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CONVERGENCE ANALYSIS OF PICARD-S HYBRID ITERATION

SCHEME FOR MULTI-VALUED MAP HAVING A FIXED POINT

NISHA SHARMA1, ARTI SAXENA1,§

Abstract. In this paper, we define Picard-S hybrid iteration for a multi-valued map-
ping of T with an invariant point η along with explanation that under certain conditions,
this iteration gets converged to an invariant point ζ belonging to T . However, it is essen-
tial, to note that this invariant point ζ may be different from η. In this process, several
results are generalized.
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1. Introduction

Let (X, d) be a complete metric space, having a subset K, which is said to be proximinal
if for every x ∈ X, there exists an element k ∈ K that

d(x, k) = d(x,K) = inf{d(x, y) : y ∈ K}.

Every closed convex subset of X is proximinal if X is a Hilbert space. The families of
all bounded proximinal subsets of K in X, and those of nonempty bounded and closed
subsets of X are denoted by P (K) and CB(X) respectively.

Let A, B be two bounded subsets of X. The Hausdorff distance between A and B is
defined by

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(A, y)

}
.

Transformation from single valued map to multi valued map, thereby extending the con-
vergence results of single valued mapping with the aid of Picard-S hybrid iteration scheme
shall be the focal point of this paper. We will denote the set of all natural numbers by N
over the course of this paper. Also, throughout the paper let X be a Hilbert space and K
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be a compact and convex subset of X.

The most popular and the simplest iteration method which is commonly used to approx-
imate fixed point is known as Picard iteration [1], which is formulated for every 0 ∈ K,
as

n+1 = fnx, n ∈ N.

But this iteration scheme does not converge with reference to nonexpansive mapping.
E.g., the iteration sequence n+1 = fnx which maps f : [−1, 1] → [−1, 1] and is defined
by fx = −x is not convergent to 0 for every non initial point (being non zero) which is,
as a matter of fact, the invariant point of f . Mann [2] introduced an iteration scheme for
non expansive mapping, which was convergent iteration sequence for arbitrary 1 ∈ K as
follows:

n+1 = (1− ϑn)n + ϑnfn, n ∈ N,

where ϑn ∈ (0, 1).

In 1974, with a view to appoximate fixed point of pseudo-contractive compact mappings
in Hilbert spaces, Ishikawa [3] formulated new iteration procedue for 1 ∈ K is as follows:

{
`n = (1− ϑn)n + ϑnfn,

n+1 = (1− ςn)n + ςnf`n, n ∈ N,

where ϑn, ςn ∈ (0, 1).

In order to compare two iteration schemes in one dimension, the scholar has referred to
Rhoades [4]. Herein, Ishikawa Iteration convergence rate is shown to better than that of
Mann Iteration procedure under favorable conditions. Nadler [5] and Markin [6] studied
invariant points for multi-valued nonexpansive mappings and it is for their efforts that
now, there is an extensive and vast literature on multi-valued invariant point theory hav-
ing wide range of applications in diverse areas, be it optimization, or be it differential
inclusion [2]. It is because of Lim [7], that the existence of invariant points belonging
to mappings which are multi-valued nonexpansive, in Banach Spaces (characteristically
uniformly convex), could be proved. In order to approximate the invariant points of multi-
valued nonexpansive mappings, a number of iteration schemes processes have been used
for the last few years. Among these, noteworthy generalizations of iteration processes
given by Mann and Ishikawa, notably in cases of multi-valued mapping can be seen in the
iteration processes of Sastry and Babu [8], Panyanak [9], Song and Wang [10] and Shahzad
and Zegeye [11].

It’s not been long that a single valued iterate scheme known as Picard-S hybrid was
introduced by Gürsoy and Karakaya [12] which provided for an iteration convergence rate,
which was faster than that developed by Mann [2], Ishikawa [3], Noor [13], SP [14] and
S [4, 15] which itself was faster than the one introduced earlier by Picard. Also, there
is reference made to carve out a detailed analysis and review of literature with respect
to Picard-S hybrid iterates by taking recourse to the Gürsoy and Karakaya [12]. The
multi-valued Picard-S hybrid iteration scheme is as follows:
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
0 ∈ X,
n+1 = T`n,

`n = (1− ϑn)Tn + ϑnTzn,

zn = (1− ςn)n + ςnTn,

where real sequences {ϑn}, {ςn} satisfy 0 < ϑn, ςn < 1 and , n ∈ N.

