v1, v2), w(v1, v3)...w(v1, vn) are
all distinct.
Now any two element subset of σ∗ of the form Hi = {v1, vi+1}, i = 1, 2, ...n− 1 is a fuzzy
super resolving set, since σj/Hi = (w(vj , v1), w(vj , vi+1)) are all distinct for j = 1, 2, ...n
Therefore, for any Hi = {v1, vi+1}, i = 1, 2, ...n− 1 is a super resolving set of G.
Which implies that the resolving number of G is ′2′. �

Example 3.2. Consider the following fuzzy graph in fig.2 with V = {v1, v2, v3, v4, v5}
σ(v1) = 1;σ(v2) = .5;σ(v3) = .4;σ(v4) = .5;σ(v5) = .9
µ(v1v2) = .2;µ(v2v3) = .1;µ(v3v4) = .4;µ(v4v5) = .5;µ(v5v1) = .9;µ(v1v4) = .6;µ(v1v3) =
.5

Fig.2

w(v1, v1) = 1, w(v1, v2) = .2, w(v1, v3) = .5, w(v1, v4) = .6, w(v1, v5) = .9
w(v1, vi) 6= w(v1, vj) for i 6= j
H1 = {σ1, σ2}, H2 = {σ1, σ3}, H3 = {σ1, σ4}, H4 = {σ1, σ5} are all have distinct represen-
tation with respect to σ, therefore these are all the super fuzzy resolving set of G.
σ1/H1 = (1, .2) σ1/H2 = (1, .5) σ1/H3 = (1, .6) σ1/H4 = (1, .9)
σ2/H1 = (.2, .5) σ2/H2 = (.2, .2) σ2/H3 = (.2, .2) σ2/H4 = (.2, .2)
σ3/H1 = (.5, .2) σ3/H2 = (.5, .4) σ3/H3 = (.5, .5) σ3/H4 = (.5, .5)
σ4/H1 = (.6, .2) σ4/H2 = (.6, .5) σ4/H3 = (.6, .5) σ4/H4 = (.6, .6)
σ5/H1 = (.9, .2) σ5/H2 = (.9, .5) σ5/H3 = (.9, .6) σ5/H4 = (.9, .9)

Theorem 3.4. If G and G′ are isomorphic to each other then Sr(G) = Sr(G′).

Proof. If G and G′ are isomorphic to each other then there exists a bijective map h : V →
V ′ which satisfies :-
(i) σ(v) = σ′(h(v))∀v ∈ V , (ii) µ(u, v) = µ′(h(u), h(v))∀u, v ∈ V
Let V = {v1, v2, ...vn} and V ′ = {h(v1), h(v2), ...h(vn)}.
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Assume that, Sr(G) = k and H = {v1, v2, ...vk}, |H| = k ≥ 2, be the corresponding fuzzy
super resolving set of G. Then the representation of σi/H are all distinct for i = 1, 2, ...n
in G.
Now let us define, I = {h(v1), h(v2), ...h(vk)} ,|I| = k
σ′i/I = (µ′∞(h(vi), h(v1)), µ

′∞(h(vi), h(v2)), ...µ
′∞(h(vi), h(vk)))

= (µ∞(vi, v1), µ
∞(vi, v2), ...µ

∞(vi, vk)) [µ(u, v) = µ′(h(u), h(v))∀u, v ∈ V ]

Which are all distinct since, H is the fuzzy super resolving set of G . Therefore σ′i/I are
all distinct in G′, which implies that, I = {h(v1), h(v2), ...h(vk)} is super fuzzy resolving
set of G′.
To prove, I is the minimum resolving set of G′.

If there exist a super resolving set J with |J | < k, say |J | = k − 1
J = {h(v1), h(v2), ...h(vk−1)} then take K = {v1, v2, ...vk−1}
σi/K = (µ∞(vi, v1), µ

∞(vi, v2), ...µ
∞(vi, vk−1))

= (µ′∞(h(vi), h(v1)), µ
′∞(h(vi), h(v2)), ...µ

′∞(h(vi), h(vk−1)))
are all distinct for i = 1, 2, ...n− 1, since J = {h(v1), h(v2), ...h(vk−1)} is a super resolving
set of G′.
=⇒ k is a resolving set of G and Sr(G) = k − 1.
Which is a contradiction to our assumption that Sr(G) = k
Therefore there does not exist a super resolving set J with |J | < k.
whcih implies that, Sr(G) = Sr(G′) = k. �

Corollary 3.1. If G and G′ are isomorphic to each other then Fr(G) = Fr(G′).

Theorem 3.5. If G and G′ are isomorphic to each other then Fr(Ḡ) = Fr(Ḡ′).

Proof. Given G and G′ are isomorphic to each other.
By result [1],Two fuzzy graphs are isomorphic if and only if their complement are isomor-
phic [13]. Therefore Ḡ ∼= Ḡ′.
Now by corollary [3.1], If G and G′ are isomorphic to each other then Fr(G) = Fr(G′).
Which will imply that, Fr(Ḡ) = Fr(Ḡ′).

�

4. Real Basis Generating Graphs RG(n)

For an ordered subset W = {w1, w2, ...wk} of vertices and a vertex v in a connected
graph G(V,E), the representation of v with respect to W is an ordered K-tuple r(v/W ) =
{d(v, w1), d(v, w2), ...d(v, wk)} with d(u, v) is the shortest distance between the vertices
u and v. The set W is called a resolving set of G, if every pair of vertices of G has
distinct representation with respect to W . A resolving number of G is the cardinality
of the minimum resolving set W and is denoted by dim(G) [1].The representation of the
elements in V −W with respect to W is an ordered k-tuple which are arranged in a row
form a matrix of order n − k × k , we call it as resolving matrix Rn−k×k. In addition to
this, in certain Graphs, the representation of V −W vertices with respect to W forms the
basis for Rn with ′2n′ [n > 1] vertices and resolving number ′n′. Some of the examples
are as follows.

