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GENERALIZATION OF RANDIC ENERGY AND
SUM-CONNECTIVITY ENERGY

D. D. SOMASHEKARA', XIAO-DONG ZHANG 2 H. E. RAVI!, §

ABSTRACT. In this paper we define the generalization of Randi¢ energy and sum con-
nectivity energy of a graph. Then we obtain upper and lower bounds for E(A,s), gener-
alization of Randié energy and sum connectivity energy of a graph. Further we compute
the generalization of Randi¢ energy and sum connectivity energies of complete graph,
star graph, complete bipartite graph, (Sm A P2) graph and crown graph.
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1. INTRODUCTION

In 2010, Bo Zhou and Nenad Trinajstic [3] introduced the sum-connectivity energy
of a graph as follows. Let G be a simple graph and let vi,vo, ..., v, be its vertices. For
1=1,2,...,n, let d; denote the degree of the vertex v;. Then the sum-connectivity matrix
of G is defined as S = (S;;), where

0, ifi = j,
Sij = ﬁ, if the vertices v; and v; are adjacent,
iT A
0, if the vertices v; and v; are not adjacent.

The sum-connectivity energy of G is defined as the sum of absolute values of the eigen-
values of the sum-connectivity matrix of G arranged in a non-increasing order.
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In the same year, Burcu Bozkurt, Dilek Giingér, Gutman and Sinan Cevik [2], have
defined the Randi¢ energy of a graph G as the sum of the absolute values of the eigenvalues
of the Randi¢ matrix (R;;) where

0, ifi = j,
1

0, if the vertices v; and v; are not adjacent.

if the vertices v; and v; are adjacent,

Motivated by these works, we introduce the generalization of Randi¢ energy and sum-
connectivity energy of a simple graph G as follows. Let a and b be two nonnegative real
numbers with a + b # 0. The generalization of Randi¢ and sum-connectivity matrix of G
is the n x n matrix A,s = (a;;) where

0, ifi = j,
1 . . ) ) .
aij = Je@ )T’ if the vertices v; and v; are adjacent,
0, if the vertices v; and v; are not adjacent.

The eigenvalues of the graph G are the eigenvalues of A,.¢. Since A, is real and symmetric,
its eigenvalues are real numbers which are denoted by A1, Ao, As, ..., A, where A\ > Ay >
A3 > ... > Ap. Then the generalization of Randi¢ energy and sum-connectivity energy of
G is defined as

n
Ens(G) =) il
i=1
Since A, is a real symmetric matrix, we have

zn:)\i = tT(ATS) =0 (1)
=1

and

n n n 1
;A? =ir(A) =) ) ai=2) —o )+ b(did;) (2)

i=1 j=1 inj
Remark: 1. If a =1 and b = 0, then E,4(G) is the sum-connectivity energy.
2. If a =0 and b = 1, then E,4(G) is the Randi¢ energy.

In this paper we compute E,;(G), the generalization of Randi¢ energy and sum-connectivity
energy of complete graph, star graph, complete bipartite graph, (S, A Ps) graph and crown
graph. Also we obtain the upper and lower bounds for E,s(G).

2. UPPER AND LOWER BOUNDS FOR E,(G)
In this section we obtain Upper and lower bounds for E,(G).

Theorem 2.1. Let G be a simple graph of order n with no isolated vertices and a, b be
as defined above. Then

1
Ers(G) < 2n ZZN; a(di =+ dj) + b(dzdj) . (3)
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Proof. Let A1, A2, A3, ..., A\, be the eigenvalues of A,s. Then using (2) and the Cauchy-
Schwartz inequality, we have

(5] =(59) (59

with a; = 1, b; =| A; |, we obtain

n n n 1
E,, = Ai| = Ail)?2 < N = |2 .
(@) ,-Zl' | <;| )2 < nzl n;;a(dﬁdj)w(didj)

0

Theorem 2.2. Let G be a simple graph of order n with no isolated vertices and a, b be
as defined above. Then

1
Es(G) > 2\/ XN; a(d; + d;) + b(dsd;)’ .

Proof. From (1), we have
n
DA+2 D AN =0
i=1 1<i<j<n
and therefore
n
SN =2 > A (5)
i=1 1<i<j<n

