TWMS J. App. and Eng. Math. V.11, N.2, 2021, pp. 598-604

ON SUBCLASSES OF M-FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS

B. ŞEKER¹, İ. TAYMUR², §

ABSTRACT. In this study, we introduce and investigate two new subclasses of the biunivalent functions which both f(z) and $f^{-1}(z)$ are m-fold symmetric analytic functions. Among other results, upper bounds for the coefficients $|a_{m+1}|$ and $|a_{2m+1}|$ are found in this investigation.

Keywords: Univalent functions, Bi-univalent functions, m-fold symmetric functions, m-fold symmetric bi-univalent functions.

AMS Subject Classification: 30C45, 30C50

1. INTRODUCTION

Let \mathcal{A} denote the class of functions f(z) which are *analytic* in the open unit disk $\mathbb{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$ and normalized by the conditions f(0) = f'(0) - 1 = 0 and having the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k.$$
(1)

Also let S denote the subclass of functions in A which are univalent in \mathbb{U} (for details, see [6]).

It is well known that every function $f \in S$ has an inverse f^{-1} , which is defined by

$$f^{-1}(f(z)) = z \qquad (z \in \mathbb{U})$$

and

$$f(f^{-1}(w)) = w$$
 $\left(|w| < r_0(f), r_0(f) \ge \frac{1}{4}\right).$

In fact, the inverse function f^{-1} is given by

$$g(w) = f^{-1}(w) = w - a_2w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$
(2)

¹ Dicle University- Science Faculty-Department of Mathematics, TR-21280 Diyarbakır, Turkey.

e-mail: bilalseker1980@gmail.com; ORCID: https://orcid.org/0000-0003-1777-8145.

² Batman University- Graduate School of Natural and Applied Science- Batman, Turkey.

e-mail: taymuridris@hotmail.com; ORCID: https://orcid.org/0000-0001-9976-5051.

[§] Manuscript received: July 5, 2019; accepted: September 4, 2019. TWMS Journal of Applied and Engineering Mathematics, Vol.11, No.2 © Işık University, Department of Mathematics, 2021; all rights reserved.

A function $f \in \mathcal{A}$ is said to be *bi-univalent* in \mathbb{U} if both f(z) and $f^{-1}(z)$ are univalent in \mathbb{U} . We denote by Σ the class of all bi-univalent functions in \mathbb{U} given by the Taylor-Maclaurin series expansion (1).

The problem of coefficient bounds of bi-univalent functions dates back to the 1967, when Lewin [10] investigated the class Σ . Following, Brannan and Taha studied with bi-univalent functions [3, 17]. Lewin, Brannan and Taha, thus pioneered the formation of the concept of cornerstone in bi-univalent functions theory. However, in these days a significat amount of theoretical work is done by outstanding mathematicians as Srivastava et al. [12, 13], Ali et al. [1], Çaglar et al. [4], Hamidi and Jahangiri [8], Hussain et al. [9], Şeker [15, 16], Zaprawa [20].

Let $m \in \mathbb{N}$. A domain E is said to be *m*-fold symmetric if a rotation of E about the origin through an angle $2\pi/m$ carries E on itself. It follows that, a function f(z) analytic in \mathbb{U} is said to be *m*-fold symmetric ($m \in \mathbb{N}$) if

$$f(e^{2\pi i/m}z) = e^{2\pi i/m}f(z).$$

In particular every f(z) is 1-fold symmetric and every odd f(z) is 2-fold symmetric. We denote by S_m the class of *m*-fold symmetric univalent functions in \mathbb{U} .

A simple argument shows that $f \in S_m$ is characterized by having a power series of the form

$$f(z) = z + \sum_{k=1}^{\infty} a_{mk+1} z^{mk+1} \qquad (z \in \mathbb{U}, \ m \in \mathbb{N}).$$
(3)

In [14] Srivastava et al. described the class of *m*-fold symmetric bi-univalent functions similar to the class of *m*-fold symmetric univalent functions (Also, see [7, 5, 18, 19, 2]). They obtained that each function $f \in \Sigma$, given by equations (3), constitue an *m*-fold symmetric bi-univalent function for each $m \in \mathbb{N}$. Also considering the normalized form of f is given by (3), they expressed the Maclaurin series for the inverse of a function as follows:

$$g(w) = w - a_{m+1}w^{m+1} + \left[(m+1)a_{m+1}^2 - a_{2m+1}\right]w^{2m+1}$$

$$- \left[\frac{1}{2}(m+1)(3m+2)a_{m+1}^3 - (3m+2)a_{m+1}a_{2m+1} + a_{3m+1}\right]w^{3m+1} + \cdots$$
(4)

where $f^{-1} = g$. We denote by Σ_m the class of *m*-fold symmetric bi-univalent functions in \mathbb{U} .

