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DISJUNCTIVE TOTAL DOMINATION IN SOME GRAPHS DERIVED

FROM THE SUBDIVISION GRAPH

CANAN ÇİFTÇİ1, AYSUN AYTAÇ2, §

Abstract. For a set S ⊆ V (G), if every vertex has a neighbor in S or has at least two
vertices in S at distance two from it, then the set S is a disjunctive total dominating set
of G. The minimum cardinality of such a set is equal to the disjunctive total domination
number. In this study, we discuss disjunctive total domination number of some graphs
derived from the subdivision graphs such as middle and central graphs.
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1. Introduction

In network design, minimizing the exchange between resource allocation and redundancy
is an important issue. However, key resources are expensive and cannot be allocated to
every node of the network. Hence, a subset of nodes is selected depend on the closeness
to the rest of the nodes. Thereby, the nodes in the subset share the resources to the other
nodes. However, it can be a resource failure at any node. In this case the redundancy is
important and needs extra resources to be allocated. This problem can be modelled by
using graphs for a network and the subset of vertices of the graph forms a dominating set.
Let the graph G be a model of a network. A subset of vertices S is a dominating set [7]
of G if every vertex in V (G)− S is adjacent to some vertex in S. In order to extend the
domination problem including redundancy, a subset of vertices S is selected such that every
vertex in V (G) is adjacent to some vertex in S and this set is called as a total dominating
set [3]. However, since determining dominating and total dominating sets are difficult,
their implementations in modern networks are expensive. Although some restrictions are
added to dominating and total dominating sets, the cost of implementation of these sets
raises. Then, Goddard et al. [5] introduce disjunctive domination as a relaxation of the
domination number. In a similar manner, Henning and Naicker [8] extend disjunctive
domination as a relaxation of the total domination number and propose disjunctive total
domination.
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A set S ⊆ V (G) is a disjunctive total dominating set, briefly DTD-set, if and only if
every vertex v ∈ V (G) has one of the following two properties.
P1: v has a neighbor in S
P2: v has at least two vertices in S at distance two from it.

If v has property P1 or P2, then v is disjunctively totally dominated, briefly DT-dominated,
by vertices of S. Furthermore, if v has only property P1, then v is totally dominated by
vertices of S. If v has only property P2, then v is disjunctively dominated by vertices of
S. The minimum cardinality of a DTD-set is equal to the disjunctive total domination
number γdt (G). A DTD-set which gives the value γdt (G) is called γdt (G)-set.

This parameter is studied on some graphs such as trees [8, 9], extremal graphs [14], claw-
free graphs [8], grids [13], permutation graphs [19], and studied on some graphs operations
such as corona, compositions of two graphs and subdivision [4, 10]. This paper is about
the disjunctive total domination number of central and middle graphs.

2. Preliminaries

For a simple graph G, let V (G) and E(G) be vertex and edge sets of G, respectively.
The cardinality of V (G) is the order of G. Two vertices u and v in G are adjacent if there
is an edge e = uv joining them. The distance dG(u, v) between two vertices u and v in
G is the length of a shortest path joining them in G. The degree degG(v) of v in G is
the number of edges of G incident to v. We follow [7] for graph theory terminology and
notations which are not defined here for simplicity.

The subdivision graph of G is obtained by inserting a new vertex into each edge of G.
This new vertex is called subdivision vertex. In Figure 1, the vertices xij and yi are the
subdivision vertices for i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}. The central and middle graph of a
graph are introduced by Vernold [18] and Hamada et al. [6], respectively, and are derived
from the subdivision graph by adding some edges with the following rules.

The central graph of a graph G, denoted by C(G), is obtained from the subdivision
graph of G by joining all the non-adjacent vertices of G. The middle graph of a graph G,
denoted by M(G), is obtained from the subdivision graph of G by joining the subdivision
vertices by an edge if the two corresponding edges share the same vertex of G.

Figure 1. Central and middle graphs of triangular snake graph T3

There have been many papers studying on properties of central and middle graphs
and these graphs are studied on some graph parameters such as coloring and domination
[1, 11, 12, 15, 17]. In this paper, we determine the disjunctive total domination number of
central and middle graphs of some snake graphs such as triangular snake, double triangular
snake and diamond snake graphs.