Thus

n

2 n
(ETS(G»?:(ZMZ-) =D A +2 > [l
=1

i=1 1<i<j<n

zzn:Afm >N
=1

1<i<j<n

which gives (4). O
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3. GENERALIZATION OF RANDI¢ ENERGY AND SUM-CONNECTIVITY ENERGIES OF SOME
FAMILIES OF GRAPHS

We recall that the complete graph is one in which every pair of its distinct vertices are
adjacent. A complete graph on n vertices is denoted by K,,. A bigraph or bipartite graph
G is a graph whose vertex set V(G) can be partitioned into two subsets V; and Vs such
that every line of G joins Vj with V5. (V4,V5) is a bipartition of G. If G contains every
line joining V7 and Vs, then G is a complete bigraph. If Vi and V5 have m and n points,
we write G = Ky, . A star is a complete bigraph K ,[4].

The following definitions and notations, will be used in the remainder of this paper.

Definition 3.1. [1] The Crown graph SO for an integer n > 3 is the graph with vertex set
{uy,ug, ..., un,v1,02,...,0,} and edge set {uv;;1 <i,5 < n,i# j}. SO is the complete
bipartite graph K, , with the horizontal edges removed.

Definition 3.2. [5] The conjunction (Spm A P2) of Sy = K + K1 and Py is the graph
having the vertex set V (Sp,) x V(Ps) and edge set {(vs, v;)(vk, v)|vivg € E(Sm) and vjv €
E(P) and 1 <ik<m+1,1<j,1<2}. In fact Sy, is the star K1, and Py is K».

Now we compute generalization of Randi¢ energy and sum-connectivity energies of
complete graph, star graph, complete bipartite graph, (S, A P») graph and crown graph.

Theorem 3.1. Let a and b be as defined above. Then the generalization of Randicé energy
and sum-connectivity energy of complete bipartite graph K, s 2, /W.

Proof. Let the vertex set of the complete bipartite graph be

V(Kmn) = {ui,u2,...,um,v1,02,...,0,}. Then the generalization of Randi¢ and sum-
connectivity matrix of complete bipartite graph is given by
0 0 I S I S
v/ a(m+n)+b(mn) a(m+n)+b(mn)
0 0 N S NN W
A — ) . a(m+n)+b(mn) a(m+n)+b(mn)
rs —
a(m+n)+b(mn) N a(m+n)+b(mn) 0 0
RN W RN W 0 0
a(m-+n)+b(mn) a(m-+n)+b(mn)
Its characteristic polynomial is
Al ~ e
alm-rTn mn
’AI - ATS‘ = 1 )\In
a(m+n)+b(mn)

where J is an n X m matrix with all the entries are equal to 1. Hence the characteristic

equation is given by

A B —.
m a(m+n)+b(mn) _
1 A\,
a(m+n)+b(mn)
which can be written as
1 L, 1
M| (ML, — | — J| =2 - JE) = o.
Vva(m +n) + b(mn) A Va(m +n) + b(mn)
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On simplification, we obtain

)\m—n

(a(m + n) + b(mn))" ‘

(a(m +n) + b(mn))N’L, — JJT| = o0,

which can be written as

)\’I’TL7’I7,

(a(m + n) + b(mn))

o Py ((a(m +n) +b(mn))A?) = 0,

where P; () is the characteristic polynomial of the matrix JJ?. Thus, we have

)\m—n

(alm + 1) + b(mn))

—((a(m +n) + b(mn))A? — mn)((a(m +n) 4+ b(mn))A*)"1 = 0,

which is same as

mn

)\eran )\2 o
( a(m+n) + b(mn)

)=0

Therefore, the spectrum of K, ,, is given by

0 \/a(m—i—n@l—:—lb(mn)) _\/a(m+$ib(mn) .
m+n—2 1 1

Spec (Kmn) = (

Hence the generalization of Randié¢ energy and sum-connectivity energy of complete bi-
partite graph is

(m+n)+b(mn)’