Different spaces having different mappings have been the subjects of various studies
undertaken by several reputed authors [16, 17, 18, 19, 15, 20, 21, 22, 23] as a part of the
schemes followed by them. As, the Picard-S hybrid iteration scheme is for single valued
mapping, we define Picard-S hybrid iterates for a multivalued map T with a fixed point
η under certain conditions. For such definition, let a mapping T defined from X to P (X)
and consider η as an invariant point belonging to T . The Picard-S hybrid iteration scheme
for multi-valued mapping is defined as

0 ∈ X,
zn = (1− ςn)n + ςnz

′′
n

`n = (1− ϑn)z′′n + ϑnz
′′′
n

n+1 = z′n,

(A)

where z′n ∈ T`n, z′′n ∈ Tn and z′′′n ∈ Tzn such that, ||z′ − η|| = d(T`n, η), ||z′′ − η|| =
d(Tn, η) and ||z′′′n − η|| = d(Tzn, η), ∀ n ∈ N.Also, {ϑn} and {ςn} being real sequences
such that

0 = ϑn, ςn < 1, ςn → 0 and
∑

ϑnςn =∞.

In this paper, we extend the convergence results for various mappings, such as nonex-
pansive, quasi-nonexpansive and quasi-contractive and it’ll be shown that the sequence of
Picard-S hybrid iteration converges to a fixed point for all dissimilar mappings.

2. Preliminaries

The proof of main Theorems are studied by us using some Lemma and Definitions, so
here we are mentioning all relevant results to make this article self contained.

Definition 2.1. [8] A mapping T satisfying different inequalities shall have different names
according to the satisfaction thereby achieved. Hence, the mapping is known as:

(1) Multi-valued nonexpansive, whereby

H(Tx, Ty) ≤ ||x− y|| for all x, y ∈ K.
(2) Multi-valued generalized nonexpansive, whereby

H(Tx, Ty) ≤ α||x− y||+ β{d(x, Tx) + d(y, Ty)}+ γ{d(x, Ty) + d(y, Tx)}
for all x, y ∈ X where α+ 2β + 2γ ≤ 1.

(3) Multi-valued quasi-contractive, wherein for some 0 ≤ k < 1,

H(Tx, Ty) ≤ max{||x− y||, d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}
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for all x, y ∈ X.

The following Lemmas are useful in our subsequent discussion and are easy to establish.

Lemma 2.1. [8] Considering {ϑn}, {ςn} being real sequences, wherein

(1) 0 ≤ ϑn, ςn < 1,
(2) ςn → 0 as n→∞ and
(3)

∑
ϑnςn =∞.

Let there be some real sequence {γn} which is non negative and exists in such a manner
that

∑
ϑnςn(1− ςn)γn is bounded, then γn has a sub sequence which converges to 0.

Lemma 2.2. [23] If there is a real sequence {n} satisfying

n+1 = ϑnn + ςn

where n = 0, ςn = 0 and lim
n→∞

ςn = 0, 0 ≤ ϑn < 1, Then lim
n→∞

n = 0.

Lemma 2.3. [3] Let Θ ∈ [0, 1]. Let x, y in a Hilbert space X. Then for any x, y ∈ X, we
have

||(1−Θ)x+ Θy||2 = (1−Θ)||x||2 + Θ||y||2 −Θ(1−Θ)||x− y||2.

3. Main Results

Theorem 3.1. Suppose that there is a Hilbert space X, having a subset K, which is
compact and convex and also that there is a non expansive mapping T , defined from K
to P (K), has an invariant point. Assume that

(1) 0 ≤ ϑn, ςn < 1,
(2) ςn → 0, and
(3)

∑
ϑnςn =∞.

Then convergence of Picard-S hybrid iteration scheme which is defined as (A) takes place
to a fixed point ζ of T .

