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ON SUBCLASSES OF M-FOLD SYMMETRIC BI-UNIVALENT

FUNCTIONS

B. ŞEKER1, İ. TAYMUR2, §

Abstract. In this study, we introduce and investigate two new subclasses of the bi-
univalent functions which both f(z) and f−1(z) are m-fold symmetric analytic functions.
Among other results, upper bounds for the coefficients |am+1| and |a2m+1| are found in
this investigation.
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1. Introduction

Let A denote the class of functions f(z) which are analytic in the open unit disk U =
{z : z ∈ C and |z| < 1} and normalized by the conditions f(0) = f ′(0)−1 = 0 and having
the form:

f (z) = z +
∞∑
k=2

akz
k. (1)

Also let S denote the subclass of functions in A which are univalent in U (for details,
see [6]).

It is well known that every function f ∈ S has an inverse f−1 , which is defined by

f−1 (f(z)) = z (z ∈ U)

and

f
(
f−1(w)

)
= w

(
|w| < r0(f), r0(f) ≥ 1

4

)
.

In fact, the inverse function f−1 is given by

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (2)
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A function f ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are univalent
in U. We denote by Σ the class of all bi-univalent functions in U given by the Taylor-
Maclaurin series expansion (1).

The problem of coefficient bounds of bi-univalent functions dates back to the 1967,
when Lewin [10] investigated the class Σ. Following, Brannan and Taha studied with
bi-univalent functions [3, 17]. Lewin, Brannan and Taha, thus pioneered the formation
of the concept of cornerstone in bi-univalent functions theory. However, in these days a
significat amount of theoretical work is done by outstanding mathematicians as Srivastava
et al. [12, 13], Ali et al. [1], Çaglar et al. [4], Hamidi and Jahangiri [8], Hussain et al. [9],
Şeker [15, 16], Zaprawa [20].

Let m ∈ N. A domain E is said to be m-fold symmetric if a rotation of E about the
origin through an angle 2π/m carries E on itself. It follows that, a function f(z) analytic
in U is said to be m-fold symmetric (m ∈ N) if

f(e2πi/mz) = e2πi/mf(z).

In particular every f(z) is 1-fold symmetric and every odd f(z) is 2-fold symmetric. We
denote by Sm the class of m-fold symmetric univalent functions in U.

A simple argument shows that f ∈ Sm is characterized by having a power series of the
form

f (z) = z +

∞∑
k=1

amk+1z
mk+1 (z ∈ U, m ∈ N). (3)

In [14] Srivastava et al. described the class of m-fold symmetric bi-univalent functions
similar to the class of m-fold symmetric univalent functions (Also, see [7, 5, 18, 19, 2]).
They obtained that each function f ∈ Σ, given by equations (3), constitue an m-fold
symmetric bi-univalent function for each m ∈ N. Also considering the normalized form
of f is given by (3), they expressed the Maclaurin series for the inverse of a function as
follows:

g(w) = w − am+1w
m+1 +

[
(m+ 1)a2

m+1 − a2m+1

]
w2m+1

(4)

−
[

1

2
(m+ 1)(3m+ 2)a3

m+1 − (3m+ 2)am+1a2m+1 + a3m+1

]
w3m+1 + · · ·

where f−1 = g. We denote by Σm the class of m-fold symmetric bi-univalent functions in
U.

In 1983, Salagean [11] has introduced the following differential operator :
Dn : A → A

D0f(z) = f(z),

D1f(z) = Df(z) = zf ′(z),

and
Dnf(z) = D(Dn−1f(z)) (n ∈ N0 = N ∪ {0}).

For the functions given by (1.1), we can easily find that

Dnf(z) = z +
∞∑
k=2

knakz
k (n ∈ N0).
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The object of the present paper is to introduce new subclasses of the function class
bi-univalent functions in which both f and f−1 are m-fold symmetric analytic functions
and obtain coefficient bounds for |am+1| and |a2m+1| for functions in each of these new
subclasses.

2. Coefficient Estimates for the function class (T t,nΣ,m)

We begin by introducing the function class (T t,nΣ,m) by means of the following definition.

Definition 2.1. A function f(z) given by (3) is said to be in the class (T t,nΣ,m) (0 < α ≤
1; n, t ∈ N0 ; t ≥ n) if the following conditions are satisfied:

f ∈ Σm and

∣∣∣∣arg(Dtf(z)

Dnf(z)

)∣∣∣∣ < απ

2
(z ∈ U) (5)

and ∣∣∣∣arg(Dtg(w)

Dng(w)

)∣∣∣∣ < απ

2
(w ∈ U) (6)

where the function g(w) is given by (4), Dt and Dn are Salagean differential operators
and have the following forms

Dtf(z) = z +
∞∑
k=1

(mk + 1)tamk+1z
mk+1

and

Dng(w) = w +
∞∑
k=1

(mk + 1)nbmk+1w
mk+1.