Ers Kmn =2
() =2/

as desired. n

Theorem 3.2. Let a and b be as defined above. Then the generalization of Randicé energy
n—1

and sum-connectivity energy of Sy is 2 At (=10

Proof. Let the vertex set of star graph be given by V(S,) = {vi,v2,...,v,}. Then the
generalization of Randi¢ and sum-connectivity matrix of star graph 5, is given by

0 \/cm+ n—1)b \/cm+(n71)b \/an+ n—1)b \/cm+(n71)b

——t 0 0 0 0
an+(n—1)b

L 0 0 0 0
A, = an+(n—1)b

L 0 0 0 0
an+(n—1)b

L 0 0 0 0

1

1

1

1
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Hence the characteristic polynomial is given by

by _ 1 _ 1 1
\/an—i-(n—l)b \/an—i-(n—l)b an+(n—1)b
S — A 0 0
\/an—&-l(n—l)b
AN — A,g| = T Jant (o 0 A 0
-1 0 0 A
an+(n—1)b
w -1 -1 - -1 -1
-1 u 0 -+ 0 0
B 1 -1 0 p - 00
an+ (n—1)b : : D c
-1 0 0 -~ u 0
-1 0 0 - 0 pu
where = A\/an+ (n —1)b. Then |\ — Ay = ¢n(p) <+1(_1)b> ,
nw o —1 =1 -1 -1
1 w O 0 0
1 0 pu 0 0
where ¢, (1) = .
1 0 0 pw o0
1 0 0 0 pu

Using the properties of the determinants, we obtain after some simplifications

Onpt) = (pn—1(p) — " =2).

Iterating this, we obtain
Sn(p) = P20 — (n —1)).

Therefore

1

— = an + (n — 2_(n-— an + (n — n=2| .
AT AM—( an+(n_1)b> [((an + (0~ 1))N — (0~ 1)) (\Wan + (0~ 1)p)"?]

Thus the characteristic equation is given by

n—1

n—2 2 —
A <)\ an+(n—1)b> 0

Hence
0 —n-1 _ n=-1
Spec (Sn) = an+(n—1)b an+(n—1)b .
n—2 1
Hence the generalization of Randié¢ energy and sum-connectivity energy of .S, is
n—1
E.s(Sp) =24/ ————.
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Theorem 3.3. Let a and b be as defined above. Then the generalization of Randié energy
n—1

and sum-connectivity energy of K, is 2 2atb(n=T)

Proof. Let the vertex set of Complete graph be given by V(K,,) = {vi,v2,...,v,}. Then
the generalization of Randi¢ and sum-connectivity matrix of complete graph K, is given

by

0 1 . 1

V/2a(n—1)+(n—1)2b \/2a(n—1%+(n—1)2b

A — | VE2aeDFE=D T VRa(n—1)+(n—1)%
1 1 . 0

V2a(n—-1)+(n-1)2b  y/2a(n—1)+(n—1)2b

Hence the characteristic polynomial is given by

_ 1 e — 1
A V/2a(n—1)+(n—1)2b V/2a(n—1)+(n—1)2b
J— 1 .. _— 1
|)\I—A |_ 2a(n—1)4+(n—1)2b A v/2a(n—1)+(n—1)2b
rs| —
_ 1 _ 1 .. A
V/2a(n—1)+(n—1)2b V/2a(n—1)+(n—1)2b
p -1 -1 - -1 -1
-1 u -1 - -1 -1
1 "1 -1 o e =1 -1
B V2a(n—) + (n —1)2b : : T s
-1 -1 -1 - pu -1
-1 -1 =1 -+ -1 pu
n
_ — —1)2 — = L
where p1 = A\/2a(n — 1) + (n — 1)2b. Then |AI — A, gzbn(,u)< 2a(n—1)+(n—1)2b>’
g -1 -1 -+ -1 -1
-1 pu -1 - -1 -1
-1 -1 pu - -1 -1
where ¢, (1) = | . ) . . .
-1 -1 -1 - p -1
-1 -1 =1 -+ -1 opu
wo -1 =1 .- -1 -1
-1 pu -1 - -1 -1
-1 -1 pu - -1 -1
-1 -1 -1 - 1 -1
0 0 0 - —1—p pu+1
p -1 —1 o —1 -1 g -1 —1 - —1 -1
-1 u -1 - -1 -1 -1 u -1 - -1 -1
-1 -1 u - -1 -1 -1 -1 u - -1 -1
= (p+1) . : s . S I VA DR : . : :
-1 -1 =1 - pu -1 -1 -1 -1 - pu -1
-1 -1 -1 - -1 -1 -1 -1 -1 - -1 pu
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bn(p) = —(+ 1"+ (u+1) [(n+1)"*(n— (n—2))]