In 1983, Salagean $\left[11\right]$ has introduced the following differential operator :

 $D^n:\mathcal{A}\to\mathcal{A}$

$$D^0 f(z) = f(z),$$

$$D^1 f(z) = Df(z) = zf'(z),$$

and

$$D^n f(z) = D(D^{n-1}f(z))$$
 $(n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}).$

For the functions given by (1.1), we can easily find that

$$D^n f(z) = z + \sum_{k=2}^{\infty} k^n a_k z^k \quad (n \in \mathbb{N}_0).$$

The object of the present paper is to introduce new subclasses of the function class bi-univalent functions in which both f and f^{-1} are *m*-fold symmetric analytic functions and obtain coefficient bounds for $|a_{m+1}|$ and $|a_{2m+1}|$ for functions in each of these new subclasses.

2. Coefficient Estimates for the function class $(\mathcal{T}_{\Sigma,m}^{t,n})$

We begin by introducing the function class $(\mathcal{T}_{\Sigma,m}^{t,n})$ by means of the following definition.

Definition 2.1. A function f(z) given by (3) is said to be in the class $(\mathcal{T}_{\Sigma,m}^{t,n})$ $(0 < \alpha \leq 1; n, t \in \mathbb{N}_0; t \geq n)$ if the following conditions are satisfied:

$$f \in \Sigma_m \ and \ \left| arg\left(\frac{D^t f(z)}{D^n f(z)}\right) \right| < \frac{\alpha \pi}{2} \qquad (z \in \mathbb{U})$$
 (5)

and

$$\left|\arg\left(\frac{D^{t}g(w)}{D^{n}g(w)}\right)\right| < \frac{\alpha\pi}{2} \qquad (w \in \mathbb{U})$$
(6)

where the function g(w) is given by (4), D^t and D^n are Salagean differential operators and have the following forms

$$D^{t}f(z) = z + \sum_{k=1}^{\infty} (mk+1)^{t} a_{mk+1} z^{mk+1}$$

and

$$D^{n}g(w) = w + \sum_{k=1}^{\infty} (mk+1)^{n} b_{mk+1} w^{mk+1}$$

Theorem 2.1. Let $f \in (\mathcal{T}_{\Sigma,m}^{t,n})$ $(0 < \alpha \leq 1; n, t \in \mathbb{N}_0; t \geq n)$ be given by (3). Then

$$|a_{m+1}| \le \frac{2\alpha}{\sqrt{\alpha\mu[\lambda^t - \lambda^n] - 2\alpha[\mu^{n+t} - \mu^{2n}] - (\alpha - 1)[\mu^t - \mu^n]^2}}$$
(7)

and

$$|a_{2m+1}| \le \frac{2\alpha}{\lambda^t - \lambda^n} + \frac{2\mu\alpha^2}{(\mu^t - \mu^n)^2}.$$
(8)

where $\lambda = 2m + 1$ and $\mu = m + 1$

Proof. From (5) and (6) we have

$$\frac{D^t f(z)}{D^n f(z)} = [p(z)]^{\alpha} \tag{9}$$

and for its inverse map, $g = f^{-1}$, we have

$$\frac{D^t g(w)}{D^n g(w)} = [q(w)]^\alpha \tag{10}$$

where p(z) and q(w) are in familiar Caratheodory Class \mathcal{P} (see for details [6]) and have the following series representations:

$$p(z) = 1 + p_m z^m + p_{2m} z^{2m} + p_{3m} z^{3m} + \cdots$$
(11)

and

$$q(w) = 1 + q_m w^m + q_{2m} w^{2m} + q_{3m} w^{3m} + \cdots$$
 (12)

