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MINIMAL RESTRAINED MONOPHONIC SETS IN GRAPHS

A. P. SANTHAKUMARAN1, T. VENKATA RAGHU2, K. GANESAMOORTHY3, §

Abstract. For a connected graph G = (V,E) of order at least two, a restrained mono-
phonic set S of a graph G is a monophonic set such that either S = V or the subgraph
induced by V −S has no isolated vertices. The minimum cardinality of a restrained mono-
phonic set of G is the restrained monophonic number of G and is denoted by mr(G). A
restrained monophonic set S of G is called a minimal restrained monophonic set if no
proper subset of S is a restrained monophonic set of G. The upper restrained mono-
phonic number of G, denoted by m+

r (G), is defined as the maximum cardinality of a
minimal restrained monophonic set of G. We determine bounds for it and find the upper
restrained monophonic number of certain classes of graphs. It is shown that for any two
positive integers a, b with 2 ≤ a ≤ b, there is a connected graph G with mr(G) = a and
m+

r (G) = b. Also, for any three positive integers a, b and n with 2 ≤ a ≤ n ≤ b, there
is a connected graph G with mr(G) = a, m+

r (G) = b and a minimal restrained mono-
phonic set of cardinality n. If p, d and k are positive integers such that 2 ≤ d ≤ p − 2,
k ≥ 3, k 6= p − 1 and p − d − k ≥ 0, then there exists a connected graph G of order p,
monophonic diameter d and m+

r (G) = k.

Keywords: restrained monophonic set, restrained monophonic number, minimal re-
strained monophonic set, upper restrained monophonic number.

AMS Subject Classification: 05C12.

1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without loops
or multiple edges. The order and size of G are denoted by p and q, respectively. For
basic graph theoretic terminology we refer to Harary [3]. A block of a graph is a maximal
nonseparable subgraph. An end-block of G is a block containing exactly one cut-vertex
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of G. The distance d(x, y) between two vertices x and y in a connected graph G is the
length of a shortest x − y path in G. An x − y path of length d(x, y) is called an x − y
geodesic [1]. The neighborhood of a vertex v is the set N(v) consisting of all vertices u
which are adjacent with v. A vertex v is an extreme vertex if the subgraph induced by its
neighbors is complete.

A chord of a path P is an edge joining two non-adjacent vertices of P . A path P is
called a monophonic path if it is a chordless path. A set S of vertices of G is a monophonic
set of G if each vertex v of G lies on an x − y monophonic path for some x and y in S.
The minimum cardinality of a monophonic set of G is the monophonic number of G and
is denoted by m(G), the monophonic number of a graph and its related parameters was
studied and discussed in [2, 5, 8]. A restrained monophonic set S of a graph G is a
monophonic set such that either S = V or the subgraph induced by V −S has no isolated
vertices. The minimum cardinality of a restrained monophonic set of G is the restrained
monophonic number of G and is denoted by mr(G). The restrained monophonic number
of a graph was introduced and studied in [9].

For any two vertices u and v in a connected graph G, the monophonic distance dm(u, v)
from u to v is defined as the length of a longest u − v monophonic path in G. The
monophonic eccentricity em(v) of a vertex v in G is em(v) = max {dm(v, u) : u ∈ V (G)}.
The monophonic radius, radm(G) of G is radm(G) = min {em(v) : v ∈ V (G)} and
the monophonic diameter, diamm(G) of G is diamm(G) = max {em(v) : v ∈ V (G)}. A
vertex u in G is a monophonic eccentric vertex of a vertex v in G if em(u) = dm(u, v). The
monophonic distance was introduced and studied in [6, 7]. These concepts have interesting
applications in Channel Assignment Problem in FM radio technologies. The monophonic
matrix is used to discuss different aspects of certain molecular graphs associated to the
molecules arising in special situations of molecular problems in theoretical Chemistry. For
more applications of these parameters, one may refer to [4] and the references therein.

The following theorems will be used in the sequel.