— ()" () = (0 - 2)).

Iterating this, we obtain
Sn(p) = "2 (1? = (n = 1)),

thus the characteristic equation is given by

<¢2a<n = 1>1+ (n - 1>2b> ()" (p=(n=1)) =0.

Hence

—1 n—1
Spec (K,) = ( \/2a(n7;1)_+](_n_1)2b \/2a(n—1i+(n—1)2b ) )

Hence the generalization of Randi¢ energy and sum-connectivity energy of K, is
n—1
Ers(Kn) =24 57—~

Theorem 3.4. Let a and b be as defined above. Then the generalization of Randicé energy
and sum-connectivity energy of (Sm A P3) is 4, /#;1_1)1).

Proof. Let the vertex set of (S, A Py) graph be given by V (S, A Py) = {v1,v2, ..., vam42}-
Then the generalization of Randi¢ and sum-connectivity matrix of (S,, A P») graph is given
by

0

0 0 0 0 L
na+(n—1)b

0 0 0 L 0

na+(n—1)b
0 0 0 L 0

A — na+(n—1)b
" 0 L L 0 0

na+(n—1)b na+(n—1)b
. 0 0 0 0
na+(n—1)b

na+(n—1)b 0 0 0 0

2nXx2n

where m + 1 = n. Its characteristic polynomial is given by



1240 TWMS J. APP. AND ENG. MATH. V.11, N .4, 2021

_ 1
A 0 01 na+(n—1)
0 N na+(n—1)b N
0 .. A _%
’)\I_Ars| _ - . na+(n—1)
0 —— A
. na+(n—1)b
N v/ na+(n—1)b 0
I U 0 0
v/ na+(n—1)b

Hence the characteristic equation is given by

A 0 0 0o -1 -1
0 A 0O -1 0 0
on | : o : : o
1 0 0 -~ A -1 0 - 0 0
na+ (n—1)b 0 -1 -+ -1 A 0 --- 0 ’
1 0 - 0 0 A --- 0
-1 0 -~ 0 0 0 - Al

where A = y/na+ (n — 1)bA.

(an) o O eee

2nXx2n
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Let
A0 O -~ 0 0 -1 -1 --- -1
o A 0 --- 0 -1 0 0 0
0 0 A 0 -1 0 0 0
don(A)=1] 0 0 0 A -1 0 0 0
0 -1 -1 -1 A 0 0 0
-1 0 0 0 0 A 0 0
-1 0 0 0 0 0 0 Al o
A 0 0 0 0 -1 -1 —1
0 A 0 0 -1 0 0 0
0 0 A 0 -1 0 0 0
=(-1)*AL 0 0 0 -~ A -1 0 0 0
0 -1 -1 -1 A 0 0 0
-1 0 0 0 0 A 0 0
-1 0 0 0 0 0 0 A a1 (@n—1)
0 0 0 0 0 -1 -1 -1
A 0O 0 0 -1 0 0 0
0 A 0 0 -1 0 0 0
+(-*2 0 0 0 --- A -1 0 --- 0 0
-1 -1 -1 -~ =1 A 0 -~ 0 0
0 0 0 0 0 A 0 0
0 0 0 0 0 0 A0 g1y
Let
0 0 0 0 0 -1 -1 -1
A 0O 0 0 -1 0 0 0
0 A 0 0 -1 0 0 0
Ty 1(A)=(-D)*"2 0 0 0 --- A -1 0 --- 0 0
-1 -1 -1 -+ =1 A 0 -~ 0 0
o 0 0 --- 0 0 A -~ 0 0
o 0 0 -~ 0 0 0 -~ A 0

