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THIRD KIND HANKEL DETERMINANT FOR MULTIVALENT

BOUNDED TURNING FUNCTIONS OF ORDER ALPHA

D. VAMSHEE KRISHNA1, D. SHALINI2, §

Abstract. The objective of this paper is to obtain an upper bound of the third order
Hankel determinant for the class of multivalent bounded turning functions of order α
(0 ≤ α < 1).
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1. Introduction

Let Ap (p is a fixed integer ≥ 1) denote the class of functions f of the form

f(z) = zp
∞∑
n=0

ap+nz
n (ap = 1), (1)

in the open unit disc E = {z : |z| < 1} with p ∈ N = {1, 2, 3, ...} . Let S be the subclass of
A1 = A, consisting of univalent functions. In 1985, Louis de Branges de Bourcia proved
the Bieberbach conjecture also called as coefficient conjecture, which states that for a
univalent function its nth- Taylor’s coefficient is bounded by n (see [4]). For example, the
nth-coefficient gives information about the area where as the second coefficient of functions
in the family S yields the growth and distortion properties of the function. A typical
problem in geometric function theory is to study a functional made up of combinations of
the coefficients of the original function. The Hankel determinant of f (when p = 1) in (1)
for q, n ∈ N was defined by Pommerenke [18] as follows, and has been extensively studied.

Hq(n) =

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

. (2)
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One can easily observe that the Fekete-Szegö functional is H2(1). In recent years, the
research on Hankel determinants has focused on the estimation of |H2(2)|, where

H2(2) =
a2 a3
a3 a4

= a2a4 − a23,

known as the second Hankel determinant obtained for q = 2 and n = 2 in (2). Many
authors obtained an upper bound of the functional |a2a4 − a23| for various subclasses of
univalent and multivalent analytic functions. It is worth citing a few of them. The exact
(sharp) estimates of |H2(2)| for the subclasses of S namely, bounded turning, starlike and
convex functions denoted by R, S∗ and K respectively in the open unit disc E, that is,

functions satisfying the conditions Re{f ′(z)} > 0, Re
{
zf ′(z)
f(z)

}
> 0 and Re

{
1 + zf ′′(z)

f ′(z)

}
> 0

were proved by Janteng et al. [8, 9] and obtained the bounds as 4/9, 1 and 1/8. For
the class S∗(ψ) of Ma-Minda starlike functions, the exact bound of the second Hankel
determinant was obtained by Lee et al. [12]. Choosing q = 2 and n = p + 1 in (2), the
authors obtain the second Hankel determinant for the p-valent function (see [22]), given
by

H2(p+ 1) =
ap+1 ap+2

ap+2 ap+3
= ap+1ap+3 − a2p+2,

The case q = 3 appears to be much more difficult than the case q = 2. Very few papers have
been devoted to the third Hankel determinant denoted by H3(1), obtained by choosing
q = 3 and n = 1 in (2). Babalola [2] is the first one, who tried to estimate an upper
bound of |H3(1)| for the classes R, S∗ and K. Following this paper, Raza and Malik [19]
obtained an upper bound of third Hankel determinant for a class of analytic functions
related with lemniscate of Bernoulli. Sudharsan et al. [20] derived an upper bound of
the third kind Hankel determinant for certain subclass of analytic functions, defined as

Cβα = Re
{

(zf ′(z)+αz2f ′′(z))′

f ′(z)

}
> β, where (0 ≤ α ≤ 1) and (0 ≤ β < 1). Bansal et al.

[3] modified the upper bound of |H3(1)| for some of the classes estimated by Babalola
[2] to some extent. Recently, Zaprawa [23] improved all the results obtained by Babalola
[2]. Further, Orhan and Zaprawa [16] obtained an upper bound to the third kind Hankel
determinant for the classes S∗(α) and K(α), respectively represents starlike and convex
functions of order α (0 ≤ α < 1). Recently, Kowalczyk et al. [10] calculated sharp upper
bound of |H3(1)| for the class of convex functions K and showed as |H3(1)| ≤ 4

135 , which
is more improved one than the bound obtained by Zaprawa [23]. Arif et al. [1] estimated
an upper bound of the Fourth Hankel determinant for the family of bounded turning
functions. Very recently, Lecko et al. [11] determined the sharp bound of the Hankel
determinant of the third kind for starlike functions of order 1/2. For our discussion in
this paper, we consider H3(p) for the values q = 3 and n = p in (2), called as Hankel
determinant of third order for the p-valent function, given by

H3(p) =
ap ap+1 ap+2

ap+1 ap+2 ap+3

ap+2 ap+3 ap+4

(ap = 1).

Expanding the determinant, we have

H3(p) = [ap(ap+2ap+4− a2p+3) + ap+1(ap+2ap+3− ap+1ap+4) + ap+2(ap+1ap+3− a2p+2)],
(3)

equivalently

H3(p) = H2(p+ 2) + ap+1Jp+1 + ap+2H2(p+ 1), where Jp+1 = (ap+2ap+3 − ap+1ap+4).
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Motivated by the results obtained by different authors mentioned above and who are
working in this direction (see [5], [21]), in this paper, we consider and estimate an upper
bound of |H3(p, α)|, which is donated as the third order Hankel determinant of the function
f , given in (1) belongs to the class Rp(α), consisting of p-valent bounded turning functions
of order α, defined as follows.

Definition 1.1. A function f(z) ∈ Ap is said to be in Rp(α) (0 ≤ α < 1) with p ∈ N, if
it satisfies the condition

Re

{
f ′(z)

pzp−1

}
> α, z ∈ E. (4)

(1) For the choice of p = 1, α = 0, we obtain R1(0) = R, this class was introduced
by Alexander in 1915 and a systematic study of properties of these functions was
conducted by MacGregor [15], who indeed referred to numerous earlier investiga-
tions involving functions whose derivative have a positive real part (also called as
bounded turning functions).