Theorem 1.1. [9] Each extreme vertex of a connected graph G belongs to every restrained
monophonic set of G.

Theorem 1.2. [9] If T is a tree of order p with k endvertices and p − k ≥ 2, then
mr(T ) = k.

Theorem 1.3. [9] For the complete graph Kp(p ≥ 2), mr(Kp) = p.

Throughout this paper G denotes a connected graph with at least two vertices.

2. Upper Restrained Monophonic Number

Definition 2.1. A restrained monophonic set S of G is called a minimal restrained mono-
phonic set if no proper subset of S is a restrained monophonic set of G. The upper re-
strained monophonic number of G, denoted by m+

r (G), is defined as the maximum cardi-
nality of a minimal restrained monophonic set of G.
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Example 2.1. For the graph G given in Figure 2.1, the minimal restrained monophonic
sets are S1 = {v1, v5} and S2 = {v3, v6, v7}. In this graph, the upper restrained monophonic
number is 3 and the restrained monophonic number is 2.

Note 2.1. Every minimum restrained monophonic set is a minimal restrained monophonic
set, and the converse need not be true. For the graph G given in Figure 2.1, S2 is a minimal
restrained monophonic set but it is not a minimum restrained monophonic set of G.

Theorem 2.1. Each extreme vertex of a connected graph G belongs to every minimal
restrained monophonic set of G.

Proof. Since every minimal restrained monophonic set of G is a restrained monophonic
set of G, the theorem follows from Theorem 1.1. �

Corollary 2.1. For the complete graph Kp, m+
r (Kp) = p.

Remark 2.1. The converse of Corollary 2.1 need not be true. For the cycle C4, no 2-
element or 3-element subset V (C4) is a minimal restrained monophonic set of C4. Thus,
V (C4) is the unique minimal restrained monophonic set so that m+

r (C4) = 4 = p and it is
not a complete graph.

Theorem 2.2. Let G be a connected graph with cutvertices and let S be a minimal re-
strained monophonic set of G. If v is a cutvertex of G, then every component of G − v
contains an element of S.

Proof. Suppose that there is a component B of G − v such that B contains no vertex
of S. Let w be a vertex in B. Since S is a minimal restrained monophonic set of G,
there exist vertices x, y ∈ S such that w lies on some x − y monophonic path P : x =
u0, u1, . . . , w, . . . , ul = y in G. Let P1 be the x− w subpath of P and let P2 be the w − y
subpath of P . Since v is a cutvertex of G, both P1 and P2 contains v so that P is not
a path, which is a contradiction. Thus every component of G− v contains an element of
S. �

Corollary 2.2. Let G be a connected graph with cutvertices and let S be a minimal
restrained monophonic set of G. Then every branch of G contains an element of S.

Corollary 2.3. For any tree T of order p with k-endvertices and p − k ≥ 2, mr(T ) =
m+

r (T ) = k.

Proof. This follows from Theorems 1.2 and 2.1. �
Since every end-block B is a branch of G at some cutvertex, it follows by Theorem 2.2

that every minimal restrained monophonic set of G contains at least one vertex from B
that is not a cutvertex. Thus the following corollaries are consequences of Theorem 2.2
and Corollary 2.2.



A. P. SANTHAKUMARAN ET ALL: MINIMAL RESTRAINED MONOPHONIC SETS IN GRAPHS 765

Corollary 2.4. If G is a connected graph with k ≥ 2 end-blocks, then m+
r (G) ≥ k.

Corollary 2.5. If k is the maximum number of blocks to which a cutvertex in a graph G
belongs, then m+

r (G) ≥ k.

Theorem 2.3. For any connected graph G, 2 ≤ mr(G) ≤ m+
r (G) ≤ p except mr(G) = p−1

and m+
r (G) = p− 1.

