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EXTENDING THE NOTION OF 3-FOLD-3-POINT-SPLITTING FROM

GRAPHS TO BINARY MATROIDS

G. GHAFARI1, G. AZADI1, H. AZANCHILER1, §

Abstract. Slater defined r-fold-n-point-splitting operation on graphs and proved that,
if G is an n-connected graph and H is a graph obtained from G by an r-fold-n-point-
splitting, then H is n-connected. In this article we extend this notions from graphs to
binary matroids and give some similar results to matroids. Moreover, we examine the
Eulerianity of the resulting matroid obtained by this operation when the original matriod
is Eulerian.
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1. Introduction

Fleischner [3] defined the splitting operation on graphs as follows: Let G be a con-
nected graph and v be a vertex of degree at least three in G. If x = vv1 and y = vv2
are two edges incident at v, then the splitting away the pair x, y from v results in a new
graph Gx,y obtained from G by deleting the edges x and y, and adding a new vertex vx,y
adjacent to v1 and v2. The transition from G to Gx,y is called the splitting operation on G.

Raghunathan et al. [8] extended the notion of the splitting operation from graphs to
binary matroid for every pair x, y of it,s elements. Shikare et al. [9] generalized this
operation for any subset T ⊆ E(M) for binary matroids as follows:

Let M be a binary matroid on a set E and A be a matrix over GF (2) representing M .
Let T be a subset of E and AT be the matrix that is obtained by adding an extra row
to A in which the row being zero everywhere except for the columns corresponding to T ,
where it takes the value 1. Let MT be the matroid represented by the matrix AT , we say
that MT has been obtained from M by the splitting the set T .

Slater [10] defined the n-point-splitting operation on graphs as follows: Let G be a graph
and u be a vertex of G such that deg(u) ≥ 2n − 2. Let H be the graph obtained from
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G by replacing u by two adjacent vertices u1 and u2, if a vertex x is adjacent to u in G,
written x adj u, then make x adj u1 or adj u2 (but not both) such that deg(u1) ≥ n and
deg(u2) ≥ n. We call the transition from G to H an n-point-splitting operation.

Azadi [1] extended the notion of n-point-splitting operation from graphs to binary ma-
troids as follows: Let M be a binary matroid on a set E and A be a matrix over GF (2)
that representing M . Let T be a subset of E, and A′T be the matrix obtained by adjoin-
ing an extra row to A in which the row being zero everywhere except for the columns
corresponding to the elements of T where it takes the value 1, and adjoining an extra
column (corresponding to a, a /∈ E(M)) with this column being zero everywhere except
for the last row where it takes the value 1. Let M ′T be the matroid represented by the
matrix A′T , we say that M ′T has been obtained from M by the element splitting of the set T .

The following proposition presents the set of circuits of the element splitting matroids.

Proposition 1.1. [1] Let M = (E, C) be a binary matroid, T be a subset of E, and let
a /∈ E. Then the set of circuits of element splitting are as follows:
i): C0={C ∈ C : C contains an even number of elements of T},
ii): C1= set of minimal members of {C1 ∪ C2 : C1, C2 ∈ C, C1 ∩ C2 = ∅ and each C1 and
C2 contains an odd number of elements of T such that C1 ∪ C2 contains no member of
C0}; and
iii): C2 = {C ∪ {a} : C ∈ C and C contains odd number of elements of T}.

The following lemma is an easy consequence of the definition of MT and M ′T .

Lemma 1.1. Let M be a binary matroid on E and T ⊆ E(M). Then MT = M ′T \a and
M = M ′T /a

Various properties concerning the element splitting matroid have been studied in [2]. In
that paper, authors consider the problem of determining precisely which graphic matroids
M have the property that the element splitting operation, by every pair of elements on
M yields a graphic matroid. The problem is solved by proving that there is exactly one
minor-minimal matroid that does not have this property.

Let M be a matroid with ground set E. For X ⊆ E, let

λM (X) = r(X) + r(E −X)− r(M).

We call λM the connectivity function of M. Let k be a positive integer. A k-separation of
M is a partition {X,Y } of E(M) such that min{|X|, |Y |} ≥ k, and λM (X) ≤ k − 1. For
all n ≥ 2, M is n-connected if, for all k in {1, 2, ..., n− 1}, M has no k-separation.

Slater [11] defined the r-fold-n-point-splitting operation on graphs as follows: Suppose
u ∈ V (G) and u is adjacent to v1, ..., vt where t ≥ n. Let H be the graph obtained from
G by replacing u by the complete graph Kr, say on points u1, u2, ..., ur, where 2 ≤ r ≤ n
and for each vi, make vi adjacent to exactly one ui. If deg(ui) ≥ n, i = 1, 2, ..., r, in H,
then H will be said to be obtained from G by r-fold-n-point splitting.