Comparing the corresponding coefficients of (9) and (10) yields

$$(\mu^t - \mu^n)a_{m+1} = \alpha p_m \tag{13}$$

$$(\lambda^t - \lambda^n)a_{2m+1} - (\mu^{t+n} - \mu^{2n})a_{m+1}^2 = \alpha p_{2m} + \frac{\alpha(\alpha - 1)}{2}p_m^2$$
(14)

$$-(\mu^t - \mu^n)a_{m+1} = \alpha q_m \tag{15}$$

$$(\lambda^t - \lambda^n) \left[\mu a_{m+1}^2 - a_{2m+1} \right] - (\mu^{t+n} - \mu^{2n}) a_{m+1}^2 = \alpha q_{2m} + \frac{\alpha(\alpha - 1)}{2} q_m^2.$$
(16)

From (13) and (15), we get

$$p_m = -q_m \tag{17}$$

and

$$2(\mu^t - \mu^n)^2 a_{m+1}^2 = \alpha^2 (p_m^2 + q_m^2).$$
(18)

Also from (14), (16) and (18), we get

$$a_{m+1}^2 = \frac{\alpha^2(p_{2m} + q_{2m})}{\alpha\mu[\lambda^t - \lambda^n] - 2\alpha[\mu^{n+t} - \mu^{2n}] - (\alpha - 1)[\mu^t - \mu^n]^2}.$$
(19)

Note that, according to the Caratheodory Lemma (see [6]), $|p_m| \leq 2$ and $|q_m| \leq 2$ for $m \in \mathbb{N}$. Now taking the absolute value of (19) and applying the Caratheodory Lemma for coefficients p_{2m} and q_{2m} we obtain

$$|a_{m+1}| \le \frac{2\alpha}{\sqrt{\alpha\mu[\lambda^t - \lambda^n] - 2\alpha[\mu^{n+t} - \mu^{2n}] - (\alpha - 1)[\mu^t - \mu^n]^2}}.$$

This gives the desired estimate for $|a_{m+1}|$ as asserted (7).

Next, in order to find the bound on $|a_{2m+1}|$, by subtracting (16) from (14), we get

$$(\lambda^t - \lambda^n) \left[2a_{2m+1} - \mu a_{m+1}^2 \right] = \alpha(p_{2m} - q_{2m}) + \frac{\alpha(\alpha - 1)}{2} (p_m^2 - q_m^2).$$

Upon substituting the value of a_{m+1}^2 from (18) and observing that $p_m^2 = q_m^2$, it follows that

$$a_{2m+1} = \frac{\alpha(p_{2m} - q_{2m})}{2(\lambda^t - \lambda^n)} + \frac{\mu}{2} \frac{\alpha^2(p_m^2 + q_m^2)}{2(\mu^t - \mu^n)^2}.$$
(20)

Thus, by applying the Caratheodory Lemma again for coefficients p_m , p_{2m} and q_{2m} we find that

$$|a_{2m+1}| \le \frac{2\alpha}{\lambda^t - \lambda^n} + \frac{2\mu\alpha^2}{(\mu^t - \mu^n)^2}.$$

This completes the proof of the Theorem 2.1.

3. Coefficient Estimates for the function class $\mathcal{T}^{t,n}_{\Sigma,m}(\beta)$

Definition 3.1. A function f(z) given by (3) is said to be in the class $\mathcal{T}_{\Sigma,m}^{t,n}(\beta)$ $(0 \leq \beta < 1; n, t \in \mathbb{N}_0; t \geq n)$ if the following conditions are satisfied.

$$f \in \Sigma_m \text{ and } Re\left\{\frac{D^t f(z)}{D^n f(z)}\right\} > \beta \qquad (z \in \mathbb{U})$$
 (21)

and

$$Re\left\{\frac{D^{t}g(w)}{D^{n}g(w)}\right\} > \beta \qquad (w \in \mathbb{U})$$
(22)

where the function g(w) is given by (4).