Proof. It is clear from the definition of minimum restrained monophonic set that mr(G) ≥
2. Since every minimal restrained monophonic set is a restrained monophonic set of
G, mr(G) ≤ m+

r (G). It is clear that V (G) induces a restrained monophonic set of G
and V (G) − {z} is not a restrained monophonic set of G for any vertex z in G. Hence
m+

r (G) ≤ p, mr(G) 6= p− 1 and m+
r (G) 6= p− 1. �

Remark 2.2. The bounds in Theorem 2.3 are sharp. For any non-trivial path P of order
at least 4, mr(G) = 2. It follows from Corollary 2.3 that for any tree T of order p with
k-end vertices and p− k ≥ 2, mr(T ) = m+

r (T ) = k. Also, by Corollary 2.1, m+
r (Kp) = p.

Theorem 2.4. For any connected graph G, mr(G) = p if and only if m+
r (G) = p.

Proof. Let mr(G) = p. Then by Theorem 2.3, m+
r (G) = p. Conversely, let m+

r (G) = p.
Then S = V (G) is the unique minimal restrained monophonic set of G. Since no proper
subset of S is a restrained monophonic set, it is clear that S is the unique minimum
restrained monophonic set of G and so mr(G) = p. �

Theorem 2.5. If G is a connected graph of order p with mr(G) = p− 2, then m+
r (G) =

p− 2.

Proof. Let mr(G) = p − 2. Then by Theorem 2.3, m+
r (G) = p − 2 or m+

r (G) = p. If
m+

r (G) = p, then by Theorem 2.4, mr(G) = p, which is a contradiction. Hence m+
r (G) =

p− 2. �

Next, we determine the upper restrained monophonic number of some standard graphs.

Theorem 2.6. For any cycle Cp (p ≥ 3), m+
r (Cp) =

{
3 if p = 3 and p ≥ 5

4 if p = 4.

Proof. Let the cycle Cp : v1, v2, . . . , vp, v1.
For p = 3, C3 is complete, and by Corollary 2.1, m+

r (C3) = 3.
For p = 4, m+

r (C4) = 4 as seen in Remark 2.1.
For p = 5, it is clear that no 2-element subset of V (C5) is a restrained monophonic set of
C5. Any set of three consecutive vertices of C5 is a minimal restrained monophonic set of
C5 and so m+

r (C5) ≥ 3. It is clear that no subset S′ of vertices with |S′| ≥ 4 is a minimal
restrained monophonic set and so m+

r (C5) = 3.
For p ≥ 6, it is clear that the minimal restrained monophonic sets of Cp are either any
sets {vi, vj}(i 6= j) with d(vi, vj) ≥ 3 or any set of three consecutive vertices of Cp. Hence
it follows that m+

r (Cp) = 3. �

Theorem 2.7. For any wheel Wp = K1 + Cp−1 (p ≥ 4),

m+
r (Wp) =

{
4 if p = 4

2 if p ≥ 5.

Proof. Let Wp = K1 + Cp−1 be the wheel with V (Cp−1) = {v1, v2, . . . , vp−1}.
If p = 4, then W4 is a complete graph, and so by Corollary 2.1, m+

r (Wp) = 4.
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If p ≥ 5, then it is clear that any set of two non-adjacent vertices of Cp−1 forms a minimal
restrained monophonic set of Wp and so m+

r (Wp) ≥ 2. Now, let S be any restrained
monophonic set of Wp such that |S| ≥ 3. Then S contains at least two non-adjacent
vertices vi, vj(i 6= j) of Cp−1 such that S′ = {vi, vj} ⊂ S so that S is not minimal. It
follows that m+

r (Wp) = 2. �

Theorem 2.8. For the star K1,p−1(p ≥ 2), m+
r (K1,p−1) = p.

Proof. Since V (K1,p−1) is the unique minimal restrained monophonic set of K1,p−1, it
follows that m+

r (K1,p−1) = p. �

Theorem 2.9. For the complete bipartite graph G = Km,n(2 ≤ m ≤ n), m+
r (G) ={

n + 2 if 2 = m ≤ n

4 if 3 ≤ m ≤ n.

