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COMPUTING µ-VALUES AND PSEUDO-SPECTRA FOR AIRY

OPERATORS

MUTTI-UR REHMAN1, §

Abstract. Stability analysis play a vital role to design a linear feedback system in
system theory. The stability of a feedback system is the direct measure of the roots
of characteristic equation of transfer functions. The main objective of this article is
to present numerical approximation of bounds of µ-values and computation of pseudo-
spectrum for a class of Airy Operators. The comparison of the bounds of µ-values with
the well-known MATLAB routine mussv is investigated which illustrate the behaviour
of proposed methodology.
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spectrum, ordinary differential equations.

AMS Subject Classification: 15A18, 65F15, 15A03, 35A24.

1. Introduction

The Structured Singular Values ”SSV” [7] is the most important and widely used tool
in control to discuss the stability, instability, robustness and performance of linear sys-
tems. The structures of an admissible perturbation addressed by SSV undertakes almost
all types of uncertainties. We refer to [1, 3, 4, 5, 6, 7, 8, 9] and the reference therein for
applications and more discussions on SSV.
The robust stability and robust performance criterion of the linear feedback systems
changes by imposing various assumptions on performance and uncertainties. The intercon-
nected structure turns out to be very complicated whith dealing with the complex systems.
In literature [9] there are several freely available software packages such as SIMULINK
which generates the interconnecting structures. The uncertainty of the linear feedback
systems can be modeled in terms of either by taking external input arguments or by tak-
ing the admissible perturbations to the nominal model. The outputs of the linear feedback
systems and the error which occurs while measuring the performance and behavior of such
systems. The designing of control systems demand various kinds of an elementary issues
that cause to shift the boundaries of the particular application. These kind of issues are
generic while designing objectives and procedure of the control. The main issue is then to
provide the reliable performance while facing modeling errors, uncertainties and variations
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of the linear feedback systems. The feedback of the linear system is needed when system
performance can not be achieved because of the presence of uncertainty.
The deterministic uncertainty and variation of an aeroelastic model was first developed
by [10, 11] who made use of the µ-analysis [9] in order to perform the robustness of flutter
analysis. The µ − k method [12, 13] based upon the frequency-domain flutter analysis
discusses the robust analysis by means of an existing numerical algorithms. The µ − k
analysis contributes very effectively while modeling the aerodynamics uncertainties which
acts as a key factor with applications of aeroelastic, for more details see [14, 15, 16, 17].
In this article, we present the numerical approximation of lower bounds of SSV for a class
of Airy operator by using low rank ordinary differential equations based methodology.
The proposed methodology is based on two level algorithm, the inner algorithm and outer
algorithm. In the inner algorithm, we compute the local extremizers and then construct
and solve a gradient system of ordinary differential equations. This help us to derive the
required admissible perturbation. In outer algorithm, we use fast Newton’s iterations in
order to vary the perturbation level. An Airy operator M is an operator which acts on
the functions of x̂ defined on interval [−1, 1] as

Mu = ε

(
d2u

dx̂2

)
+ ix̂u

where ε is a small parameter. The spectrum of such operator is unbounded discrete set
which is contain in the half-strip, Re (z) < 0, −1 < Img (z) < 1. Furthermore, we also
discuss the pseudo-spectrum of such an operator while making use of EigTool [18]. The
pseudo-spectrum of an Airy operator was first studied by Reddy, Schmitd and Henningsen
[19].

2. Preliminaries

Definition 2.1. The spectrum of a square complex valued matrix M ∈ Cn,n is defined as

Λ(M) = {λ ∈ C : | (λI −M) | = 0}.

Definition 2.2. The pseudospectrum of a complex matrix M ∈ Cn,n with a small positive
real parameter ε > 0 is defined as

Λε(M) = {λ ∈ C : | (λI −M)−1 | ≥ 1

ε
}.

Definition 2.3. For a small positive parameter ε ≥ 0. A number λ belongs to epsilon-
pseudo-spectrum of an operator A, denoted by Λε(A) and satisfies the following equivalent
conditions
(i) λ ∈ Λ(A+ E) for some perturbation E having ‖E‖ ≤ ε;
(ii) ∃ u ∈ Cn,1 having ‖u‖ = 1 such that ‖Au− λu‖ ≤ ε;
(iii) λ ∈ ρ(A) and ‖ (λI −A)−1 ‖ ≥ 1

ε or λ ∈ Λ(A) where ρ(A) denotes the spectral radius
of the matrix A.

Definition 2.4. Unstructured uncertainty B is stable transfer matrix or structured stable
transfer matrix having the form

B = {diag(δiIi; ∆j) : δi ∈ C,∆j ∈ Cmj ,mj}.