Theorem 3.1. Let $f \in \mathcal{T}^{t,n}_{\Sigma,m}(\beta)$ ($0 \le \beta < 1; n, t \in \mathbb{N}_0; t \ge n$) be given by (3). Then

$$|a_{m+1}| \le 2\sqrt{\frac{1-\beta}{\mu[\lambda^t - \lambda^n] - 2(\mu^{n+t} - \mu^{2n})}}$$
(23)

and

$$|a_{2m+1}| \le \frac{2(1-\beta)}{\lambda^t - \lambda^n} + \frac{\mu(1-\beta)^2}{(\mu^t - \mu^n)^2}.$$
(24)

where $\lambda=2m+1$ and $\mu=m+1$

Proof. It follows from (21) and (22) that

$$\frac{D^t f(z)}{D^n f(z)} = \beta + (1 - \beta)p(z)$$
(25)

and

$$\frac{D^t g(w)}{D^n g(w)} = \beta + (1 - \beta)q(w)$$
(26)

where p(z) and q(w) have the forms (11) and (12), respectively. Equating coefficients (25) and (26) yields

$$(\mu^t - \mu^n)a_{m+1} = (1 - \beta)p_m \tag{27}$$

$$(\lambda^t - \lambda^n)a_{2m+1} - (\mu^{t+n} - \mu^{2n})a_{m+1}^2 = (1 - \beta)p_{2m}$$
(28)

$$-(\mu^t - \mu^n)a_{m+1} = (1 - \beta)q_m$$
(29)

$$\left(\lambda^{t} - \lambda^{n}\right) \left[\mu a_{m+1}^{2} - a_{2m+1}\right] - \left(\mu^{t+n} - \mu^{2n}\right)a_{m+1}^{2} = (1 - \beta)q_{2m}.$$
(30)

From (27) and (29) we get

$$p_m = -q_m \tag{31}$$

and

$$2(\mu^t - \mu^n)^2 a_{m+1}^2 = (1 - \beta)^2 (p_m^2 + q_m^2).$$
(32)

Also from (28) and (30), we obtain

602

$$\left[(\lambda^t - \lambda^n) \mu - 2(\mu^{t+n} - \mu^{2n}) \right] a_{m+1}^2 = (1 - \beta)(p_{2m} + q_{2m}).$$
(33)

Thus we have

$$\begin{aligned} \left|a_{m+1}^{2}\right| &\leq \frac{(1-\beta)}{(\lambda^{t}-\lambda^{n})\mu - 2(\mu^{t+n}-\mu^{2n})} \left(\left|p_{2m}\right| + \left|q_{2m}\right|\right) \\ &= \frac{4(1-\beta)}{(\lambda^{t}-\lambda^{n})\mu - 2(\mu^{t+n}-\mu^{2n})}, \end{aligned}$$

which is the bound on $|a_{m+1}|$ as given in the Theorem 3.1.

In order to find the bound on $|a_{2m+1}|$, by subtracting (30) from (28), we get

$$(\lambda^t - \lambda^n) \left(2a_{2m+1} - \mu a_{m+1}^2 \right) = (1 - \beta)(p_{2m} - q_{2m}) + (1 + 2m\lambda)(m+1)a_{m+1}^2$$

or equivalently

$$a_{2m+1} = \frac{(1-\beta)(p_{2m}-q_{2m})}{2(\lambda^t-\lambda^n)} + \frac{\mu(1-\beta)^2(p_m^2+q_m^2)}{4(\mu^t-\mu^n)^2}$$

Applying the Caratheodory Lemma for the coefficients p_m , q_m , p_{2m} and q_{2m} , we find

$$|a_{2m+1}| \le \frac{2(1-\beta)}{\lambda^t - \lambda^n} + \frac{\mu(1-\beta)^2}{(\mu^t - \mu^n)^2}.$$

which is the bound on $|a_{2m+1}|$ as asserted in Theorem 3.2.

Remark 3.1. For 1-fold symmetric bi-univalent functions, if we put t = 1 and n = 0 in Theorem 2.1 and Theorem 3.1, we obtain to results which were given by [3]. Furthermore, for one-fold symmetric bi-univalent functions in Theorem 2.1 and Theorem 3.1, we obtain to results which were given by [15].