Triangular snake (or ∆k-snake), which is defined by Rosa [16], is formed from a path
P = v1, v2, ..., vn+1 by joining vi and vi+1 to a new vertex ui for i ∈ {1, 2, ..., n}. It is
obvious that its all blocks are triangles and k is the number of triangles in a ∆k-snake. We
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use the notation Tn which is also given for this graph. A double triangular snake D(Tn)
[20] is formed from a path P = v1, v2, ..., vn+1 by joining vi and vi+1 to two new vertices
ui and wi for each i ∈ {1, 2, ..., n}. The triangular snake is generalized by Barrientos [2]
and the kCn-snake is defined as a connected graph in which the k blocks are isomorphic
to Cn. When n = 4, then the kC4-snake is called as diamond snake graph which its each
block is C4. Equivalently, a diamond snake graph is formed by joining vertices vi and vi+1

to two new vertices ui and wi for each i ∈ {1, 2, ..., n}. This graph is denoted by Dn.

Figure 2. Triangular snake graph T3, double triangular snake graph
D(T3) and diamond snake D3

3. Disjunctive Total Domination of Central Graphs

We first determine the disjunctive total domination number of triangular snake, double
triangular snake and dimond snake graphs. Next, we obtain the disjunctive total domina-
tion number of central graph of them. The rest of the paper, we will represent vertices of
Tn, D(Tn) and Dn as they are mentioned in their definitions.

Theorem 3.1. For a triangular snake graph Tn of order 2n+ 1 with n ≥ 2,

γdt (Tn) =

{
n+1

2 , if n ≡ 3 (mod 4)

dn+2
2 e, otherwise.

Proof. In order to prove the formula we use induction on n ≥ 2. As it is clear for n ≤ 7,
we may assume that the formula is true for all values less than n ≥ 8 and we will now
need to show that it is also true for n. For the upper bounds on γdt (Tn), let

X =

bn+1
4
c−1⋃

i=0

{v4i+2, v4i+3}.

While if n ≡ 0 (mod 4), let Y = X ∪ {vn}, if n ≡ 1, 2 (mod 4), let Y = X ∪ {vn, vn+1}.
Further if n ≡ 3 (mod 4), let Y = X. In all cases, the set Y is a DTD-set of Tn. Thus,

γdt (Tn) ≤ |Y | =

{
n+1

2 , if n ≡ 3 (mod 4)

dn+2
2 e, otherwise.
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Let S be a γdt (Tn)-set in order to prove the opposite inequality. Since every vertex of
Y has at least one adjacent vertex in Y , suppose that no two vertices in S are adjacent.
Vertices of the first block of Tn are u1, v1 and v2. Then there are two cases to DT-dominate
these vertices: (1) S ∩ {u1, v1, v2} 6= ∅ (2) |S ∩ {u2, v3}| = 2. For the first case, vertex v2

must be in S for the minimality of S. Then vertices in the first and second blocks except
v2 are totally dominated by v2. Since no two vertices in S are adjacent, vertices u3 and v4

must be in S to disjunctively dominate v2. However, u3v4 ∈ E(Tn) and this contradicts
with our assumption. For the second case, let u2 and v3 be in S. Then vertices in the first
and second blocks are DT-dominated. However, u2v3 ∈ E(Tn) and this contradicts with
our assumption. Therefore, the set S contains two adjacent vertices.

To create S with the minimum cardinality, for the first case let v2 ∈ S. Then either u2

or v3 is in S. However, when {v2, v3} ⊂ S, this is a better candidate than {v2, u2} ⊂ S for
the minimality. For the second case, u2 and v3 are in S as we say above. The cardinality of
the set which is created by starting with these two vertices is equivalent to the cardinality
of the set which is created by starting with v2 and v3. Thus, without loss of generality,
let the set S contains two consecutive vertices on the path and then {v2, v3} ⊂ S. We will
show that S ∩ {v4, v5} = ∅.

Assume that v4 ∈ S. If v5 ∈ S, then replace v4 with v6. Let v5 /∈ S. If v6 ∈ S, then
replace v4 with v5. If v6 /∈ S and v7 ∈ S, then replace v4 with v6. Thus, we can select S
such that v4 /∈ S.