We illustrate this construction with the help of Figure 1.

Theorem 1.1. [11] If G is an n-connected graph and H is obtained from G by r-fold-n-
point-splitting, then H is n-connected.
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Figure 1. Graph H is an 4-fold-n-point splitting (n = 4, 5) of graph G.

Corollary 1.1. Suppose G is an n-connected graph with n ≥ 3. Then any graph H
obtained by an 3-fold-n-point-splitting of G is 3-connected.

Note that for r = 2, r-fold-n-point splitting is n-point splitting. Slater defined both
these operations (n-point splitting and r-fold-n-point splitting) to obtain another n-connected
graph of a given graph G ([10] and [11]). However, the extension of n-point splitting from
n-connected graphs to binary matroids does not preserve n-connectedness, in general. In
this paper, we extend r-fold-n-point splitting operation to binary matroids and prove that
this operation for r = 3, preserves 3-connectivity.

Various properties of the splitting matroid are explored in [8] and [9]. For the standard
terminology in matroid we refer to [7].

In section 2 of this article, we extend the notion of r-fold-n-point-splitting from graphs
to binary matroids when r = 3 and extend Theorem 1.1 and Corollary 1.1 to binary
matroids. In section 3, we study the Eulerianity of a binary matroid and a 3-fold of it,s.

2. 3-fold in binary matroid

In this section, we extend the notion of 3-fold-n-point-splitting from graphs to binary
matroids and prove that, this operation preserves connectivity.

Remark 2.1. Let G be the graph shown in Figure 2. A 3-fold-3-point-splitting of G is the
graph G

′′
(see Figure 2). We see that M(G

′′
) is obtained by adding an element c to the

matroid ((M(G))′{1,2})
′
{1} such that {a, b, c} form a circuit in which a, b /∈ E(M(G)).

Definition 2.1. Let A be a matrix that representating a rank-r binary matroidM . Suppose
∅ 6= T ′1 $ T1 in which, T1 is a proper subset of a cocircuit of M . Set A1 = (A′T1

)′T ′
1
. A

3-fold of matroid M [A] w.r.t. T1 and T
′
1 is a matroid obtained by adding an element c to

matroid M [A1] such that {a, b, c} is a circuit in which a, b /∈ E(M) and are those elements
added to E(M) in two element splitting operation that occured. We denote it by M ′′ (see
Figure 3).

It is clear that E(M ′′) = E(M) ∪ {a, b, c}.
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Figure 2.

We illustrate this construction with the help of Figure 2 in which M(G
′′
) is a 3-fold of

M(G). Let M1 = M(G), M2 = M(G
′
) and M3 = M(G

′′
). We see that M2 is obtained

from M1 by two element splitting operations with respect to T1 = {1, 2} and T
′
1 = {2},

respectively; and M3 is obtained from M2 by adding element c to matroid M2 such that
{a, b, c} forms a circuit in M3.

By Definition 2.1, the 3-fold operation for binary matroids is related to the element
splitting operation. Also, Lemma 1.1 provides a relation between the element split-
ting operation and the splitting operation. These two splitting operations do not pre-
serve n-connectedness of the given, in general. The sufficient conditions to preserve n-
connectedness under the splitting operation and under the element splitting operation are
obtained in [6] and [5], respectively. However, we prove that the 3-fold operation preserves
k-connectedness of the given binary matroid for k ∈ {2, 3}.

We have the following Lemma from the definition 2.1.

Lemma 2.1. Let M be a binary matroid and let M ′′ be a 3-fold of M . Then M =
M ′′/{a, b, c}.

Figure 3. A 3-fold of M [A] w.r.t. T1 = {xi, xi+1, ..., xp} and T
′
1 = {xj , xj+1, ..., xk}

Proposition 2.1. ([7], Proposition 8.2.1). If M is an n-connected matroid and |E(M)| ≥
2(n− 1), then all circuits and all cocircuits of M have at least n elements.
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Proposition 2.2. ([7], Proposition 9.2.2). Let A be a binary representation of a rank-r
binary matroid M . Then the cocircuit space of M equals the row space of A. Moreover,
this space has dimension r and is the orthogonal subspace of the circuit space of M .

Corollary 2.1. Let M be a binary matroid on E and T ⊆ E. Then M = MT if and only
if T is a union of the disjoint cocircuits of M .

Corollary 2.2. Let M be a binary matroid on E and T ⊆ E. If T is not a union of the
disjoint cocircuits of M , then M 6= MT and r(MT ) = r(M) + 1.

We will need the following proposition of Oxley [7] (see also [4]).

Proposition 2.3. ([7], Proposition 9.2.2). Let M be a binary matroid and S ⊆ E(M).
Then S is a member of cocircuit space (circuit space) of M if and only if |S ∩ T | is even
for every member T of circuit space (cocircuit space) of M .