(2) Choosing α = 0, we have Rp(0) = Rp, consisting of multivalent (p-valent) bounded
turning functions.

(3) Selecting p = 1, we obtain R1(α) = R(α), consisting of bounded turning functions
of order α (0 ≤ α < 1).

In proving our result, we require a few sharp estimates in the form of lemmas valid for
functions with positive real part.

Let P denote the class of functions consisting of g, such that

g(z) = 1 + c1z + c2z
2 + c3z

3 + ... = 1 +

∞∑
n=1

cnz
n, (5)

which are analytic in E and Reg(z) > 0 for z ∈ E. Here g is called the Caratheodòry
function [6].

Lemma 1.1. ([7]) If g ∈ P, then the sharp estimate |cn−µckcn−k| ≤ 2, n, k ∈ N, with n >
k and µ ∈ [0, 1].

Lemma 1.2. ([14]) If g ∈ P, then the sharp estimate |cn − ckcn−k| ≤ 2, holds for n, k ∈
N, with n > k.

Lemma 1.3. ([17]) If g ∈ P then |ck| ≤ 2, for each k ≥ 1 and the inequality is sharp for
the function g(z) = 1+z

1−z , z ∈ E.

In order to obtain our result, we referred to the classical method devised by Libera and
Zlotkiewicz [13], which has been widely used by many authors.

Theorem 1.1. If f ∈ Rp(α) (0 ≤ α < 1) with p ∈ N then

|H3(p, α)| ≤ 4p2(1− α)2
[

(6p3 + 30p2 + 29p+ 17)− 4p2α(p+ 4)

(p+ 1)(p+ 2)(p+ 3)2(p+ 4)

]
.
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Proof. For the function f ∈ Rp(α), by virtue of Definition 1.1, there exists an analytic
function g ∈ P in the open unit disc E with g(0) = 1 and Reg(z) > 0 such that, we have

f ′(z)− pαzp−1

p(1− α)zp−1
= g(z)⇔ f ′(z)− pαzp−1 = p(1− α)zp−1g(z). (6)

Replacing f ′ and g with their series expressions in (6), upon simplification, we get

ap+n =
p(1− α)cn
p+ n

, n, p ∈ N. (7)

Substituting the values of ap+1, ap+2 , ap+3 and ap+4 from (7) in the functional given in
(3), it simplifies to

H3(p, α) = p2(1− α)2
[ c2c4

(p+ 2)(p+ 4)
− p(1− α)c32

(p+ 2)3
− c23

(p+ 3)2

− p(1− α)c21c4
(p+ 1)2(p+ 4)

+
2p(1− α)c1c2c3

(p+ 1)(p+ 2)(p+ 3)

]
. (8)

On grouping the terms in order to apply lemmas then

H3(p, α) = p2t21

[ pc4(c2 − t1c21)
(p+ 1)2(p+ 4)

− c3
(p+ 3)2

{
c3 −

6pt1
(p+ 1)(p+ 2)

c1c2

}

+
pc2(c4 − c22)t1

(p+ 2)3
− 2p2t1c2 (c4 − c1c3)

(p+ 1)(p+ 2)(p+ 3)2
+

{
p5(p+ 6)t1 + p4t2 + 10p3t3 + p2t4 + 12pt5 + 36

}
c2c4

(p+ 1)2(p+ 2)3(p+ 3)2(p+ 4)

]
, (9)

where t1 = 1 − α; t2 = 3 − 2α; t3 = 4α − 3; t4 = 73α − 36; t5 = 3α + 2.

Applying the triangle inequality in (9), we have

∣∣∣H3(p, α)
∣∣∣ ≤ p2t21[ p|c4||c2 − t1c21|(p+ 1)2(p+ 4)

+
|c3|

(p+ 3)2

∣∣∣∣c3 − 6pt1
(p+ 1)(p+ 2)

c1c2

∣∣∣∣+
p|c2||c4 − c22|t1

(p+ 2)3
+

2p2t1|c2| |c4 − c1c3|
(p+ 1)(p+ 2)(p+ 3)2

+

{
(p4 + 6p3 + 2p2 − 30p− 36)p2(1− α) + (10p2 + 37p+ 12)pα+ (p4 + 24p+ 36)

}
|c2||c4|

(p+ 1)2(p+ 2)3(p+ 3)2(p+ 4)

]
.

(10)
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Upon using the lemmas given in 1.1, 1.2 and 1.3 in (10), it reduces to∣∣∣H3(p, α)
∣∣∣ ≤ 4p2t21

[ p

(p+ 1)2(p+ 4)
+

1

(p+ 3)2
+
p(1− α)

(p+ 2)3
+

2p2(1− α)

(p+ 1)(p+ 2)(p+ 3)2

+

{
(p4 + 6p3 + 2p2 − 30p− 36)p2(1− α) + (10p2 + 37p+ 12)pα+ (p4 + 24p+ 36)

}
(p+ 1)2(p+ 2)3(p+ 3)2(p+ 4)

]
.

Further simplification gives∣∣∣H3(p, α)
∣∣∣ ≤ 4p2(1− α)2

[
(6p3 + 30p2 + 29p+ 17)− 4p2α(p+ 4)

(p+ 1)(p+ 2)(p+ 3)2(p+ 4)

]
. (11)

This completes the proof of our Theorem. �

Remark 1.1. Choosing p = 1 and α = 0 in the inequality (11), it coincides with the result
obtained by Zaprawa [23].
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