Proof. From Lemma 2.3 it follows that,

||n+1 − η||2 = ||z′n − η||2

≤ H2(T`n, Tη) (1)

≤ ||`n − η||2 , (2)

Also,

||`n − η||2 = || (1− ϑn) z′′n + ϑnz
′′′
n − η||2

= (1− ϑn)||z′′n − η||
2

+ ϑn||z′′′n − η||
2 − ϑn(1− ϑn)||z′′n − z′′′n ||

2

≤ (1− ϑn)H2(Tn, Tη) + ϑnH
2(Tzn, Tη)− ϑn(1− ϑn)||z′′n − z′′′n ||

2

≤ (1− ϑn)||n − η||2 + ϑn||zn − η||2 − ϑn(1− ϑn)||z′′n − z′′′n ||
2
, (3)

which implies

||zn − η||2 = || (1− ςn) n + ςnz
′′
n − η||2
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= (1− ςn)||n − η||2 + ςn||z′′n − η||
2 − ςn(1− ςn)||n − z′′n||

2

≤ (1− ςn)||n − η||2 + ςn H
2(Tn, Tη)− ςn(1− ςn)||n − z′′n||

2

≤ (1− ςn) ||n − η||2 + ςn||n − η||2 − ςn (1− ςn) ||n − z′′n||
2

≤ ||n − η||2 − ςn(1− ςn)||n − z′′n||
2
. (4)

From (4) and (3), we have

||`n − η||2 ≤ (1− ϑn)||n − η||2 + ϑn[||n − η||2 − ςn(1− ςn)||n − z′′n||2]
− ϑn(1− ϑn)||z′′n − z′′′n ||2 ,

||`n − η||2 ≤ ||n − η||2 − ϑn(1− ϑn)||z′′n − z′′′n ||2 − ϑnςn(1− ςn)||n − z′′n||2 . (5)

From (5) and (2), we have

||n+1 − η||2 ≤ ||n − η||2 − ϑn(1− ϑn)||z′′n − z′′′n ||2 − ϑnςn(1− ςn)||n − z′′n||2.

Therefore,

ϑnςn(1− ςn)||n − z′′n||2 ≤ ||n − η||2 − ||n+1 − η||2 − ϑn(1− ϑn)||z′′n − z′′′n ||2.

Also,

ϑnςn(1− ςn)||n − z′′n||2 ≤ ||n − η||2 − ||n+1 − η||2

which implies that
∞∑
n=1

ϑnςn(1− ςn)||n − z′′n||2 ≤ ||n − η||2 <∞.

Considering {γn} being a real sequence, which is non negative, so much so that the series∑
ϑnςn(1 − ςn)γn being bounded, wherein convergence of sub-sequence of γn to 0 takes

place, as is suggested through Lemma 2.1. As such, whenever there is an approach by l
towards infinity, there is an approach towards 0 by ||nl

− z′′nl
|| wherein {n − z′′n} bears a

sub-sequence ||nl
− z′′nl

||. It is shown that z′′nl
∈ Tnl

, therefore,

d(Tnl
, nl

) ≤ ||nl
− z′′nl

|| → 0.

Since, ||nl
− z′′nl

|| → 0 as l→∞ and {nl
} ⊂ K, where K being compact and assumption

can be made that nl
→ ζ whenever ∞ is approached by l. Now,

d(Tnl
, ζ) ≤ d(Tnl

, nl
) + ||nl

− ζ|| → 0

as l→∞. Also, H(d(Tnl
, T ζ))→ 0 as l→∞.

Consequently,

d(Tζ, ζ) ≤ d(ζ, T nl
) +H(Tnl

, T ζ)→ 0

as l→∞. Thereby, it can be seen that ζ ∈ Tζ. And, thus follows the Theorem 3.1.
�

Theorem 3.2. Suppose that while X being a Hilbert space having K as a subset, which is
compact and convex, the generalized nonexpansive mapping T, defined from K to P (K),
having an invariant point η. Assume that
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(4) 0 ≤ ϑn, ςn < 1,
(5) ςn → 0, and
(6)

∑
ϑnςn =∞.

Then, the Picard-S hybrid iteration scheme characterized by (A) gets converged to an
invariant point ζ belonging to T .

Proof. Since, we have

||n+1 − η||2 ≤ ||z′n − η||2 ≤ H2(T`n, Tη). (6)

Also, T is generalized nonexpansive mapping, we have

H(Tp, T `n) ≤ α||`n − η||+ βd(`n, T `n) + γ{d(η, T `n) + d(`n, Tη)}
≤ α||`n − η||+ β{||`n − η||+ d(η, T `n)}+ γ{d(η, T `n) + d(`n, Tη)}
≤ (α+ β + γ)||`n − η||+ (β + γ)d(η, T `n)

≤ (α+ β + γ)||`n − η||+ (β + γ)H(Tη, T `n) .