Assume that v5 ∈ S. If v6 ∈ S, then change v5 with v7. Thus, we can select S such
that v5 /∈ S. Therefore, S ∩ {v4, v5} = ∅ which means that {v6, v7} ⊂ S.

Let S′ = S − {v2, v3} where |S′| = |S| − 2. Let Tn′ be a graph which is obtained from
Tn by deleting the vertices ui and vi for i ∈ {1, 2, 3, 4} in which n′ = n − 4 ≥ 4. Since S
is a DTD-set of Tn, the set S′ is a DTD-set of Tn′ . Thus, γ∗e (Tn′) ≤ |S′| = |S| − 2. By

the inductive hypothesis to Tn′ , we have γdt (Tn′) = n′+1
2 = n+1

2 − 2 when n ≡ 3 (mod 4)

and otherwise γdt (Tn′) = dn′+2
2 e = dn+2

2 e − 2. This means that if n ≡ 3 (mod 4), then

γdt (Tn) = |S| ≥ n+1
2 , otherwise γdt (Tn) = |S| ≥ dn+2

2 e.
Consequently, the result follows from the lower and upper bounds. �

Theorem 3.2. If D(Tn) is a double triangular snake with n ≥ 2, then γdt (D(Tn)) =
γdt (Tn).

Proof. Since D(Tn) consists of two triangular snakes on the common path, all vertices of
D(Tn) are DT-dominated by the set of Theorem 3.1. Thus, γdt (D(Tn)) = γdt (Tn). �

Theorem 3.3. For a diamond snake graph Dn with n ≥ 2,

γdt (Dn) =

{
4n+10

5 , if n ≡ 0 (mod 5)

d4n+4
5 e, otherwise.

Proof. In order to prove the formula we use induction on n ≥ 2. As it is clear for n ≤ 6,
we may assume that the formula is true for all values less than n ≥ 7 and we will now
need to show that it is also true for n. For the upper bounds on γdt (Dn), let

X =

bn−1
5
c⋃

i=0

{v5i+2, w5i+1} ∪
bn−4

5
c⋃

i=0

{v5i+4, u5i+4}.
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While if n ≡ 0, 3 (mod 5), let Y = X ∪ {un, vn}, if n ≡ 1, 4 (mod 5), let Y = X. Further
if n ≡ 2 (mod 5), let Y = X ∪{un}. In all cases, the set Y is a DTD-set of Dn. Moreover,
|Y | = 4n+10

5 for n ≡ 0 (mod 5), while |Y | = d4n+4
5 e for the other cases. Therefore,

γdt (Dn) ≤ |Y | =

{
4n+10

5 , if n ≡ 0 (mod 5)⌈
4n+4

5

⌉
, otherwise.

For the opposite inequality, let S be a γdt (Dn)-set. Since every vertex of Y has at least
one adjacent vertex in Y , suppose that no two vertices in S are adjacent. Then vertex u1

or w1 is in S to totally dominate v1. Assume, without loss of generality, u1 ∈ S. Then we
have the set

S∗ =

{
u3i+1

∣∣ 0 ≤ i ≤
⌊
n− 1

3

⌋}
∪
bn−2

3
c⋃

i=0

{u3i+2, w3i+2}

which no two vertices of it are adjacent. If n ≡ 0 (mod 3), then let S = S∗ ∪ {un}; if
n ≡ 1 (mod 3), then let S = S∗ ∪ {un−1, wn−1}; if n ≡ 2 (mod 3), then let S = S∗.
If n ≡ 1 (mod 3), then |S| = n + 2 and for other cases |S| = n + 1. However, they
contradict with our upper bounds. Therefore, the set S contains two adjacent vertices.
Since vertex v1 has exactly one vertex at distance two from it, vertex u1 or w1 must be
in S to totally dominate v1. Assume, without loss of generality, that w1 ∈ S. In order to
totally dominate w1, vertex v2 must be in S. Because, v2 totally dominates also vertices
u2 and w2. Thereby, only vertex v3 among the vertices of the first and second blocks is
not DT-dominated by w1 and v2. Thus, we may assume that v4 ∈ S and also that u4 ∈ S
to totally dominate v4. These means that we may assume that {v2, w1, v4, u4} ⊂ S to
DT-dominate vertices of the first four blocks. We will show that {v5, w4, v6, w5} ∩ S = ∅.