Example 4.1. In the following graph G(V,E)
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Fig.3 An example of RG(2)

V = {v1, v2, v3, v4}
The resolving set W = {v1, v2}
r(v3/W ) = (2, 1);r(v4/W ) = (1, 2)

The vectors (2, 1) and (1, 2) forms the basis for R2, since the rank of the matrix

[
2 1
1 2

]
is

equal to ′2′.
The resolving number of G = 2.
The Chromatic number of G = 2.

Example 4.2. In the following Octahedral graph G(V,E)

Fig.4 An example of RG(3)

V = {v1, v2, v3, v4, v5, v6}
The resolving set W = {v1, v2, v3}
r(v4/W ) = (1, 1, 2);r(v5/W ) = (2, 1, 1);r(v6/W ) = (1, 2, 1)}
The vectors (1, 1, 2), (2, 1, 1) and (1, 2, 1) form the basis for R3.
The resolving number of G = 3.
The Chromatic number of G = 3.

Example 4.3. Consider the following graph G(V,E) on ′8′ vertices
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Fig.5 An example of RG(4)

V = {v1, v2, v3, v4, v5, v6, v7, v8}
The resolving set W = {v1, v3, v4, v8}
r(v2/W ) = (1, 1, 1, 1); r(v5/W ) = (1, 2, 1, 2); r(v6/W ) = (1, 2, 2, 2); r(v7/W ) = (1, 2, 2, 1)}
The vectors (1, 1, 1, 1), (1, 2, 1, 2), (1, 2, 2, 2) and (1, 2, 2, 1) form the basis for R4.
The resolving number of G = 4.
The Chromatic number of G = 4.
From the above examples [1, 2, and 3], we can see that, some graphs with ′2n′ vertices,
n ≥ 2 and resolving number or metric dimension is ′n′, the representation of V − W
vertices with respect to the resolving set W form the basis for Rn, we name such graphs
as Real Basis generating Graphs denoted as RG(n). The platonic solid and cube is an
example of RG(4).

Theorem 4.1. For a Real basis generating graph RG(n), The Chromatic number χ(RG(n)) ≤
n+ 1 for n ≥ 2.

Proof. The number of vertices of RG(n) = 2n and the resolving number of RG(n) = n.
If the chromatic number χ(RG(n)) > n + 1, say n + 2, then there exist some vertices
v1, v2, ...vn+2 which are adjacent to each other. Therefore, atleast two vertices of the resolv-
ing set W is from v1, v2, ...vn+2 say vn+1 and vn+2 then the remaining vertices v1, v2, ...vn
are all of distance ′1′ from vn+1 and vn+2. Therefore the two columns of the n×n resolving
matrix are same [it is equat to ′1′], and the rank of resolving matrix will not be equal to ′n′.
that is, for χ(RG(n)) > n+1, the rank of resolving matrix will not be equal to ′n′. Which
is the contrary to the definition of RG(n) that, the representation of V −W vertices with
respect to the resolving set W forms the basis for Rn. Therefore χ(RG(n)) ≤ n+ 1. �

Theorem 4.2. In RG(n), d(x, y) 6= cd(x, z) or d(x, y) 6= d(x, z) ∀x ∈ V −W and for any
u, v ∈W , where c ∈ N is a constant.

Proof. Let G(V,E) be a real basis generating graph, V = {v1, v2, ...v2n} and let the re-
solving set of RG(n), W = {v1, v2, ...vn}, |W | = n
Assume that, there exist u, v ∈W 3 d(x, y) = d(x, z) = k(say), ∀x ∈ V −W .
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Then the resolving matrix will be of the form, Rn =

v1 ... y z ... vn
vn+1

vn+2
...
v2n


... c1 c1 ...
... c2 c2 ...

...
... ...

... cn cn ...


We can see that in Rn two columns are linearly dependent[11].
=⇒ ρ(Rn) 6= n
Which is a contradiction to our assumption that, G is RG(n).
Therefore, there does not exist some u, v ∈W and ∀x ∈ V −W 3 d(x, y) = d(x, z) = k. �

Corollary 4.1. In RG(n), d(x, y) 6= cd(x, z) or d(x, y) 6= d(x, z) ∀x ∈ W and some
u, v ∈ V −W , where c ∈ N is a constant.

Corollary 4.2. There exist almost one vertex u ∈ V −W in RG(n) such that d(u, x1) =
d(u, x2) = · · · = d(u, xn) ∀x1, x2, ...xn ∈W .

Corollary 4.3. There exist almost one vertex u ∈ V in RG(n) such that d(u, x1) =
d(u, x2) = · · · = d(u, xn) ∀x1, x2, ...xn ∈ V −W .

5. Conclusions

In this paper, we have introduced fuzzy resolving set and fuzzy super resolving set,
which can be used to identify the set of landmark required to navigate the position of
the robot uniquely in a fuzzy graph-structured framework. The minimum cardinality of
fuzzy resolving set and fuzzy super resolving sets are named as fuzzy resolving number
Fr(G) and fuzzy super resolving number Sr(G), respectively. We have also introduced a
real basis generating crisp graph in this paper. And we would like to introduce real basis
generating fuzzy graphs in our future work.
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