Proof. Let V1 = {u1, u2, . . . , um} and V2 = {v1, v2, . . . , vn} be the partite sets of G. If
m = n = 2, then G = K2,2 is a cycle of order 4 so that by Theorem 2.6, m+

r (G) = 4. If
m = 2 < n, then it is easily verified that V1 and V2 are the only two minimal monophonic
sets. However, these are not restrained monophonic sets. Since no proper subset of V1∪V2

is a restrained monophonic set of G, it follows that V1∪V2 is the unique minimal restrained
monophonic set of G and so m+

r (K2,n) = n + 2.
Now, if m ≥ 3 and let S = {u1, u2, v1, v2}. Clearly, S is a minimal restrained mono-

phonic set of G and so m+
r (G) ≥ 4. It is clear that any restrained monophonic set S of G

must contain at least two vertices from each of V1 and V2. Now, any set formed by taking
two vertices from V1 and two vertices from V2 is a restrained monophonic set of G. Hence
it follows that any restrained monophonic set of cardinality at least 5 is not a minimal
restrained monophonic set of G so that m+

r (G) = 4. �

From the above results we observe that there are non-complete graphs G of order p with
m+

r (G) = p. This leads to the following open problem.

Problem 2.1. Characterize the class of graphs G of order p for which m+
r (G) = p.

Theorem 2.10. If x is an edge of Kp, then for the graph G = Kp−x(p ≥ 4), m+
r (G) = 2.

Proof. Let x be the edge x = uv. Since u and v are the only extreme vertices of G, by
Theorem 2.1 every minimal restrained monophonic set of G contains S. It is clear that
S = {u, v} is a minimal restrained monophonic set so that m+

r (G) ≥ 2. Let S′ be any
restrained monophonic set of G such that |S′| ≥ 3. Since u and v are extreme vertices, by
Theorem 2.1, u, v ∈ S′ so that S′ is not minimal. Hence m+

r (G) = 2. �

3. Realization Results

In view of Theorem 2.3, we have the following realization result.

Theorem 3.1. For any two positive integers a, b with 2 ≤ a ≤ b, there is a connected
graph G with mr(G) = a and m+

r (G) = b.

Proof. Case 1. 2 ≤ a = b. By Theorem 1.3 and Corollary 2.1, the complete graph of
order a has the desired properties.
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Case 2. 2 ≤ a < b. Let H be the graph obtained from the path P3 : v1, v2, v3 of order 3
by adding b−1 new vertices w1, w2, ..., wb−a, u1, u2, · · · , ua−1 and joining wi(1 ≤ i ≤ b−a)
to the vertices v1 and v3; and by joining uj(1 ≤ j ≤ a − 1) to the vertex v3. The graph
G is obtained from H and the path P2 : x, y of order 2 by joining the vertex x with the
vertices v1 and v2; and joining the vertex y with the vertices v2 and v3. The graph G
is shown in Figure 3.1. Let S = {u1, u2, · · · , ua−1} be the set of all endvertices of G.
By Theorem 1.1, every restrained monophonic set of G contains S. Clearly, S is not a
restrained monophonic set of G. Let S1 = S ∪ {v1}. It is easily verified that S1 is a
restrained monophonic set of G and so mr(G) = a.

Next we show that m+
r (G) = b. Clearly T = S ∪ {y, w1, w2, . . . , wb−a} is a restrained

monophonic set of G. We claim that T is a minimal restrained monophonic set of G. Let
W be any proper subset of T . Then there exists a vertex, say v, such that v ∈ T and
v /∈ W . By Theorem 2.1, v ∈ {y, w1, w2, . . . , wb−a}. It is easily verified that v is not an
internal vertex of any s− t monophonic path for some s, t ∈ W , it follows that W is not
a restrained monophonic set of G. Hence T is a minimal restrained monophonic set of G
and so m+