Assume that {v5, w4} ∈ S. If {v6, u6} ∈ S, then replace v5 with v7 and w4 with w6.
Let {v6, u6} /∈ S. If {v7, u7} ∈ S, then replace v5 with v6 and w4 with w5. If {v6, u6} /∈ S,
{v7, u7} /∈ S, {v8, u8} ∈ S, then replace v5 with v7 and w4 with w6. If {v6, u6} /∈ S,
{v7, u7} /∈ S, {v8, u8} /∈ S, {v9, u9} ∈ S, then replace v5 with v7 and w4 with w6. Thus,
we can select S such that {v5, w4} /∈ S.

Assume that {v6, w5} ∈ S. If {v7, u7} ∈ S, then replace v6 with v8 and w5 with w6.
Let {v7, u7} /∈ S. If {v8, u8} ∈ S, then replace v6 with v7 and w5 with w6. If {v7, u7} /∈ S,
{v8, u8} /∈ S, {v9, u9} ∈ S, then replace v6 with v7 and w5 with w6. Thus, we can select S
such that {v6, w5} /∈ S.

As a consequence, {v7, w6, v9, u9} ⊂ S. Let S′ = S − {v2, w1, v4, u4} which yields
|S′| = |S| − 4.

Let Dn′ be a graph which is obtained from Dn by deleting the vertices ui, vi and wi

for 1 ≤ i ≤ 5 in which n′ = n − 5 ≥ 2. Since S is a DTD-set of Dn, the set S′ is a
DTD-set of Dn′ . Thus, γ∗e (Dn′) ≤ |S′| = |S| − 4. By the inductive hypothesis to Dn′ , we

have if n ≡ 0 (mod 5), then γdt (Tn′) = 4n′+10
5 = 4n+10

5 − 4, otherwise γdt (Dn′) = d4n′+4
5 e =

d4n+4
5 e − 4. This yields that if n ≡ 0 (mod 5), then γdt (Dn) = |S| ≥ 4n+10

5 , otherwise

γdt (Dn) = |S| ≥ d4n+4
5 e. �

Theorem 3.4. If C(Tn) is a central graph of a triangular snake with n ≥ 2, then
γdt (C(Tn)) = 3.

Proof. For a triangular snake Tn, let C(Tn) be a central graph obtained from Tn by sub-
dividing the edges uivj and vivi+1 for each i ∈ {1, 2, ..., n}, j ∈ {i, i+ 1} with subdivision
vertices xij and yi, respectively, and joining all the non-adjacent vertices of Tn.
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We first prove the lower bound on γdt (C(Tn)). Suppose that γdt (C(D(Tn))) = 2 and
that S be a γdt -set of C(D(Tn)). Then vertices of S are adjacent and S ∩ {ui, vj} 6= ∅ for
any i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., n + 1}. We may assume, without loss of generality,
u1 ∈ S. Since d(y1, u1) = 3, a vertex adjacent to y1 must be in S in order to totally
dominate y1. This vertex is v1 or v2. However, none of two vertices are adjacent to u1.
This contradicts that vertices of S are adjacent. Thus, γdt (C(Tn)) ≥ 3.

For the upper bound on γdt (C(Tn)), let T = {u1, u2, v2}. Then the set T is a DTD-set
of C(Tn). Thus, γdt (C(Tn)) ≤ 3.

The proof is completed by combining the lower and upper bounds for γdt (C(Tn)). �

Theorem 3.5. Let C(D(Tn)) be a central graph of a double triangular snake with n ≥ 2.
Then γdt (C(D(Tn))) = 3.

Proof. Let C(D(Tn)) be a central graph obtained from D(Tn) by subdividing the edges
uivj , vivi+1 and wivj for i ∈ {1, 2, ..., n}, j ∈ {i, i+ 1} with subdivision vertices xij , yi and
zij , respectively, and joining all non-adjacent vertices of D(Tn).