Hence

H(Tη, T `n) ≤ α+ β + γ

1− (β + γ)
||`n − η|| . (7)

Since
α+ β + γ

1− (β + γ)
≤ 1,

we have

H(Tη, T `n) ≤ ||`n − η||.
Now, from equations (6) and (7), we have

||n+1 − η||2 ≤ ||`n − η||2,

which is the inequality (2). In the same way, it is of very little significance to show that
from inequality (3) and (4), we have

||`n − η||2 ≤ (1− ϑn)||n − η||2 + ϑn||zn − η||2 − ϑn(1− ϑn)||z′′n − z′′′n ||2

and

||zn − η||2 ≤ ||n − η||2 − ςn(1− ςn)||n − z′′n||2.
�

Now, proceeding as we did with Theorem 3.1, the aforementioned theorem necessarily
follows.

Theorem 3.3. Suppose, X is a Hilbert space having a subset K which is closed as well as
convex and bounded, and that a quasi-contractive mapping T is a mapping defined from
K to P (K) is a mapping and has an invariant point η. Suppose real sequences {ϑn} and
{ςn} in such a manner, that

(1) 0 ≤ ϑn, ςn < 1 for all n,
(2) ςn → 0 as n→∞ with δ ≤ ϑn ≤ 1− k2 for some δ > 0.

Thereby, Picard-S iteration sequence as is defined by (A), gets converged to η of T .
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Proof. Since, we have

||n+1 − η||2 = ||z′n − η||2, (8)

||z′n − η|| = d(η, T `n) ≤ H(Tη, T `n).

Therefore

||z′n − η||2 ≤ H2(Tη, T `n) ≤ k2 max{||`n − η||2, d2(`n, T `n), d2(η, T `n)} (9)

Also,

d2(`n, T `n) ≤ ||`n − η||2.

Let d(η, T `n) is maximum, we have

H2(Tη, T `n) ≤ k2d2(η, T `n) ≤ k2 max d2(z, T `n) ≤ k2H2(Tη, T `n)

where
0 ≤ ||z′n − η||2 ≤ H2(Tη, T `n) = 0.

Hence from (9), we have

||n+1 − η||2 = ||z′n − η||2

≤ H2(Tη, T `n)

≤ k2 max{||`n − η||2, d2(`n, T `n)}
≤ k2[||`n − η||2 + d2(`n, T `n)]. (10)

Considering

||`n − η||2 = (1− ϑn)||z′′n − η||2 + ϑn||z′′′n − η||2 − ϑn(1− ϑn)||z′′n − z′′′n ||2

d2(`n, T `n) ≤ ||`n − z′n||2 = ||(1− ϑn)z′′n + ϑnz
′′′
n − z′n||2

= (1− ϑn)||z′′n − z′n||2 + ϑn||z′′′n − z′n||2 − ϑn(1− ϑn)||z′′n − z′′′n ||2 (11)

Also, it is to note that

||z′′n − η||2 = d2(η, T n) ≤ H2(Tη, T n)

Therefore

||z′′n − η||2 ≤ H(Tη, T n) ≤ k2 max{||n − η||2, d2(n, T n), d2(η, T n)}
Also,

d2(n, T n) ≤ ||n − η||2.

Now, on considering d(η, T n) as maximum, we have

H2(Tη, T n) ≤ k2d2(η, T n) .

So that
0 ≤ ||z′′n − η||2 ≤ H2(Tη, T n) = 0,

which implies that

||z′′n − η||2 ≤ H(Tη, T n) ≤ k2 max{||n − η||2, d2(n, T n)}
≤ k2[||n − η||2 + d2(n, T n)] . (12)
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Similarly,

||z′′′n − η||2 ≤ H(Tp, Tzn) ≤ k2 max{||zn − η||2, d2(zn, T zn)}
≤ k2[||zn − η||2 + d2(zn, T zn)] . (13)