References

- Ali, R. M., Lee, S. K., Ravichandran, V. and Supramaniam, S., (2012), Coefficient estimates for biunivalent Ma-Minda starlike and convex functions, Applied Mathematics Letters, 25, pp 344-351.
- [2] Altınkaya, Ş., and Yalçın, S.,(2018), On some subclasses of m-fold symmetric bi-univalent functions, Commun. Fac. Sci. Univ. Ank.Series A1, 67(1), pp 29-36.
- [3] Brannan, D. A. and Taha, T. S., (1986), On some classes of bi-univalent functions, Studia Univ. Babeş-Bolyai Math., 31, pp 70-77.
- [4] Çağlar, M., Orhan, H. and Yağmur, N., (2013), Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27, pp 1165-1171.
- [5] Çağlar, M., Gurusamy, P., and Deniz, Erhan., (2018), Unpredictability of initial coefficient bounds for m-fold symmetric bi-univalent starlike and convex functions defined by subordinations, Afrika Matematika 29(5-6), pp 793-802.
- [6] Duren, P.,(1983), Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo, Springer-Verlag.
- [7] Eker, S. S., (2016) Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turk. J. Math., 40, pp 641-646.
- [8] Hamidi, S. G. and Jahangiri, J.M., (2016), Faber polynomial coefficients of bi-subordinate functions, Comptes Rendus Mathematique, 354, pp 365-370.
- [9] Hussain, S., Khan, S., Zaighum, M. A., Darus, M. and Shareef, Z.,(2017), Coefficients Bounds for Certain Subclass of Bi-univalent Functions Associated with Ruscheweyh q-Differential Operator, J. Complex Anal., Article ID 2826514, pp.1-9, https://doi.org/10.1155/2017/2826514.
- [10] Lewin M., (1967), On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18, pp 63-68.

603

- [11] Salagean, G. S., (1983), Subclasses of univalent functions, Lecture Notes in Math., Springer, Berlin,1013, pp 362-372.
- [12] Srivastava, H. M., Mishra, A. K. and Gochhayat, P., (2010), Certain subclasses of analytic and biunivalent functions. Appl. Math. Lett., 23, pp 1188-1192.
- [13] Srivastava, H. M, Eker, S. S., and Ali, R. M., (2015), Coefficient Bounds for a Certain Class of Analytic and Bi-Univalent Functions, Filomat, 29, pp 1839-1845.
- [14] Srivastava, H. M., Sivasubramanian, S. and Sivakumar, R., (2014), Initial coefficient bounds for a subclass of *m*-fold symmetric bi-univalent functions, Tbilisi Mathematical Journal, 7, pp 1-10.
- [15] Şeker, B., (2018), On a new subclass of bi-univalent functions defined by using Salagean operator, Turk J. Math., 42, pp 2891-2896.
- [16] Şeker, B. and Eker, S.S., (2017), On Subclasses of Bi-Close-to-convex Functions Related to The Odd-Starlike Functions, Palest. J. Math., 6, pp 215-221.
- [17] Taha, T.S.,(1981), Topics in Univalent Function Theory, Ph.D. Thesis, University of London, London, UK.
- [18] Wanas, A. K., and Majeed, A. H., (2018), Certain new subclasses of analytic and m-fold symmetric bi-univalent functions, Applied Mathematics E-Notes, 18, pp 178-188
- [19] Wanas, A. K., and Yalçın, S.,(2019), Initial coefficient estimates for a new subclasses of analytic and m-fold symmetric bi-univalent functions, Malaya Journal of Matematik, 7(3), pp 472-476.
- [20] Zaprawa, P., (2014), On the Fekete-Szegö problem for classes of bi-univalent functions, Bulletin of the Belgian Mathematical Society-Simon Stevin, 21, pp 169-178.

BİLAL ŞEKER is an associate professor of mathematics in the Faculty of Science, Dicle University. His research interests are Univalent Functions; Harmonic Univalent Functions; Bi-Univalent Functions. He has been doing research in the mentioned areas for over ten years.

İDRİS TAYMUR is graduated from graduated from Dicle University. He got his MSc degree in 2017 from Batman University under the supervision of Mustafa AVCI. His research interests are Univalent Functions; Bi-Univalent Functions. He has been doing research in the mentioned areas for over two years.