(2n—1)x(2n—1)

Using the properties of the determinants, we obtain, after some simplifications

Wy, 1(A) = —A"720,(N),
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A 0 O -1
0 A O -1
where ©,(A)=| 0 0 A —1
-1 -1 -1 A
nxn

Then
dan(A) = —A”’2@n(A) + Agan—1(A).
Now, proceeding as above, we obtain
(Z)Qn—l(A) _ (_1)(2n71)+2\112n_2(A) + (_1)(2n71)+(2n71)A¢2n_2(A)
= —A"30,(A) + Ao, _o(A).

Proceeding like this, we obtain at the (n — 1)

Pon(A) = —(n — 1)A" 20, (A) + AP Ve, 1 (A),

step

A O 0 0
0 A 0 -1
where &1 (A)=| 0 0 A —1
0 -1 -1 - A (n+1)x (n+1)
don(A) = —(n—1)A"20,(A) + A" 1AO,(A)

= —(n—1A"20,(A)+ A"0,(A)
(A" — (n — 1)A""2)0,(A).
Using the properties of the determinants, we obtain
On(A) = A" — (n — 1)A" 2,

Therefore
don(A) = (A" — (n — 1)A"?)%.

Hence characteristic equation becomes

2n
1
( na + (n — 1)b> dam(A) =0,

which is same as

2n
1 n_ n—2y2 _
< na + (n — 1)b> (7= (n = DA™ =0

N4 (na+ (n—1)b)A%2 — (n—1))2 =0.

(n—1) . (n—1)
S’pec((Sm A PQ)) = < 0 \/na+(n—1)b \/na—‘r(n—l)b) .
2n — 4 2 2

This reduces to

Therefore
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Hence the generalization of Randié¢ energy and sum-connectivity energy of (S,, A P») graph
is
n—1

Ers(Sm A P2)) =4y [Py,

0

Theorem 3.5. Let a and b be as defined as above. Then the generalization of Randié
(n—1)

energy and sum-connectivity energy of crown graph is 4 S tb(n=T) "

Proof. The vertex set of the crown graph be given by V (S9) = {uy,uz, ..., upn,v1,v2, ..., 0}
Then the generalization of Randi¢ and sum-connectivity matrix of crown graph is given
by

0 O 0 0 X X
0 O 0 X 0 X
A — 0 0 X X 0
e 0 X X 0 0 0
X 0 X 0 0 0
X X -~ 0 0 0 --- 0
. 1 ) s s . .
Where X = ST Its characteristic polynomial is
AL - L KT
I — Ay| = . V2a(n—1)+b(n—1)?

A, ’

B \/2a(n—1)+b(n—1)2 K

where K is an n x n matrix. Hence the characteristic equation is given by

A\, - 1 KT
2a(n—1)+b(n—1)2 -0
- 1 K A\, :

v/ 2a(n—1)+b(n—1)2

This is same as

~

AL

K n KT
M, — [ - — | - =
V2a(n —1)+bn—1)2) A V2a(n —1) +b(n —1)2
which can be written as

1
(2a(n —1) +b(n —1)2)

~Prrr((2a(n — 1) + b(n — 1)*)A%) = 0,

where Pp 7 (A) is the characteristic polynomial of the matrix K K. Thus we have

1
(2a(n — 1) 4+ b(n —1)%)"

which is same as

<)\2 - 2a+nb(_nl—1)> <)\2 " 2a(n—1) i b(n — 1)2)n_1 = 0.

[2a(n—1)+b(n—1)*A*—(n—1)?][2a(n—1)+b(n—1)X\*—1]""1 = 0,
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Therefore

\/ (n—1) _\/ (n—1) 1 . 1
Spec (SY) = 2a+b(n—1) 2a+b(n—1) | /2a(n—1)+b(n—1)2 2a(n—1)+b(n—1)2

1 1 n—1 n—1
Hence the generalization of Randi¢ energy and sum-connectivity energy of crown graph is
(n—1)
2a +b(n—1)’

as desired. 0

Es(SY) =4
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