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ANALYTIC INVESTIGATION OF STEADY THIN FILM FLOW OF

NON-NEWTONIAN FLUID ON VERTICAL CYLINDER FOR LIFTING

AND DRAINAGE PROBLEMS

H. R. MARASI1, M. DANESHBASTAM2, A. ALIZADEH3, §

Abstract. The work addressed in this paper is the analytic investigation of the steady
thin film flow of non-Newtonian Johnson-Segalman fluid on vertical cylinder for lifting
and drainage problems. The arised equation in the mathematical modelling is a highly
nonlinear first order differential equation. We use the analytical methods, homotopy
analysis method and a modification of differential transform method based on Adomian
polynomials. Effects of important physical quantities on velocity field are demonstrated
graphically with comprehensive discussions.
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1. Introduction

Thin-film type evolution equation arises in many problems in industrial and natural
settings. In Geology thin-film evolution models are employed to explain the movement
of lava flows and gravity currents under water [1]. In Biophysics, the thin-film dynamics
appear as membranes, as tear films in the eye [2], as description of the motion of the
viscouse in a Hele-shaw cell [3] or as linings of mammalian lungs [6]. In Engineering,
thin-films help in the heat mass transfer processes, they limit fluxes and they protect
surfaces. Recently, the importance of non-Newtonian fluids has become prominent with
developments in industries like polymer, petroleum, pulp etc. Many industrial materials
fall into this category, such as solutions, melts of polymers, soap, bio-logical solutions,
paints, tars, asphalts and glues. Due to complex nature of non-Newtonian fluids it is hard
to establish one mathematical model that can describe characteristics of all non-Newtonian
fluids. So many mathematical models are used to discuss flow of non-Newtonain flows,
third grade fluids lie in one of such class and are papular among researchers due to their
simpler mathematical simulation. Denson [13], Waters and Keeley [14], Tasawar Hayat
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et al. [15] studied some problems of third grade fluids. Siddiqui et al. [11] discussed the
solution for thin-film flow of third grade fluid down an inclined plane using perturbation
method and Homotopy Perturbation Method (HPM). Hayat et al. [16] obtained exact
solutions to same problem under certain assumptions. Authors of [10, 12] also found the
results for drainage problem for thin film of a fourth grade fluid down a vertical cylinder.
There are many fluid models which describe behavior of the non-Newtonian fluids, but in
recent years the Johnson-–Segalman fluid have attracted many researchers as it includes
important cases as Newtonian fluid, Maxwell fluid and Oldroyd B fluid. Most of the
physical problems involving non-Newtonian fluids are nonlinear problems. Thus, exact
solutions may not be possible and therefore one must resort to various approximation
methods of solutions, such as asymptotic techniques [21, 23, 24, 25, 26], analytical and
numerical methods [4, 5, 7, 8, 9]. Analytic techniques are based on either perturbation
techniques [27, 29], or traditional non-perturbation methods. Perturbation techniques
are based on the existence of small/large parameters, the so-called perturbation quantities
[28, 29], and on the other hand selection of small parameter is very important and requires
a special skill. Therefore, analytical methods which do not require a small parameter are
welcome. The basic idea of the differential transform method was initially introduced by
Zhou [17, 18]. The DTM is an alternative procedure for getting Taylor series solution of
the equation. This method reduces the size of computations of taylor coefficients. Liao [30]
took the lead to apply the homotopy [31], a basic concept in topology, to gain analytic
approximations of nonlinear differential equations. More importantly, unlike all other
analytic techniques, the HAM provides us with a simple way to adjust and control the
convergence radius of solution series. Thus, one can always get accurate approximations by
means of the HAM. There are also exist some techniques to accelerate the convergence of
a series solution, such as padé technique which is widely applied. In this paper we focus on
the study of a steady thin film flow of non-Newtonian fluid on vertical cylinder which has
been investigated in [33] by Adomian decomposition method. We continue the same study
by two analytical methods, homotopy analysis method and modified differential transform
method. In modified differential differential transform method the nonlinear terms handled
by the use of Adomian polynomials. On occasion we use the Pade’ technique to faster the
convergence.