Lemma 2.2. Let M be a connected binary matroid and T ⊆ E(M). If T is a proper subset
of a cocircuit of M, then M ′T is connected.

Proof. Let D be a component of M ′T containing a. Since T is properly contained in a
cocircuit of M , so by Proposition 2.3, there is a circuit C in M containing an odd number
of elements of T . Hence, by proposition 1.1, C ∪ {a} is a circuit of M ′T and thus it is
contained in D. Now, suppose x ∈ E(M). Let y be any element of C. As M is connected,
there is a circuit Z containing x and y. Now, Z or Z ∪{a} is a circuit of M ′T and thus Z is
contained in D. This demonstrates that E(M) ⊆ D. Hence M ′T has only one component,
and thus it is connected.

�

Corollary 2.3. Let M be a connected binary matroid. Then M ′′ is a connected matroid.

Proof. Let M be a binary matroid and let M ′′ be a 3-fold of M , w.r.t. T ′1 and T1.
Because T1 and T ′1 are proper subsets of the cocircuits of M and M ′T1

, respectively, by

Proposition 2.3 and Lemma 2.2, (M ′T1
)′T ′

1
is connected and has only one component. Now

the addition of element c such that {a, b, c} forms a circuit, does not increase the number
of the components of M ′′. Hence, M ′′ is connected.

�

The following proposition is neccesary in our discussion.

Proposition 2.4. ([7], Corollary 8.2.5). Let X, C, and D be subsets of the ground set E
of a matroid M where C and D are disjoint. Then

λM\D/C(X − (D ∪ C)) ≤ λM (X).

Equivalently, for Y = E − X, if (X,Y ) is k-separating in M , and N is a minor of M ,
then (X ∩ E(N), Y ∩ E(N)) is k-separating in N .

3. 3-connectivity of 3-fold matroids

In this section we prove that, if M is a binary 3-connected matriod, then the martroid
M ′′ obtained by a 3-fold of M , is also 3-connected.

Lemma 3.1. ([7], Lemma 8.1.4). Let M be a matroid with ground set E. If X ⊆ E, then

λM (X) = r(X) + r∗(X)− |X|.
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Let M be a matroid on E, and T be a subset of E. Let M/T = (M∗\T )∗, in which M∗

is dual of M . We shall call M/T , the contraction of M onto E − T or the contraction of
T from M .

Lemma 3.2. LetM be a 3-cnnected binary matroid with |E(M)| ≥ 4. Then every cocircuit
of M ′′ has at least three elements.

Proof. Since M ′′ is a connected matroid, every cocircuit has at least two elements. So
we prove that, M ′′ has no 2-cocircuit. Let X be a two-elements cocircuit of M ′′. Then
E(M ′′)−X is a hyperplane of M ′′; so has rank r(M ′′)− 1.

Case 1: If X ⊆ {a, b, c}, then by corollary 2.2, r(M ′′) = r((MT1)T ′
1
) and the fact that

r((MT1)T ′
1
) ≤ r(E(M ′′)−X), we have r(E(M ′′)−X) = r(M ′′), is a contradiction.

Case 2: Let X contain no element of the triangle {a, b, c}. Since M is a 3-connected
matroid, so it has a basis, say B, which contains no element of X. Now the union of B
with any two-elements subset of {a, b, c} hase rank r(M ′′), a contradiction.

Case 3: If X contains exactly one element of the triangle {a, b, c}, then by similar
argument in case 2, we have r(E(M ′′)−X) = r(M ′′), a contradiction.
So the lemma holds. �

The following corollary is an immediate consequence of the matrix representation of
M ′′

Corollary 3.1. Let M be a 3-connected binary matroid. Then every circuit of M ′′ has at
least three elements.

Theorem 3.1. Let M be a 3-connected binary matroid with |E(M)| ≥ 4. Then the
matroid M ′′ on the set E(M) ∪ {a, b, c} is 3-connected.

Proof. By Corollary 2.3, M ′′ is connected. It is sufficient to show that M ′′ has no 2-
separation.

Suppose that (X,Y ) is a 2-separation of M ′′. Then min{|X|, |Y |} ≥ 2 and

1 = r′′(X) + r′′(Y )− r′′(M ′′)
= r′′(X) + r′′

∗
(X)− |X|. (1)

In which r′′ and r′′∗ are the rank functions of M ′′ and it,s dual respectively. Without loss
of generality suppose that min{|X|, |Y |} = |X|.

Case 1: Let |X| = 2. By Lemma 3.2 and Corollary 3.1, every circuit and cocircuit of
M ′′ has at least three elements, so r′′(X) ≥ 2 and r′′∗(X) ≥ 2. This is in contradiction
with (1).