We first prove the lower bound on γdt (C(Tn)). Suppose that γdt (C(D(Tn))) = 2 and that
S be a γdt -set of C(D(Tn)). Then vertices of S are adjacent and S∩{ui, wi, vj} 6= ∅ for any
i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., n + 1}. Furthermore, since d(xij , xtk) = d(zij , ztk) = 3 if
i 6= t or/and j 6= t and d(yi, yj) = 3 if j 6= i + 1, the set S does not contain subdivision
vertices. This implies that S contains any two vertices of ui, vj or wi depending on whether
they are adjacent in C(D(Tn)). All vertices of the graph must be either adjacent to any
vertex of S or at distance two both two vertices of S. However, if S = {vi, vj} for j 6= i−1
or j 6= i + 1, then d(vi, xi(i+1)) = 3, d(vj , xi(i+1)) = 2 and if S = {ui, uj} or S = {wi, wj}
or S = {ui, wj} or S = {ui, vj} for j 6= i, j 6= i + 1, then vertex yi is at distance three
from the first vertex of S and at distance two from the other vertex of S. Thereby there
are some vertices that are not DT-dominated by vertices of S and then at least one vertex
must be added to S. Therefore, γdt (C(D(Tn))) ≥ 3.

In order to prove the opposite inequality, let T = {u1, u2, v2}. All vertices of C(D(Tn))
are DT-dominated by vertices of T . Thus, the set T is a DTD-set of C(D(Tn)), and then
γdt (C(D(Tn))) ≤ 3.

Consequently, γdt (C(D(Tn))) = 3 from the lower and upper bounds for γdt (C(D(Tn))).
�

Theorem 3.6. Let C(Dn) be a central graph of a diamond snake with n ≥ 2. Then
γdt (C(Dn)) = 2.

Proof. The graph Dn is obtained from deleting the edge vivi+1 in D(Tn) for all i ∈
{1, 2, ..., n}. Since γdt (C(Dn)) ≥ 2, it is sufficient to prove the upper bound. Let S =
{u1, u2}. Then all vertices of C(Dn) are DT-dominated by S. Hence, γdt (C(Dn)) = 2. �

4. Disjunctive Total Domination of Middle Graphs

This section determines the disjunctive total domination number of middle graph of
triangular snake, double triangular snake and dimond snake graphs.

Theorem 4.1. If M(Tn) is a middle graph of a triangular snake with n ≥ 2, then

γdt (M(Tn)) =
⌈

2(n+1)
3

⌉
.
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Proof. Let M(Tn) be a middle graph of Tn which is obtained from Tn by subdividing the
edges uivj and vivi+1 for i ∈ {1, 2, ..., n}, j ∈ {i, i + 1} with subdivision vertices xij and
yi, respectively, and joining the subdivision vertices by an edge if the two corresponding
edges share the same vertex of Tn. It is clear that deg(yi) ≥ deg(xij) for all i and j.

In order to prove the formula we use induction on n ≥ 2. As it is clear for n ≤ 5, we
may assume that the formula is true for all values less than n ≥ 6 and we will now need
to show that it is also true for n. We first establish the upper bound on γdt (M(Tn)). Let

X =

bn
3
c−1⋃

i=0

{y3i+1, y3i+2}.

If n ≡ 0 (mod 3), then let Y = X ∪ {yn}, while if n ≡ 1, 2 (mod 3), then let Y =

X ∪ {yn−1, yn}. In all cases, the set Y is a DTD-set of M(Tn) and |Y | =
⌈

2(n+1)
3

⌉
. Thus,

γdt (M(Tn)) ≤
⌈

2(n+1)
3

⌉
.

For the opposite inequality, let S be a γdt (M(Tn))-set. Suppose that no two vertices in
S are adjacent. Hence, the set S contains vertex u1 and all vertices of {v1, v2, ..., vn+1},
and then γdt (M(Tn)) = |S| = n + 2. However, this contradicts with our upper bound.
Therefore, the set S contains two adjacent vertices. In order to DT-dominate vertex v1,
we have six cases: (1) y1 ∈ S (2) x11 ∈ S (3) x12 ∈ S and y2 ∈ S (4) x12 ∈ S and v2 ∈ S
(5) x12 ∈ S and u1 ∈ S (6) x12 ∈ S and x22 ∈ S. Since vertex yi has the maximum degree
in M(Tn), we may assume y1 ∈ S to DT-dominate more vertices than the other cases.
In order to totally dominate y1, we may assume y2 ∈ S. Because, all vertices of the first
and second blocks are DT-dominated by y1 and y2 and also vertex y2 is either adjacent
to some vertices in the third block or at distance two from some vertices of the third and
fourth blocks. Thus, {y1, y2} ⊂ S. Then we will show that we can choose S such that
S ∩ {y3} = ∅.