2. Models and Methods

The filed equations governing the flow of an incompressible fluid, with assumption of
neglecting the thermal effect are of the form

div V = 0, (1)

ρ
DV

Dt
= div σ + ρf, (2)

where V is the velocity vector, f , the body force per unit mass and ρ, the constant density
and σ is the Cauchy stress tensor. Based on Johnson and Segalman model [32] the Cauchy
stress tensor is related to the fluid motion

σ = −pI + T, (3)

T = 2µD + S, (4)

S +m[
DS

Dt
+ S(W− aD)TS] = 2ηD, (5)

DS

Dt
=
∂S

∂t
+ [gradS]V, (6)
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where D is the symmetric part and W is the skew-symmetric part of the velocity gradient,
that is,

D =
1

2
[L + LT ], W =

1

2
[L− LT ], L = gradV, (7)

and −pI is the indeterminate part of the stress due to the constraint of incompressibility,
µ and σ are viscosities, m is the relaxation time and a is slip parameter. We focus on
the study of a steady thin film flow of non-Newtonian fluid on vertical cylinder which has
been investigated in [33] when a non-Newtonian Johnson-Segalman fluid is falling on the
outside surface of an infinitely long vertical cylinder of radius R, in the form of a thin,
uniform axisymmetric film of thickness δ, in contact with stationary air. So, we seek a
velocity field of the form

V = (0, 0, w(r)). (8)

By substituting Eq. (8) in (1) and (2) we get

0 = −∂p
∂r

+ ρf1, (9)

0 = −1

r

∂p

∂θ
+ ρf2, (10)

0 = −∂p
∂z

+
1

r

d(rTrz)

dr
+ ρf3, (11)

where f1, f2 and f3 denote the components of f in r, θ and z directions, respectively. Using
the components of S and T these equations reduce to the following equation

d

dr
[r(
dw

dr
) +

η(dwdr
1 +m2(1− a2)(dwdr )2

)] = −ρgr. (12)

In dimensionless form this equation is given by

dw

dr
+φW 2

e (1−a2)(dw
dr

)3− St
2
W 2
e (1−a2)((1 + δ)2

1

r
− r)(dw

dr
)2 =

St
2

((1 + δ)2
1

r
− r), (13)

subject to

w = 0 at r = 1. (14)

where We = m
U0

δ
is the Weissenberg number, St =

pgδ2

µeffU0
represents Stokes number and

µeff = (µ+η). Also, we consider the lifting problem of the same fluid on a infinite vertical
cylinder where the equation

dw

dr
+ φW 2

e (1− a2)(dw
dr

)3 − St
2
W 2
e (1− a2)(r − (1 + δ)2

r
)(
dw

dr
)2 =

St
2

(r − (1 + δ)2

r
), (15)

along with boundary condition

w = 1 at r = 1, (16)

is derived.
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2.1. Homotopy analysis method. Here we describe the main points of HAM method.
Consider the following equation

N [u(x, t)] = 0 (17)

where N is a nonlinear operator and x, t are spatial and temporal independent variables
and u(x, t) is unknown function. By means of generalizing the traditional Homotopy
method, the zero order deformation equation is constructed as

(1− q)L[φ(x, t; q)− u0(x, t)] = q~N [φ(x, t; q)], (18)

where L is a linear operator, q ∈ [0, 1] is the embedding parameter, ~ is a nonzero auxiliary
parameter and u0(x, t) is an initial guess of u(x, t). When q = 0 and q = 1 it holds

φ(x, t; 0) = u0(x, t), N [φ(x, t; 1)] = 0,

respectively, thus as the embedding parameter q increase from 0 to 1, the solution φ(x, t; q)
of (17) varies continuously from the initial approximation u0(x, t)to the exact solution
u(x, t). Expending φ(x, t; q) in Taylor series with respect to q, we have

φ(x, t; q) = u0(x, t) + Σ+∞
m=1um(x, t)qm, (19)

where

um(x, t) =
1

m!

∂mφ(x, t; q)

∂qm
|q=0. (20)

If the auxiliary linear operator, the initial guess and the auxiliary parameter ~ are so
properly chosen, then, as proved in [19], the series (19) converges at q = 1 and one has

u(x, t) = u0(x, t) + Σ+∞
m=1um(x, t). (21)

Define the vector

u→n = (u0(x, t), u1(x, t), ..., un(x, t)).

Differentiating Eq.(18) m times with respect to the embedding parameter q and then
setting q = 0 and finally dividing them by m!, we have the so-called mth-order defomation
equation,

L[um(x, t)− χmum−1(x, t)] = ~<m[u→m−1(x, t)], (22)

where

<m(u→m−1(x, t)) =
1

(m− 1)!

∂m−1N [φ(x, t; p)]

∂pm−1
|q=0, (23)

and

χm =

{
0, m ≤ 1,

1, m ≥ 2.
(24)

In this way it is easily to obtain um(x, t) form ≥ 1 and so (21) is an accurate approximation
of the original equation (17).