r (G) ≥ b.
Suppose that m+

r (G) > b. Let M be a minimal restrained monophonic set of G with
|M | > b. Then there exists at least one vertex, say, v ∈ M such that v /∈ T . Thus
v ∈ {v1, v2, v3, x}. If v ∈ {x, v1}, then M1 = S ∪ {v} is a restrained monophonic set of G
and also it is a proper subset of M, which is a contradiction to M a minimal restrained
monophonic set of G. Hence v ∈ {v2, v3}. If v = v2 ∈M and v3 /∈M , then M−{v} = T is a
restrained monophonic set of G and also it is a proper subset of M, which is a contradiction
to M a minimal restrained monophonic set of G. Similarly, if v = v3 ∈M and v2 /∈M , we
get a contradiction. If both v2, v3 ∈M and T ⊆M , then M is either (T−{y})∪{v2, v3} or
(T −{wi})∪{v2, v3} (1 ≤ i ≤ b−a). It is clear that M is not a monophonic set of G, which
is a contradiction. If both v2, v3 ∈ M and T ⊂ M , then T is a restrained monophonic
set of G and also it is a proper subset of M, which is a contradiction. Thus there is no
minimal restrained monophonic set M of G with |M | > b. Hence m+

r (G) = b. �

Theorem 3.2. For any three positive integers a, b and n with 2 ≤ a ≤ n ≤ b, there is a
connected graph G with mr(G) = a, m+

r (G) = b and a minimal restrained monophonic set
of cardinality n.

Proof. We consider four cases.
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Case 1. a = n = b. Let G be the complete graph with a vertices. Then by Theorem 1.3
and Corollary 2.1, mr(G) = m+

r (G) = a and V (G) is the minimal restrained monophonic
set of G.

Case 2. a = n < b. For the graph G given in Figure 3.1 of Theorem 3.1, it is proved that
mr(G) = a,m+

r (G) = b and S = {v1, u1, . . . , ua−1} is a minimal restrained monophonic
set of cardinality n.

Case 3. a < n = b. For the graph G given in Figure 3.1 of Theorem 3.1, it is proved
that mr(G) = a, m+

r (G) = b and S = {u1, u2, . . . , ua−1, w1, w2, . . . , wb−a, y} is a minimal
restrained monophonic set of cardinality n.

Case 4. a < n < b. Let l = n− a+ 1 and m = b− n+ 1. Let H1 be the graph obtained
from the path P1,3 : v1,1, v1,2, v1,3 of order 3 by adding l − 1 new vertices w1, w2, ..., wl−1
and joining wi(1 ≤ i ≤ l − 1) to the vertices v1,1 and v1,3. The graph G1 is obtained
from H1 and the path P1,2 : x1, y1 by joining the vertex x1 to both v1,1 and v1,2; and
joining the vertex y1 to both v1,2 and v1,3. Similarly, let H2 be the graph obtained from
the path P2,3 : v2,1, v2,2, v2,3 of order 3 by adding m − 1 new vertices v1, v2, ..., vm−1
and joining vj(1 ≤ j ≤ m − 1) to the vertices v2,1 and v2,3. The graph G2 is obtained
from H2 and the path P2,2 : x2, y2 by joining the vertex x2 to both v2,1 and v2,2; and
joining the vertex y2 to both v2,2 and v2,3. The graph G is obtained from G1 and G2 by
identifying the vertices v1,3 and v2,1 (namely x); and also by adding a − 2 new vertices
u1, u2, · · · , ua−2 and joining these vertices to the vertex x. The graph G is shown in Figure
3.2. Let S = {u1, u2, · · · , ua−2} be the set of all endvertices of G. By Theorem 1.1, every
restrained monophonic set of G contains S. Clearly, S is not a restrained monophonic set
of G. Also, for any v ∈ V (G) − S, S ∪ {v} is not a restrained monophonic set of G. Let
S1 = S ∪ {v1,1, v2,3}. It is easily verified that S1 is a restrained monophonic set of G and
so mr(G) = a.