Assume that y3 ∈ S. If y4 ∈ S, then we may replace y3 with y5. Thus, we can select S
such that y3 /∈ S. Let S′ = S − {y1, y2} and this means |S′| = |S| − 2.

Let M(Tn′) be a graph which is obtained by deleting the vertices ui, vi, xij and yi for
each i ∈ {1, 2, 3}, j ∈ {i, i+ 1} in which n′ = n− 3 ≥ 3. Since S is a DTD-set of M(Tn),
the set S′ is a DTD-set of M(Tn′). Thus, γdt (M(Tn′)) ≤ |S′| = |S| − 2. If we apply the

inductive hypothesis to M(Tn′), we have γdt (M(Tn′)) = d2(n′+1)
3 e = d2(n+1)

3 e − 2. This

means that γdt (M(Tn)) = |S| ≥ d2(n+1)
3 e.

As a consequence, γdt (M(Tn)) = d2(n+1)
3 e from the upper and lower bounds. �

Theorem 4.2. If M(D(Tn)) is a middle graph of a double triangular snake with n ≥ 2,
then γdt (M(D(Tn))) = γdt (M(Tn)).

Proof. Let M(D(Tn)) be a graph which is obtained by subdividing the edges uivj , vivi+1

and viwj for i ∈ {1, 2, ..., n}, j ∈ {i, i + 1} with subdivision vertices xij , yi and zij ,
respectively, and joining the subdivision vertices by an edge if the two corresponding
edges share the same vertex of D(Tn).

We first establish the upper bound for γdt (M(D(Tn))). Let

X =

bn
3
c−1⋃

i=0

{y3i+1, y3i+2}



C. ÇIFTÇI, A. AYTAÇ: DISJUNCTIVE TOTAL DOMINATION IN SOME GRAPHS DERIVED... 1155

as in the proof of Theorem 4.1. If n ≡ 0 (mod 3), then let Y = X ∪ {yn}, while if
n ≡ 1, 2 (mod 3), then let Y = X ∪ {yn−1, yn}. In all cases, the set Y is a DTD-set of

M(D(Tn)) and |Y | =
⌈

2(n+1)
3

⌉
. Thus, γdt (M(D(Tn))) ≤

⌈
2(n+1)

3

⌉
.

We now prove the reverse inequality. Assume S = {a1, a2, ..., as} be a DTD-set of
M(D(Tn)), where ai is any vertex of M(D(Tn)). Let fx = dM(D(Tn))(ax, ax+2) for x ∈
{1, 2, ..., s− 2}. We must prove fx ≤ 3 for x ∈ {1, 2, ..., s− 2}.

Let us suppose that fx ≥ 4. We claim that fx = 4 for x ∈ {1, 2, ..., s−2}. In accordance
with this claim, we construct the set

bn
4
c−1⋃

i=0

{y4i+1, y4i+2}.

However some vertices, i.e. vertices u3 and u4, are not DT-dominated by this set. Thus,
it is needed to add some new vertices to this set, which contradicts our claim. Therefore,

fx ≤ 3 for x ∈ {1, 2, ..., s− 2} which implies that
s−2∑
x=1

fx ≤ 3(s− 2).

If n ≡ 0 (mod 3), then S ⊆ X ∪ {yn}. Hence, we have

3
(⌈2n+ 1

3

⌉
− 3
)

+ 2 =

s−3∑
x=1

fx + fs−2 ≤ 3(s− 2),

in which fs−2 = 2. Since d2n+1
3 e = 2n+3

3 for n ≡ 0 (mod 3), we have |S| = s ≥ d2n+2
3 e.

If n ≡ 1 (mod 3), then S ⊆ X ∪ {yn−1, yn}. Hence, we have

3
(⌈2n+ 1

3

⌉
− 3
)

+ 4 =

s−4∑
x=1

fx + fs−3 + fs−2 ≤ 3(s− 2),

in which fs−3 = fs−2 = 2. Since d2n+1
3 e = 2n+1

3 for n ≡ 1 (mod 3), we have |S| = s ≥
d2n+2

3 e.
If n ≡ 2 (mod 3), then S ⊆ X ∪ {yn−1, yn}. Hence, we have

3
(⌈2n+ 1

3

⌉
− 2
)

=
s−2∑
x=1

fx ≤ 3(s− 2).