2.2. Modified differential transform method. Consider a general form of a nonlinear
non-homogeneous partial differential equation

Du(x, t) +Nu(x, t) = f(x, t), (25)

with the following initial conditions

u(x, 0) = g(x), ut(x, 0) = h(x), (26)

where D is a linear differential operator, such as D = ∂2

∂t2
, N represents the general

nonlinear differential operator and f(x, t) the source term. If function u(x, t) is analytic
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and differentiated continuously with respect to time t and space x in the domain of interest,
let

Uk(x) =
1

k!
[
∂k

∂tk
u(x, t)]t=0, (27)

then the inverse transform of Uk(x) is defined as

u(x, t) =

∞∑
k=0

Uk(x)tk, (28)

and combining (27) and (28), we obtain

u(x, t) =

∞∑
k=0

1

k!
[
∂k

∂tk
u(x, t)]t=0t

k. (29)

The standard ADM [20, 22] yields the solution u(x, t) by the series

u(x, t) =

∞∑
k=0

uk(x, t), (30)

and the nonlinear term N(u) is approximated by the series

N(u) =
∞∑
n=0

An,

where the An are the Adomian polynomials determined by the definitional formula [20, 22]

An =
1

n!
[
dn

dλn
[f(

∞∑
i=0

λiui)]]λ=0, n = 0, 1, · · · . (31)

Now, considering (27), (28) and (31) we deduce that kth differential transform component

of N(u), Ãk, can be obtained from the corresponding Adomian polynomial of this term,
Ak, by replacing each uk with Uk(x). Therefore, taking the differential transform of (25),
we have the following system of algebraic equations

(k + 1)(k + 2)Uk+2(x) + Ãk = Fk(x), (32)

where Fk(x) is the kth differential transform component of f(x, t).

3. Results

3.1. Homotopy analysis method solutions. In this section, we apply the homotopy
analysis method to solve the equations (13) and (15). By applied the idea of homotopy
analysis method, we see that, in view of Eq. (13), and the initial condition given in Eq.
(14), it is convenient to choose the initial approximation

w0 =
St
2

((1 + δ)2 ln r − r2

2
+

1

2
). (33)

The nonlinear operator is suggested as

N [φ(r; q)] =
∂φ(r; q)

∂r
+ φW 2

e (1− a2)(∂φ(r; q)

∂r
)3 − St

2
W 2
e (1− a2)((1 + δ)2

r
− r)(∂φ(r; q)

∂r
)2

− St
2

(
(1 + δ)2

r
− r), (34)

and the linear operator

L[φ(r; q)] =
∂φ(r; q)

∂r
, (35)
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with the property L(c) = 0 where c is the integration constant. Using the above definitions,
we construct the zeroth-order deformation equation

(1− q)L[φ(r; q)−W0(r)] = q~N [φ(r; q)]. (36)

Obviously,when q = 0and q = 1,

φ(r; 0) = w0(r), φ(r; 1) = w(r).

Therefore, as the embedding parameter q increases from 0 to 1, φ(r; q) varies from the intial
guess w0(r) to the solution w(r). Then, we obtain the mth-order deformation equation

L[wm(r)− χmwm−1(r)] = ~<m[(w→m−1(r))], (37)

subject to intial condition wm(1) = 0, where

<m(w→m−1(r)) =
∂wm−1(r)

∂r

+ φW 2
e (1− a2)(Σm−1

k=0 (Σk
i=0

∂wi(r)

∂r

∂wk−i(r)

∂r
)
∂wm−1−k(r)

∂r

− St
2
W 2
e (1− a2)((1 + δ)2

r
− r)(Σm−1

k=0

∂wk(r)

∂r

∂wm−1−k(r)

∂r
)

− St
2

(
(1 + δ)2

r
− r)(1− χm). (38)

Now, the solution of the mth-order deformation equation (37) for m ≥ 1 becomes

wm(r) = χmwm−1(r) + ~L−1[<m(w→m−1(r))]. (39)

From (33) and (39), we now successively obtain

w0(r) =
St
2

(
(1 + δ)2

r
− r),

w1(r) =
−1

32
(1− a2)hS3

tW
2
e +

3

16
(1− a2)h(1 + δ)2S3

tW
2
e

− 1

16
(1− a2)h(1 + δ)6S3

tW
2
e +

1

16
(1− a2)φhS3

t (
(1 + δ)2

r
− r)2W 2

e

+
(1− a2)h(1 + δ)6S3

tW
2
e

16r2
− 3

16
(1− a2)h(1 + δ)2S3

t r
2W 2

e

− 1

16
(1− a2)φhS3

t (
(1 + δ)2

r
− r)2r2W 2

e +
1

32
(1− a2)hS3

t r
4W 2

e

+
3

8
(1− a2)h(1 + δ)4S3

tW
2
e ln r +

1

8
(1− a2)φh(1 + δ)2S3

t (
(1 + δ)2

r
− r)2W 2

e ln r,

...