Next, we show that m+
r (G) = b. Let T = S ∪ {v1, v2, · · · , vm−1, w1, w2, · · · ,

wl−1, y1, y2}. It is clear that T is a restrained monophonic set of G. First, we claim
that T is a minimal restrained monophonic set of G. Let W be any proper subset of
T . Then there exists a vertex, say, y ∈ T such that y /∈ W . By Theorem 2.1, y ∈
{v1, v2, · · · , vm−1, w1, w2, · · · , wl−1, y1, y2}. It is clear that the vertex y is not an internal
vertex of any monophonic path joining a pair of vertices in W. Hence W is not a mono-
phonic set of G and so W is not a restrained monophonic set of G. Thus T is a minimal
restrained monophonic set of G so that m+

r (G) ≥ b.
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Now, we prove that m+
r (G) = b. Suppose that m+

r (G) > b. Let T ′ be a minimal
restrained monophonic set of G with |T ′| > b. Then there exists at least one vertex, say,
v ∈ T ′ such that v /∈ T . Also, by Theorem 2.1, v ∈ {x, x1, x2, v1,1, v1,2, v2,2, v2,3}. If v = x1
or v = v1,1, then T ′ − {w1, w2, · · · , wl−1} is a restrained monophonic set of G and it is a
proper subset of T ′, which is a contradiction to T ′ a minimal restrained monophonic set
of G. If v = x2 or v = v2,3, then T ′ − {v1, v2, · · · , vm−1} is a restrained monophonic set of
G and it is a proper subset T ′, which is a contradiction. Similarly, if v ∈ {x, v1,2, v2,2},
then T ′−{v} is a restrained monophonic set of G and it is a proper subset T ′, which is a
contradiction. Hence m+

r (G) = b.
Next we show that there is a minimal restrained monophonic set of cardinality n. Let

M = S ∪ {v2,3, y1, w1, w2, · · · , wl−1}. It is clear that M is a restrained monophonic set
of G. We claim that M is a minimal restrained monophonic set of G. Assume, to the
contrary, that M is not a minimal restrained monophonic set of G. Then there is a proper
subset M ′ of M such that M ′ is a restrained monophonic set of G. Let v ∈M and v /∈M ′.
By Theorem 2.1, clearly v ∈M − S. It is clear that the vertex v is not an internal vertex
of any s − t monophonic path for some s, t ∈ M ′, which is a contradiction. Thus M is a
minimal restrained monophonic set of G with cardinality n. Hence the theorem. �

Theorem 3.3. If p, d and k are positive integers such that 2 ≤ d ≤ p−2, k ≥ 3, k 6= p−1
and p− d− k ≥ 0, then there exists a connected graph G of order p, monophonic diameter
d and m+

r (G) = k.

Proof. We prove this theorem by considering two cases.
Case 1. d = 2 and k ≥ 3. Let P3 : x, y, z be a path of order 3. Let G be the graph obtained
by adding p − 3 new vertices v1, v2, . . . , vp−k−1, w1, w2, . . . , wk−2 to P3 and joining each
wi(1 ≤ i ≤ k− 2) to y ; and joining each vi(1 ≤ i ≤ p− k− 1) with x, y and z ; and joining
each vi(1 ≤ i ≤ p− k− 2) with vj(i+ 1 ≤ j ≤ p− k− 1). The graph G of order p is shown
in Figure 3.3. It is clear that, for any vertex u in G, 1 ≤ em(u) ≤ 2 and em(x) = 2 so
that the monophonic diameter of G is 2. Let S = {w1, w2, w3, . . . , wk−2, x, z} be the set
of all extreme vertices of G. By Theorem 2.1, every minimal restrained monophonic set of
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G contains S. It is easily verified that S is the unique minimal restrained monophonic set
of G so that m+

r (G) = k.