Definition 2.5. For a given n-dimensional square matrix M ∈ Cn,n and underlying per-
turbation set B, the µ-value is defined as

µB(M) =
1

min{‖∆‖2 : ∆ ∈ B, det(I −M∆) = 0}
.
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unless no such ∆ cause (I −M∆) to be singular for which µB(M) = 0.

Theorem 2.1. Small Gain Theorem [21]. The feedback system is well-posed and stable
for an admissible perturbation ∆ with largest singular value bounded above by 1 if and only
if

‖M‖∞ : Sup(‖M(jw)‖) < 1,

for some w ∈ R+, the frequency.

Theorem 2.2. [7]. For two structured uncertainties B1 ⊂ B2,

µB1(‖M(jw)‖) < µB2(‖M(jw)‖).
The feedback system is well-posed and internally stable for ∆ ∈ B with ‖∆‖2 ≤ 1 if and
only if Sup(M(jw)) < 1 for some w ∈ R+.

3. Reformulation of µ-values

In this section we reformulate the µ-values on the basis of structured spectral value
sets. The key idea for the reformulation of the structured singular values is to shift the
largest eigenvalue of the matrix valued function I −M∆(t) such that λmax = 1 and the
new eigenvalue η = 0 as (η = 1− λmax) and it achieve the maximum value to be one when
λmax = 0. On the basis of this mathematical construction, the reformulation of structured
singular values is given as below.

Definition 3.1. For a given M ∈ Cn,n and perturbation level ε > 0, the structured spectral
value set is denoted by ΛB

ε (M) and is defined as

ΛB
ε (M) = {λ ∈ Λ(εM∆),∆ ∈ B, ‖∆‖2 ≤ 1},

where Λ(εM∆) denotes the spectrum of the matrix valued function (εM∆), which is simply
a disk centered at origin 0.

Definition 3.2. The structured epsilon spectral value set for a given M ∈ Cn,n and ε ≥ 0,
is defined as

ΣB
ε (M) = {η : 1− λ : λ ∈ ΛB

ε (M)}.

Definition 3.3. For a given M ∈ Cn,n and an underlying perturbation set B the µ-value
is defined as

µB(M) =
1

arg minε>0

{
max|λ| = 1, λ ∈ ΛB

ε (M)
} .

4. Pseudo-Spectrum

In this section we present the pseudospectra for a class of Airy operator. For this
purpose we make use of the software package EigTool [18]. EigTool is routinely used for
plotting unstructured pseudo-spectra of the matrices under consideration. In Figures 1-4,
we show the computation of the pseudo-spectra for a class of Airy operators presented
in section 6, that is, numerical experimentation. The spectrum of the eigenvalues corre-
sponding to Airy operators in 3-dimensional space is shown in Figure 2 and Figure 2 by
making use of Eigtool.
Let A be an n-dimensional matrix and let Λ(A) denotes the set of all eigenvalues of matrix
A. Let ‖A‖ denotes the matrix-norm of the matrix A induced by an inner product space
〈·, ·〉. The computation of the pseudo-spectra of an operator is very straightforward but
at the same time is very costly. The boundaries associated with the pseudo-spectrum
are nothing but just the level curves of the resolvent corresponding to operator A, that
is, ‖ (λI −A)−1 ‖. The computation of the level curves involve the computation of the
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Figure 1. Pseudospectrum of 2-dimensional Airy Operator
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Figure 2. The spectrum of 2-dimensional Airy Operator

numerical values of λ at the grid point in the complex plane and then to compute the
desired contour plots as shown in Figure 1 and Figure 3.
For the computation of the ε-pseudo-spectrum, the computation of an admissible pertur-
bation E such that ‖E‖ = ε for the perturbed matrix A + E is to essential to compute.
For the computation of the ε-pseudo-spectrum the determination of the sets Lε and Uε are
essential such that Lε ≤ Λε ≤ Uε.
Here, Lε(A) = {λ ∈ ρ(A) : b(λ) ≥ 1

ε} ∪ Λ(A) acts as a lower bound of the ε-pseudo-
spectrum with ε ≥ 0. For an upper bounds of the pseudo-spectrum, Uε(A) = {λ ∈ ρ(A) :

B(λ) ≥ ‖ (λI −A)−1 ‖} for all λ ∈ ρ(A). For a complete detail we refer [19] and the
reference therein.