Here we will use five terms in evaluating the approximate solution

w(r) = Σ∞n=0 = w0(r) + w1(r) + w2(r) + · · · . (40)

Similarly, for lifting problem to solve Eq.(15) by means of HAM, we choose the initial
approximation

w0(r) = 1 +
St
2

(
r2

2
− (1 + δ)2 ln r − 1

2
). (41)
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Eq.(15) suggests the nonlinear operator as

N [φ(x, t; q)] =
∂φ(r; q)

∂r
+ φW 2

e (1− a2)(∂φ(r; q)

∂r
)3

− St
2
W 2
e (1− a2)(r − (1 + δ)2

r
)(
∂φ(r; q)

∂r
)2 − St

2
(r − (1 + δ)2

r
) (42)

and the linear operator

L[φ(r; q)] =
∂φ(r; q)

∂r
. (43)

Similar to the previous case we have the following mth-order deformation equation

L[wm(r)− χmwm−1(r)] = ~<m[w→m−1(r)], (44)

subject to initial condition wm(1) = 0 where

<m(w→m−1(r)) =
∂wm−1(r)

∂r

+ φW 2
e (1− a2)(Σm−1

k=0 (Σk
i=0

∂wi(r)

∂r

∂wk−i(r)

∂r
)wm−1−k(r))

− St
2
W 2
e (1− a2)(r − (1 + δ)2)

r
)(Σm−1

k=0

∂wk(r)

∂r

∂wm−1−k(r)

∂r
)

− St
2

(r − (1 + δ)2

r
)(1− χm). (45)

Now ,the solution of the mth-order deformation equation (44) for m ≥ 1 becomes

wm(r) = χmwm−1(r) + ~L−1[<m(w→m−1(r))]. (46)

From (41) and (46), we now successively obtain

w0(r) = 1 +
St
2

(
r2

2
− (1 + δ)2 ln r − 1

2
),

w1(r) =
1

32
(1− a2)hS3

tW
2
e −

3

16
(1− a2)h(1 + δ)2S3

tW
2
e

+
1

16
(1− a2)h(1 + δ)6S3

eW
2
e −

1

16
(1− a2)φhS3

t (r − (1 + δ)2

r
)2W 2

e

− (1− a2)h(1 + δ)6S3
eW

2
e

16r2
+

3

16
(1− a2)h(1 + δ)2S3

t r
2W 2

e

+
1

16
(1− a2)φhS3

t (r − (1 + δ)2

r
)2r2W 2

e

− 1

32
(1− a2)hS3

er
4W 2

e −
3

8
(1− a2)h(1 + δ)4S3

tW
2
e ln r

− 1

8
(1− a2)φh(1 + δ)2S3

t (r − (1 + δ)2

r
)2W 2

e ln r,

...

Then the series solution expression can be written in the form,

w(r) = Σ∞n=0wn(r) = w0(r) + w1(r) + w2(r) + · · · , (47)
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3.2. Modified differential transform method solutions. In this section, we apply
the modified differential transform method, described in Sec. 2. to solve the equations

(13) and (15). For this purpose we set
dw

dr
= u(r), in Eq. (13), so we have

u(r)+φW 2
e (1−a2)(u(r))3−St

2
W 2
e (1−a2)((1 + δ)2

1

r
−r)(u(r))2 =

St
2

((1 + δ)2
1

r
−r). (48)

To get a series solution of the form

u(r) = U0 + U1(r − 1) + U2(r − 1)2 + U3(r − 1)3 + . . . , (49)

taking differential transform from both sides of (48) and using the strategies described in
Sec. 2 for non-linear terms we deduce

Uk + φW 2
e (1− a2)Ãk −

St
2
W 2
e (1− a2)[(1 + δ)2

k∑
r=0

(−1)rB̃k−r −
1∑
r=0

B̃k−r]

=
St
2

[(1 + δ)2(−1)k −Mk], (50)

where

Mk =

{
1, k = 0, 1,

0, m ≥ 2,

and Ãk, B̃k are differential transform components obtained from the Adomian polynomi-
als for the corresponding nonlinearities, u3(r) and u2(r), respectively. So, the following
differential transform components are obtained

Ã0 = U3
0 , B̃0 = U2

0 , (51)

Ã1 = 3U1U
2
0 , B̃1 = 2U0U1,

Ã2 = 3U0U
2
1 + 3U2

0U2, B̃2 = U2
1 + 2U0U2,

Ã3 = U3
1 + 3U2

0U3, B̃3 = 2U0U3 + 2U1U2,

therefore starting with U0 = 0 solving (50) recursively one can obtain

U(r) = Σ∞K=0Uk(r − 1)k = U0 + U1(r − 1) + U2(r − 1)2 + U3(r − 1)3 + . . . , (52)

and then integration gives the series solution. For lifting problem the computations are
similar and so we omit the details.