Since d2n+1
3 e = 2n+2

3 for n ≡ 2 (mod 3), we have |S| = s ≥ 2n+2
3 .

The proof is completed by combining the lower and upper bounds for γdt (M(D(Tn)))
and Theorem 4.1. �

Theorem 4.3. If M(Dn) is a middle graph of a diamond snake with n ≥ 2, then
γdt (M(Dn)) = n+ 1.

Proof. For a diamond snake graph Dn, the graph M(Dn) is obtained from M(D(Tn)) by
deleting the vertex yi for all i ∈ {1, 2, ..., n}. Vertices of Dn and subdivision vertices of
M(Dn) are labeled as we use for M(Dn). However, for brevity we use xk and zk rather
than xij and zij for i ∈ {1, 2, ..., n}, j ∈ {i, i + 1}, where k is equal to i + j − 1, that is
k ∈ {1, 2, ..., 2n}.

In order to prove the formula we use induction on n ≥ 2. As it is clear for n ≤ 3, we
may assume that the formula is true for all values less than n ≥ 4 and we will now need to
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show that it is also true for n. Firstly we establish the upper bound on γdt (M(Dn)). Let

X =

b 2n−1
4
c⋃

i=0

{x4i+2, z4i+2}.

If n ≡ 0, 2 (mod 4), then let Y = X ∪ {x2n} while if n ≡ 1, 3 (mod 4), then let Y = X. In
all cases, |Y | = n+1 and the set Y is a DTD-set of M(Dn). Therefore, γdt (M(Dn)) ≤ n+1.

Let S be a γdt (M(Dn))-set to prove the opposite inequality and suppose that no two
vertices in S are adjacent. Hence, S =

{
x2i+1

∣∣ 0 ≤ i ≤ n − 1
}
∪ {w1, wn, vn+1} or

S =
{
z2i+1

∣∣ 0 ≤ i ≤ n−1
}
∪{u1, un, vn+1} and then γdt (M(Dn)) = |S| = n+3. However,

this contradicts with our upper bound. Therefore, the set S must contain two adjacent
vertices. In M(Dn), the vertices which have maximum degree are xt and yt for every
t ∈ {2, 3, ..., n − 1}. Thus, we may assume x2 ∈ S. The vertices in the first block except
v1, z1 and w1 are totally dominated by x2. To totally dominate these vertices and x2, we
may assume z2 ∈ S. Hence, {x2, z2} ⊂ S. We will show that S∩{x3, x4, x5, z3, z4, z5} = ∅.

Assume that x3 ∈ S. If x4 ∈ S (respectively z4 ∈ S), then replace x3 with z4 (re-
spectively with x4). Let x4 /∈ S (respectively z4 /∈ S). If x5 ∈ S (respectively z5 ∈ S),
then replace x3 with z5 (respectively with x5). If x5 /∈ S, x6 ∈ S (respectively z5 /∈ S,
z6 ∈ S), then replace x3 with z6 (respectively with x6). Therefore, we can select S such
that x3 /∈ S.

In similar manner as above, it can be shown that {x4, x5, z3, z4, z5} /∈ S, separately.
This implies that {x6, z6} ⊂ S. Let S′ = S − {x2, z2} and then this means |S′| = |S| − 2.

Let M(Dn′) be a graph which is obtained by deleting the vertices ui, vi, wi, xj and zj
for i ∈ {1, 2}, j ∈ {1, 2, 3, 4} in which n′ = n − 2 ≥ 2. Since S is a DTD-set of M(Dn),
the set S′ is a DTD-set of M(Dn′). Thus, γdt (M(Dn′)) ≤ |S′| = |S| − 2. If we apply the
inductive hypothesis to M(Dn′), we have γdt (M(Dn′)) = n′ + 1 = n + 1 − 2. This means
that γdt (M(Dn)) = |S| ≥ n+ 1.

As a consequence, γdt (M(Dn)) = n+ 1. �
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