5. Proposed Methodology

In order to solve the maximization problem discussed in Definition 3.3, we make use
of numerical method based upon low-rank ordinary differential equations technique. The
numerical method is mainly composed of two-level algorithm, that is, inner-algorithm and
outer-algorithm. In the inner-algorithm the main objective is to first construct then solve
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Figure 3. Pseudospectrum of 3-dimensional Airy Operator

−0.5

0

0.5

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Real

Imag

lo
g 10

(r
es

ol
ve

nt
 n

or
m

)

Figure 4. The spectrum of 3-dimensional Airy Operator

a gradient system of ordinary differential equations. On the other hand in the Outer-
algorithm we vary the perturbation level ε > 0 by means of fast Newton iteration. The
outer-algorithm computes an exact derivative of an extremizer say ∆(ε) for ∆ ∈ B and
ε > 0. A complete detail of numerical method under consideration is given in [20, 22, 24].

Next, we discuss the computation of an extremizer. For this purpose, we first approxi-
mate the derivative of an eigenvalue matrix Λ(p) of a smooth matrix family say A(p) for
some fixed parameter p.

5.1. Approximation of an Extremizers. A matrix valued function ∆ ∈ B having the
largest singular value bounded above by 1 and the matrix valued function (I − εM∆)
having a smallest eigenvalue which minimizes the modulus of structured spectral value
set
∑B

ε (M) is known as an extremizer. The following theorem computes extremizer for a

chosen smallest complex number belonging to the set
∑B

ε (M).



MUTTI-UR REHMAN: COMPUTING µ-VALUES AND PSEUDO-SPECTRA FOR AIRY ... 993

Theorem 5.1. For a perturbation ∆ ∈ B having the block diagonal structure

∆ = {diag(δ1I1, . . . δs′ Is′ , δs′+1Is′+1, . . . δSIS ; ∆1, . . . ,∆F },

with ‖∆‖2 = 1, acts as a local extremizer of structured spectral value set. For a simple
smallest eigenvalue λ = |λ|eιθ, θ ∈ R of matrix valued function (I − εM∆) having right
and left eigenvectors x and y scaled as S = eιθy∗x and let z = M∗y. The non-degeneracy
conditions

z∗kxk 6= 0, ∀k = 1 : S
′

Re(z∗kxk) 6= 0, ∀k = 1 : S
′
+ 1 : S

and ||zs+h||.||xs+h|| 6= 0, ∀h = 1 : F,

holds. Then magnitude of each complex scalar δi ∀i = 1 : s appears to be exactly equal
to 1 while each full block possesses a unit 2-norm.
Proof. For proof we refer to [20].

5.2. Gradiant System of ODE’s. The gradient system of odes for an admissible per-
turbation ∆ ∈ B to approximate a local extremizer of smallest eigenvalue λ = |λ|eiθ, is
obtained as,

δ̇i = νi(x
∗
i zi −Re(x∗i ziδ̄i)δi); i = 1 : s

′

δ̇l = sign(Re(z∗l xl)Ψ(−1,1)(δl); l = s
′
+ 1 : s

∆̇j = νj(zs+jx
∗
s+j −Re〈∆j ; zs+jx

∗
s+j〉); j = 1 : F,

where δi ∈ C, ∀ i = 1 : s
′
, δl ∈ R for l = s

′
+ 1 and Ψ(−1,1), the characteristic function.

For more discussion on the construction of gradient system of odes in above equations, we
refer to [20].

5.3. Outer-Algorithm. In outer-algorithm the main aim is to vary ε > 0, the perturba-
tion level by means of fast Newton’s itaration. In turn 1

ε will provide us the approximation
of lower bound of µ-values.

We make use of fast newton’s iteration in order to solve

|λ(ε)| = 1. (1)

In Equ. 1, ε > 0. In order to solve Equ. 1, we need to compute

d

dε
(|λ(ε)|) ,

the derivative.
The following theorem 5.2 help us to compute d

dε(|λ(ε)|), when |λ(ε)| are simple and
∆(0), λ(0) are assumed to remains smooth in the neighboring region of perturbation level
ε > 0

Theorem 5.2 Consider matrix valued function ∆ ∈ B. Let x and y as a function
of perturbation level ε > 0 acts as right and left eigenvectors of matrix valued function
(εM∆). Consider the scaling of these vector according to theorem 5.1. Let z = M∗y and
assume that non-degenracy conditions as discussed in theorem 5.1. hold, then,

d

dε
(|λ(ε)|) =

1

|y(ε∗)x(ε)|

s∑
i=1

|zi(ε)∗xi(ε)|

+
F∑
j=1

||zs+j(ε)||.||ys+j(ε)|| > 0.

Proof. For proof we refer to [20].
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5.4. Choice of suitable initial value matrix and initial perturbation level. For a
suitable choice of initial value matrix ∆0 and an initial perturbation level ε0, we refer to
[20].

6. Numerical Experimentation

Example 1.
Case-I Consider a two dimensional complex valued matrix M

M =

[
−0.001 + 0.5i 0.0008

0.0008 −0.001− 0.5i

]
.