4. Results and discussion

In this paper the analytic investigation of the steady thin film flow of non-Newtonian
Johnson-Segalman fluid on vertical cylinder for lifting and drainage problems, using ho-
motopy analysis method and modified differential transform method, have been discussed.
The exact solutions of this non-linear equation, if available, facilitates the verification of
numerical solvers and adds in the stability analysis of solutions. The results can be obtain
for the Maxwell fluid by taking slip parameter a = 1. We have discussed the effect of
the Stokes number St, the Weissenberg number We, the ratio of viscosities φ and the slip
parameter a on the fluid flows. We present a comparison of HAM and MDTM and ob-
served that the methods are in good agreement. Obtained results also are compared with
existing ADM solutions. In the following tables err1, err2 and err3 represents absolute
error between ADM solution and HAM, ADM solution and DTM Pad’e[5, 5] and DTM
Pad’e[5, 5] and HAM respectively.
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Figure 1. The ~-curve in drainage case.

Figure 2. Comparison of solutions for the drainage case by taking We = 0.1;φ = 0.2;St =
0.3; a = 0.1; and δ = 1.

r ADM HAM DTMP[5,5] err1 err2 err3

1.0 0.00 0.00 0.00 0.00 0.00 0.00

1.1 0.0138204 0.0138207 0.0138204 3.42,−7 1.14,−11 3.42,−7

1.2 0.0254777 0.025478 0.0254777 1.07,−6 1.48,−11 1.07,−6

1.3 0.0352392 0.0352411 0.0352392 1.9,−6 1.51,−11 1.9,−6

1.4 0.0433125 0.0433152 0.0433125 2.70,−6 4.42,−12 2.70,−6

1.5 0.0498620 0.049865 0.0498620 3.41,−6 7.87,−11 3.41,−6

1.6 0.0550201 0.055024 0.0550201 3.98,−6 4.83,−10 3.98,−6

1.7 0.0588953 0.058899 0.0588953 4.41,−6 1.94,−9 4.41,−6

1.8 0.0615770 0.0615817 0.0615770 4.71,−6 6.21,−9 4.71,−6

1.9 0.0631405 0.0631453 0.0631404 4.87,−6 1.68,−8 4.89,−6

2 0.0636491 0.0636540 0.0636491 4.93,−6 4.04,−8 4.97,−6

Table 1. Analytical methods estimations for the drainage case for We = 0.2;φ = 0.2;St =
0.1; a = 0.1; and δ = 1.
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Figure 3. Analytical methods estimations for the drainage case for We =
0.2;φ = 0.2;St = 0.1; a = 0.1; and δ = 1.

Figure 4. The ~-curve in drainage case.

r ADM HAM DTMP [5, 5] err1 err2 err3

1.0 0.00 0.00 0.00 0.00 0.00 0.00

1.1 0.0138333 0.0138337 0.0138333 3.86,−7 2.26,−10 3.86,−7

1.2 0.0254984 0.025499 0.0254984 1.2,−6 2.95,−10 1.2,−6

1.3 0.0352645 0.035266 0.0352645 2.14,−6 3.14,−10 2.14,−6

1.4 0.0433403 0.043343 0.0433403 3.05,−6 3.05,−10 3.04,−6

1.5 0.0498912 0.0498950 0.0498912 3.84,−6 1.98,−10 3.84,−6

1.6 0.0550500 0.055054 0.0550500 4.48,−6 3.22,−10 .48,−6

1.7 0.0589254 0.058930 0.0589254 4.97,−6 2.19,−9 4.97,−6

1.8 0.0616073 0.061612 0.0616073 5.3,−6 7.61,−9 5.31,−6

1.9 0.0631707 0.063176 0.0631707 5.49,−6 2.10,−8 5.51,−6

2 0.0636794 0.0636850 0.0636793 5.55,−6 5.06,−8 5.6,−6

Table 2. Analytical methods estimation for the drainage case forWe = 0.3;φ = 0.1;St = 0.1; a =
0.1; and δ = 1.
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Figure 5. Analytical methods estimations for the drainage case for We =
0.3; φ = 0.1 ;St = 0.1; a = 0.1; and δ = 1.

Figure 6. The ~-curve in lifting case.
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