Case 2. 3 ≤ d ≤ p− 2 and k ≥ 3. Let Pd+1 : v0, v1, . . . , vd be a path of length d. Let G be
the graph obtained from Pd+1 by adding p−d−1 new vertices u1, u2, . . . , uk−2, w1, w2, . . . ,
wp−d−k+1 to Pd+1 and joining each ui(1 ≤ i ≤ k − 2) with vd−1; and joining each wj(1 ≤
j ≤ p − d − k + 1) with v0, v1 and v2; and joining each wi(1 ≤ i ≤ p − d − k) with
wj(i+1 ≤ j ≤ p−d−k+1). The graph G of order p is shown in Figure 3.4. It is clear that,
for any vertex x in G, 3 ≤ em(x) ≤ d and em(v0) = em(vd) = em(ui) = d(1 ≤ i ≤ k − 2).
Thus the monophonic diameter of G is d. Let S = {u1, u2, . . . , uk−2, v0, vd} be the set of
all extreme vertices of G. By Theorem 2.1, every minimal restrained monophonic set of G
contains S. It is easily verified that S is the unique minimal restrained monophonic set of
G so that m+

r (G) = k. �

References

[1] Buckley, F. and Harary, F., (1990), Distance in Graphs, Addison-Wesley, Redwood City, CA.
[2] Dourado, M. C., Protti, F. and Szwarcfiter, J. L., (2008), Algorithmic Aspects of Monophonic Con-

vexity, Electronic Notes in Discrete Mathematics, 30, pp. 177-182.
[3] Harary, F., (1969), Graph Theory, Addison-Wesley.
[4] Mansour, T. and Schork, M., (2010), Wiener, hyper-Wiener detour and hyper-detour indices of bridge

and chain graphs, J. Math. Chem., 47, pp. 72-98.
[5] Palugaa, E. M. and Canoy, S. R., (2007), Monophonic numbers of the join and composition of con-

nected graphs, Discrete Mathematics, 307, pp. 1146-1154.
[6] Santhakumaran, A. P. and Titus, P., (2011), Monophonic distance in graphs, Discrete Mathematics,

Algorithms and Applications, 3(2), pp. 159-169.
[7] Santhakumaran, A. P. and Titus, P., (2012), A Note on “Monophonic Distance in Graphs”, Discrete

Mathematics, Algorithms and Applications, 4(2), DOI: 10.1142/S1793830912500188.
[8] Santhakumaran, A. P., Titus, P. and Ganesamoorthy, K., (2014), On the Monophonic Number of a

Graph, J. Appl. Math. & Informatics, 32(1-2), pp. 255 - 266.
[9] Santhakumaran, A. P., Titus, P. and Ganesamoorthy, K., The Restrained Monophonic Number of a

Graph, Communicated.



A. P. SANTHAKUMARAN ET ALL: MINIMAL RESTRAINED MONOPHONIC SETS IN GRAPHS 771

A. P. Santhakumaran received his Ph.D. from Manonmaniam Sundaranar Univer-
sity, Tirunelveli. He was professor of Mathematics from 1977 to 2012 in St. Xavier’s
College Palayamkottai and after his retirement from government service in 2012, he
continued as a professor of mathematics at Hindustan University, Chennai, India until
2017. His research interests include convexity, centrality and domination in graphs.
He has authored four text books and one research book. He has more than hundred
research publications in reputed journals.

T. Venkata Raghu is pursuing his Ph.D. in mathematics at Hindustan Institute of
Technology and Science, Chennai. He is currently working as an associate professor of
mathematics in Sasi Institute of Technology and Engineering, Tadepalligudem, India.
His research interests are detour and monophonic concepts in graphs

K. Ganesamoorthy received his Ph.D. in Science and Humanities from Anna Uni-
versity, Chennai. He worked as a teaching research associate of mathematics from
September 2009 to July 2013 at University College of Engineering Nagercoil and
teaching fellow of Mathematics from August 2013 to November 2014 at the Uni-
versity of V.O.C. College of Engineering, Thoothukudi. He is currently working as
an assistant professor in the Department of Mathematics, Coimbatore Institute of
Technology, India. His research interests include detour and monophonic concepts in
graphs.