Also,

||zn − η||2 = ||(1− ςn)n + ςnz
′′
n − η||2

= (1− ςn)||n − η||2 + ςn||z′′n − η||2 − ςn(1− ςn)||n − z′′n||2 , (14)

d2(zn, T zn) ≤ ||zn − z′′′n ||2

= ||(1− ςn)n + ςnz
′′
n − z′′′n ||2

= (1− ςn)||n − z′′′n ||2 + ςn||z′′n − z′′′n ||2 − ςn(1− ςn)||n − z′′n||2, (15)

which on combining with above mentioned equations, gives

||`n − η||2 = (1− ϑn)k2[||n − η||2 + d2(n, T n)] + ϑnk
2[||zn − η||2 + d2(zn, T zn)]

− ϑn(1− ϑn)||z′′n − z′′′n ||2 ,
||`n − η||2 = ||n − η||2[(1− ϑn)k2 + ϑnk

4(1− ςn)] + d2(n, T n)[(1− ϑn)k2]

+ ϑnk
4ςn||z′′n − p||2 − (1− k2)ϑnk4ςn(1− ςn)||n − z′′n||2

+ ϑnk
2(1− ςn)||n − z′′′n ||2 + [ϑnk

2ςn − ϑn(1− ϑn)]||z′′n − z′′′n ||2. (16)

Consequently from (12), we get

||`n − η||2 = ||n − η||2[(1− ϑn)k2 + ϑnk
4(1− ςn) + ϑnk

6ςn]

+ d2(n, T n)[(1− ϑn)k2 + ϑnk
6ςn]− (1− k2)ϑnk4ςn(1− ςn)||n − z′′n||2

+ ϑnk
2(1− ςn)||n − z′′′n ||2 + [ϑnk

2ςn − ϑn(1− ϑn)]||z′′n − z′′′n ||2. (17)

Consequently from (10), we have

||n+1 − η||2

= ||n − η||2[(1− ϑn)k4 + ϑnk
6(1− ςn) + ϑnk

8ςn] + d2(n, T n)[(1− ϑn)k4 + ϑnk
8ςn]

− (1− k2)ϑnk6ςn(1− ςn)||n − z′′n||2 + ϑnk
4(1− ςn)||n − z′′′n ||2

+ [ϑnk
4ςn − 2k2ϑn(1− ϑn)]||z′′n − z′′′n ||2 + (1− ϑn)k2||z′′n − z′n||2 + k2ϑn||z′′′n − z′n||2

(18)

we have
(1− k2)ϑnk6ςn(1− ςn) ≥ (1− k2)2k6ςn(1− ςn) ≥ 0 ∀ n.

Also, As δ ≤ ϑn ≤ 1− k2, there exists a positive integer n ≥ N1 for which,

(1− ϑn)k4 + ϑnk
6(1− ςn) + ϑnk

8ςn ≤ k6 + (1− k2)k6(1− ςn) + (1− k2)k8ςn
= γ (say)

and 0 < γ < 1. In a similar manner, it is easy to choose sufficiently large n for which

||n+1 − η||2 = γ||n − η||2 + [(1− ϑn)k4 + ϑnk
8ςn]D1

+ [ϑnk
4ςn − 2k2ϑn(1− ϑn)]D2 + (1− ϑn)k2D3 + k2ϑnD4



NISHA SHARMA, ARTI SAXENA: CONVERGENCE OF PICARD-S HYBRID ITERATES 165

if D = max{D1, D2, D3, D4},

||n+1 − η||2 = α||n − η||2 + [ϑnk
2(k2ςn − 2(1− ϑn)] + 1) + (1− ϑn)k2]D

with K having diameter D. The convergence of sequence {n} to η takes place whereby
there is an approach by n towards infinity. The same follows from Lemma 2.2, and so
does the theorem.

In order to support theory, we will use a numerical example provided by Shahzad and
Zegeye [20].

Example 3.1. Let X = [0,∞) be equipped with the usual metric d(x, y) = |x− y|, defin-
ing a multivalued mapping T from K to CB(K) as

Tx =

{
[x− 3

4 , x−
1
3 ] if x > 1,

{0} if x ≤ 1.

Then T is generalized nonexpansitve mapping; however, T is not nonexpansive.

Remark. A well illustrated example ([8], page 826) proved that the limit of the sequence
of Ishikawa iterates depends on the choice of the invariant point ζ, and the initial choice of
0 and the invariant point may be different from ζ, same does for Picard-S hybrid iterates.

Acknowledgment. Authors are grateful to the learned referees for bringing out our
attention to the article. Authors are also thankful to the referees for their invaluable
suggestions which enhanced the quality and presentation of the paper.
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