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NONSTANDARD FINITE DIFFERENCE SCHEMES WITH

APPLICATION TO BIOLOGICAL MODELS

M. MEHDIZADEH KHALSARAEI1, M. SHAHRIARI1, §

Abstract. This paper deals with the construction of nonstandard finite difference meth-
ods for solving a specific Rosenzweig-MacArthur predator-prey model. The reorgani-
zation of the denominator of the discrete derivatives and nonlocal approximations of
nonlinear terms are used in the design of new schemes. We establish that the proposed
nonstandard finite difference methods are elementary stable and satisfy the positivity
requirement. We provide some numerical comparisons to illustrate our results.
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1. Introduction

Ordinary differential equations (ODEs) are used extensively in the modeling of many
biological and physical applications. They constitute a central component in applied math-
ematics. Their numerical simulations are fundamental importance in gaining the correct
qualitative and quantitative information on the systems. Numerical methods based on
the finite difference approximations, Taylor series expansion, and interpolation, such as
Euler, Runge-Kutta and Adams methods are widely used (see, for example [14]). Tradi-
tionally, important requirements in this context are, the investigation of the consistency
of the discrete schemes with the original differential equation and linear stability analy-
sis for problems with smooth solutions. These requirements are important, because they
guarantee convergence of the discrete solution to the exact one, but the essential qual-
itative properties of the solution are not transferred to the numerical solution. On the
other hand, several biological and physical problems involve the presence of variables that
satisfy positivity constraints. For instance, when the variables are the population density
in mathematical biology, it is a natural demand that the resulting numerical approxima-
tions should be non-negative. Furthermore, a negative value may cause undershoots near a
steep gradient. Therefore, we need to analysis numerical methods from the point of view of
positivity (preservation of nonnegativity)[13, 15, 16, 17, 18, 19, 20, 21, 25, 26]. One of the
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system of ODEs that satisfies the condition of positivity of its solutions is the well-known
predator-prey model from mathematical biology. This system of differential equations was
introduced by Rosenzweig-MacArthur in order to understanding the population dynamics
of analyzed biological systems. There are many different kind of predator-prey models
in the mathematical biology literature including continuous and discrete models. Several
works have been devoted to investigate these models regarding periodicity, global stability
boundedness and others features [7, 8, 11, 23]. The aim of this manuscript is to intro-
duce two finite-difference schemes to approximate consistent solutions of the predator-prey
models, which is an equation for which the existence of the non-negative solution is a well-
known fact [6, 7, 8, 9]. Proposed methods are elementary stable and satisfy the positivity
requirement. The remainder of this paper is organized as follows:
In Section 2, we give some preliminaries and definitions including nonstandard finite differ-
ence methods for ODEs, elementary stability and Rosenzweig-MacArthur predator-prey
model. In Section 3, we propose new NSFD schemes and then we present the elementary
stability conditions and positivity requirements. Furthermore, to illustrate the advan-
tages of the new schemes we compare them with the results obtained from the second
order Rung-Kutta (RK2) method, elementary stable nonstandard (ESN) Euler and ex-
plicit Euler methods. Finally, we end the paper with some conclusions in Section 4.

2. Preliminaries and definitions

We now give a brief summery of the nonstandard finite difference (NSFD) methods for
the numerical solution of the following initial value problem

d

dt
U(t) = F (U(t)), (t ≥ 0), U(0) = U0, (1)

where U(t) mapping [t0, T ) → Ck and the corresponding F mapping ([t0, T ), Ck) →
([t0, T ), Ck). Discretization of the differential equation with tn = t0 + n∆t, where ∆t
is a positive step size. So, we get

Un ≈ U(tn), (2)

and for the Eq. (1) we obtain

D∆tUn = Fn(F,Un), (3)

where D∆tUn discretization of d
dtU(t) and Fn(F,Un) approximation of F (U(t)) in tn. We

define the nonstandard one-step finite-difference method based on a definition given by
Anguelov and Lubuma [1, 2, 3, 4].