Case 2: Let |X| = 3. We consider two subcases.
i) If r′′(X) = 2, then X = {a, b, c} or X ⊆ E(M). If X = {a, b, c}, then by Corollary 2.2,
r′′(Y ) = r′((MT1)T ′

1
) = r′′(M ′′) where r′ is the rank function of (MT1)T ′

1
, a contradiction.

Let X ⊆ E(M). Since M is 3-connected matriod, X is not a cocircuit of M . So there is
a basis, say B, of M such that B ∩X = ∅. Now B ∪ {a, b, c} is contained in Y with rank
r′′(M ′′), a contradiction.
ii) If r′′(X) = 3, then r′′∗(X) = 2 or r′′∗(X) = 3; Both of them are contradictions.

Case 3: Let |X| = 4. Since M ′′ is binary and every circuit and cocircuit of M ′′ has at
least three elements, so r′′∗(X) ≥ 3 and r′′(X) ≥ 3. Now

2 ≤ r′′(X) + r′′∗(X)− |X| = 1
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a contradiction.
Case 4: If |X| ≥ 5; then min{|X − {a, b, c}|, |Y − {a, b, c}|} ≥ 2. But by proposition

2.4 and the fact that M ′′/{a, b, c} = M , we have

λM (X − {a, b, c}) = λM ′′/{a,b,c}(X − {a, b, c}) ≤ λM ′′(X) = 1.

This contradicts 3-connectivity of M . So M ′′ has no 2-separation. This completes the
proof. �

4. Eulerianity of M and M ′′

Let M be an Eulerian binary matroid. In this section we give a sufficient condition for
which M

′′
to be Eulerian.

Lemma 4.1. ([7], Corollary 9.4.7). Let C be a circuit of a binary matroid M and e be
an element of E(M)−C. Then, in M/e, either C is a circuit or C is a disjoint union of
two circuits. In both cases, M/e has no other circuits contained in C.

Definition 4.1. [12] A matroid M is said to be Eulerian if it,s ground set is a union of
disjoint circuits.

The following lemma is an immediate consequence of the definition of Eulerian matroid.

Lemma 4.2. Let M a binary matroid on E. Then M is Eulerian if and only if there is
a matrix representing M , say A, in which has even non-zero entries in each rows.

Proposition 4.1. If a 3-fold matroid M ′′ of a binary matroid M is Eulerian, then M is
also Eulerian matroid.

Proof. Let C1 ∪C2...∪Cn be an Eulerian partition of E(M ′′). Without loss of generality,
let a ∈ C1. Set M1 = M ′′/a. Now C1 − {a} is a circuit of M1. By Lemma 4.1, for any
other circuit Ci, 2 ≤ i ≤ n, Ci is a circuit of M1 or is a union of two disjoint circuits of
M1. By replacing Ci, by the union of two disjoint circuits of M1 in the last case, and C1

by C1 − {a} in the above partition, we obtain an Eulerian partition for M1.
By repeating this procedure, we have an Eulerian partition C ′1 ∪ C ′2... ∪ C ′m, for M ,

because M = M ′′/{a, b, c}. So M is Eulerian. �

Corollary 4.1. Let M be a binary matroid and let M ′′ be a 3-fold of M . If M is not
Eulerian then M ′′ can not be Eulerian.

Figure 4.

The converse of Proposition 4.1 is not true.
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Example 4.1. Let M = M(G) and M
′′

= M(G
′′
) be a 3-fold of M , w.r.t. T1 = {2, 3, 4}

and T
′
1 = {4} (see Figure 4). It is clear that M is Eulerian but M

′′
is not.

In the following theorem we give a sufficient condition for the matroidM
′′

to be Eulerian.

Theorem 4.1. Let M be a Eulerian binary matroid and let M ′′ be a 3-fold of M , w.r.t.
T ′1 and T1. If T1 and T ′1 has even cardinality, Then M ′′ is Eulerian matroid.

Proof. Let A and A′′ are the matrices that representing M and M ′′, respectively. Since M
is Eulerian, so the rows of M ′′ corresponding to rows of A, have even non-zero entries. We
consider the last two rows A′′. The last row,s have two 1,s in columns corresponding to
a, b, c and even non-zero entries in other columns. Now by lemma 4.2, the result holds. �

Corollary 4.2. Let M be a binary matroid and let M ′′ be a 3-fold of M , w.r.t. T ′1 and
T1 such that T ′1 and T1 has even cardinality. Then M is Eulerian if and only if M ′′ is
Eulerian.

5. Conclusion

The purpose of the current study was to determine another 3-connected matroid of a
given 3-connected matroid by a 3-fold operation. Moreover, we examined the Eulerianity
of the resulting matroid by this operation when the original matriod is Eulerian, and
provided sufficient conditions through with the resulting matriod becomes Eulerian.
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