Theorem 2.1. Let f ∈ (T t,nΣ,m) (0 < α ≤ 1; n, t ∈ N0 ; t ≥ n) be given by (3). Then

|am+1| ≤
2α√

αµ[λt − λn]− 2α[µn+t − µ2n]− (α− 1)[µt − µn]2
(7)

and

|a2m+1| ≤
2α

λt − λn
+

2µα2

(µt − µn)2
. (8)

where λ = 2m+ 1 and µ = m+ 1

Proof. From (5) and (6) we have

Dtf(z)

Dnf(z)
= [p(z)]α (9)

and for its inverse map, g = f−1, we have

Dtg(w)

Dng(w)
= [q(w)]α (10)

where p(z) and q(w) are in familiar Caratheodory Class P (see for details [6]) and have
the following series representations:

p(z) = 1 + pmz
m + p2mz

2m + p3mz
3m + · · · (11)
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and

q(w) = 1 + qmw
m + q2mw

2m + q3mw
3m + · · · . (12)

Comparing the corresponding coefficients of (9) and (10) yields

(µt − µn)am+1 = αpm (13)

(λt − λn)a2m+1 − (µt+n − µ2n)a2
m+1 = αp2m +

α(α− 1)

2
p2
m (14)

−(µt − µn)am+1 = αqm (15)

(λt − λn)
[
µa2

m+1 − a2m+1

]
− (µt+n − µ2n)a2

m+1 = αq2m +
α(α− 1)

2
q2
m. (16)

From (13) and (15), we get

pm = −qm (17)

and

2(µt − µn)2a2
m+1 = α2(p2

m + q2
m). (18)

Also from (14), (16) and (18), we get

a2
m+1 =

α2(p2m + q2m)

αµ[λt − λn]− 2α[µn+t − µ2n]− (α− 1)[µt − µn]2
. (19)

Note that, according to the Caratheodory Lemma (see [6]), |pm| ≤ 2 and |qm| ≤ 2 for
m ∈ N. Now taking the absolute value of (19) and applying the Caratheodory Lemma for
coefficients p2m and q2m we obtain

|am+1| ≤
2α√

αµ[λt − λn]− 2α[µn+t − µ2n]− (α− 1)[µt − µn]2
.

This gives the desired estimate for |am+1| as asserted (7).

Next, in order to find the bound on |a2m+1|, by subtracting (16) from (14), we get

(λt − λn)
[
2a2m+1 − µa2

m+1

]
= α(p2m − q2m) +

α(α− 1)

2
(p2
m − q2

m).

Upon substituting the value of a2
m+1 from (18) and observing that p2

m = q2
m, it follows

that

a2m+1 =
α(p2m − q2m)

2(λt − λn)
+
µ

2

α2(p2
m + q2

m)

2(µt − µn)2
. (20)

Thus, by applying the Caratheodory Lemma again for coefficients pm, p2m and q2m we
find that

|a2m+1| ≤
2α

λt − λn
+

2µα2

(µt − µn)2
.

This completes the proof of the Theorem 2.1. �
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3. Coefficient Estimates for the function class T t,nΣ,m(β)

Definition 3.1. A function f(z) given by (3) is said to be in the class T t,nΣ,m(β) (0 ≤ β <
1; n, t ∈ N0 ; t ≥ n) if the following conditions are satisfied.

f ∈ Σm and Re

{
Dtf(z)

Dnf(z)

}
> β (z ∈ U) (21)

and

Re

{
Dtg(w)

Dng(w)

}
> β (w ∈ U) (22)

where the function g(w) is given by (4).

Theorem 3.1. Let f ∈ T t,nΣ,m(β) ( 0 ≤ β < 1 ; n, t ∈ N0 ; t ≥ n) be given by (3). Then

|am+1| ≤ 2

√
1− β

µ[λt − λn]− 2(µn+t − µ2n)
(23)

and

|a2m+1| ≤
2(1− β)

λt − λn
+
µ(1− β)2

(µt − µn)2
. (24)

where λ = 2m+ 1 and µ = m+ 1

Proof. It follows from (21) and (22) that

Dtf(z)

Dnf(z)
= β + (1− β)p(z) (25)

and

Dtg(w)

Dng(w)
= β + (1− β)q(w) (26)

where p(z) and q(w) have the forms (11) and (12), respectively. Equating coefficients (25)
and (26) yields

(µt − µn)am+1 = (1− β)pm (27)

(λt − λn)a2m+1 − (µt+n − µ2n)a2
m+1 = (1− β)p2m (28)

−(µt − µn)am+1 = (1− β)qm (29)

(λt − λn)
[
µa2

m+1 − a2m+1

]
− (µt+n − µ2n)a2

m+1 = (1− β)q2m. (30)

From (27) and (29) we get

pm = −qm (31)

and
2(µt − µn)2a2

m+1 = (1− β)2(p2
m + q2

m). (32)

Also from (28) and (30), we obtain
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[
(λt − λn)µ− 2(µt+n − µ2n)

]
a2
m+1 = (1− β)(p2m + q2m). (33)

Thus we have

∣∣a2
m+1

∣∣ ≤ (1− β)

(λt − λn)µ− 2(µt+n − µ2n)
(|p2m|+ |q2m|) .

=
4(1− β)

(λt − λn)µ− 2(µt+n − µ2n)
,

which is the bound on |am+1| as given in the Theorem 3.1.
In order to find the bound on |a2m+1|, by subtracting (30) from (28), we get

(λt − λn)
(
2a2m+1 − µa2

m+1

)
= (1− β)(p2m − q2m) + (1 + 2mλ)(m+ 1)a2

m+1

or equivalently

a2m+1 =
(1− β)(p2m − q2m)

2(λt − λn)
+
µ(1− β)2(p2

m + q2
m)

4(µt − µn)2
.

Applying the Caratheodory Lemma for the coefficients pm, qm, p2m and q2m, we find

|a2m+1| ≤
2(1− β)

λt − λn
+
µ(1− β)2

(µt − µn)2
.

which is the bound on |a2m+1| as asserted in Theorem 3.2. �

Remark 3.1. For 1-fold symmetric bi-univalent functions, if we put t = 1 and n = 0 in
Theorem 2.1 and Theorem 3.1 , we obtain to results which were given by [3]. Furthermore,
for one-fold symmetric bi-univalent functions in Theorem 2.1 and Theorem 3.1, we obtain
to results which were given by [15].
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