We take the underlying perturbation as

∆B = {diag(∆1) : ∆1 ∈ C2,2}.
The well-known MATLAB routine mussv approximates the bounds of SSV along with the

required perturbation ∆̂ as

∆̂ =

[
−0.003− 0.998i 0.998 + i

0.998− i −0.003 + 0.998i

]
.

The matrix 2-norm of ∆̂, that is, ‖∆̂‖2 = 1.9968. The mussv routine computes an upper
bound µmussvu = 0.5008 and a same lower bound µmussvl = 0.5008. Algorithm [20] computes
the lower bound of SSV as follows while the admissible perturbation ε∗∆∗ is obtained as

∆∗ =

[
−i 0.0008 + i

0.0008 + i −0.003 + i

]
,

and the perturbation level is computed as ε∗ = 2. The lower bound of SSV is obtained as
µNewl = 0.5000.
Case-II Again consider a two dimensional complex valued matrix M .

M =

[
−0.001 + 0.5i 0.0008

0.0008 −0.001− 0.5i

]
We take the underlying perturbation as

∆B = {diag(δ1I1, δ2I1) : δ1, δ2 ∈ C}.
The well-known MATLAB routine mussv approximates the bounds of SSV along with the

required perturbation ∆̂ as

∆̂ =

[
−0.006− 1.996i 0

0 −0.006 + 1.996i

]
.

The matrix 2-norm of ∆̂, that is, ‖∆̂‖2 = 1.9968. The mussv routine computes an upper
bound µmussvu = 0.5008 and lower bound is computed as µmussvl = 0.5008. Algorithm [20]
computes the lower bound of SSV while the admissible perturbation ε∗∆∗ is obtained as

∆∗ =

[
0.003− i 0

0 −0.002 + i

]
.

The perturbation level is computed as ε∗ = 4. The lower bound of SSV is obtained as
µNewl = 0.2500.

Example 2. Consider a three dimensional complex valued matrix M .

M =

−0.004 + 0.707i 0.001 −0.0006
0.001 −0.001 0.001
−0.000 0.001 −0.004− 0.707i
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n ∆B µmussvl µNewl

03 {diag(δiI3) : δi ∈ C, ∀ i = 1 : 3} 0.70 0.35
03 {diag(δiI3) : δi ∈ R, ∀ i = 1 : 3} 0 0.35
03 {diag(∆1,∆2) : ∆1 ∈ C2,2,∆2 ∈ C1,1} 0.70 0.70
03 {diag(δ1I2, δ2I1) : δ1, δ2 ∈ R} 0 0.35
03 {diag(δ1I2, δ2I1) : δ1, δ2 ∈ C} 0.70 0.35

Table 1. Computation of bounds of µ-values

We take the underlying perturbation as

∆B = {diag(∆1) : ∆1 ∈ C3,3}.
The well-known MATLAB routine mussv approximates the bounds of SSV as along with

the required perturbation ∆̂ as

∆̂ =

−0.004− 0.706i 0.001 + 0.001i −0.706− 0.001i
0.001 + 0.001i i 0.001− 0.001i
−0.706 + 0.001i 0.001− 0.001i −0.004 + 0.706i

 .
The matrix 2-norm of ∆̂, that is, ‖∆̂‖2 = 1.4130. The mussv routine computes an upper
bound µmussvu = 0.7077 and same lower bound is computed µmussvl = 0.7077. Algo-
rithm [20] computes the lower bound of SSV as follows while the admissible perturbation
ε∗∆∗ is obtained as

∆∗ =

 i i −0.0004− i
i −i 0.002 + i

−0.0004− i 0.001 + i −0.005 + i

 .
The perturbation level is computed as ε∗ = 1.4142. The lower bound of SSV is obtained
as µNewl = 0.7071.
Table 1 show the numerical comparison of bounds of SSV, that is, both lower and upper
bounds computed with MATLAB routine mussv and algorithm [20] for the matrix M . In
very first column, n denotes the size of the matrix M . The second column highlights the
structure of set of block diagonal matrices denoted with ∆B. The third and fourth columns
present the bunds of SSV approximated by mussv routine and with the algorithm [20].

7. Conclusion.

In this article, we have presented numerical approximations and a comparison of lower
and upper bounds of SSV for a family of Airy Operators. The lower bounds of SSV pro-
vides sufficient conditions about the instability of linear feedabck systems. The numerical
approximation of upper bounds of SSV discuss the stability of linear feedback systems. It
is investigated that in most of experiments, the approximated bounds by making use of
MATLAB routine mussv and the algorithm presented in [20] are tightly related while the
gaps between lower bounds of SSV is minimum.
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