Definition 2.1. Method (2) is called a nonstandard finite-difference method if at least
one of the following conditions is met:

• In the discrete derivatives D∆tUn the traditional denominator ∆t is replaced by a
nonnegative function ϕ(∆t) such that

ϕ(∆t) = ∆t+O(∆t2) as 0 < ∆t→ 0, (4)

• Nonlinear terms in F (U(t)) are approximated in a nonlocal way, i.e. by a suitable
function of several points of the mesh. For instance, the non-linear terms U2 and
U3 can be modelled as follows as in Anguelov and Lubuma [2]:

U ≈ aUk + (1− a)Uk+1, a ∈ R
U2 ≈ aU2

k + bUkUk+1, a, b ∈ R and a+ b = 1,

U3 ≈ aU3
k + (1− a)U2

kUk+1, a ∈ R.



M. M. KHALSARAEI, M. SHAHRIARI: NONSTANDARD FINITE DIFFERENCE SCHEMES ... 349

Definition 2.2. Any constant-vector Ũ satisfying

F (Ũ) = 0,

is called equilibrium point (fixed-point or critical point) of the differential equation in (1).

Definition 2.3. The finite difference method

D∆tUn = Fn(F,Un),

is called elementary stable, if for any value of the step size ∆t, its only equilibrium point
Ũare those of the differential system (1). The linear stability properties of each Ũ being
the same for both the differential system and the discrete method.

Lemma 2.1. For the quadratic equation λ2 + αλ + β = 0 by using the well-known Jury
condition [10, 24] both roots satisfy |λi| < 1, i = 1, 2 iff the following conditions are satisfied:

• 1− α+ β > 0,
• 1 + α+ β > 0, and
• β < 1.

Predator-prey systems are among the most discussed and analyzed topics in mathemat-
ical biology. Their relatively simple form as a system of two differential equations allows
for detailed understanding of their underlying behavior, even though explicit solutions are
not available in a closed form. The general Rosenzweig–MacArthur predator-prey model
[5, 9, 27] with a logistic intrinsic growth of the prey population has the following form:

dx

dt
= bx(1− x)− ag(x)xy, x(t0) = x0 ≥ 0,

dy

dt
= g(x)xy − dy, y(t0) = y0 ≥ 0, (5)

where x and y represent the prey and predator population sizes, respectively, b > 0
represents the intrinsic growth rate of the prey, a > 0 stands for the capturing rate and
d > 0 is the predator death rate. In (5) it is reasonable to assume

g(x) ≥ 0, g′(x) ≤ 0, [xg(x)]′ ≤ 0, (6)

and that functional response xg(x) is bounded as x→∞. From [2, 9] system (1) have the
following equilibria:

1: E0 = (0, 0),
2: E1 = (1, 0) and

3: E∗ = (x∗, y∗) where x∗ is the solution of x∗g(x∗) = d and y∗ = bx∗(1−x∗)
ad . The

equilibrium E∗ exists if and only if g(1) > d.

The equilibrium (0, 0) is always linearly unstable. The equilibrium (1, 0) is linearly stable
if g(1) < d and linearly unstable if g(1) > d. Finally, the equilibrium (x∗, y∗) is linearly
stable if b+ ay∗g′(x∗) > 0 and linearly unstable if b+ ay∗g′(x∗) < 0.

3. Construction of new schemes

In this section, our main aim is apply Mickens rules [22] to construct two positive and
elementary stable nonstandard (PESN) schemes for solving the system (1).
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Scheme 1. Our first proposed scheme is

xk+1 − xk
ϕ(h)

= 2bxk − (b+ bxk + ag(xk)yk)xk+1,

yk+1 − yk
ϕ(h)

= (d+ g(xk)xk)yk − 2dyk+1, (7)

where

ϕ(h) =
φ(hq)

q
<

1

q
, 0 < φ(h) < 1.

The explicit form of the scheme (7) can be written as follow:

xk+1 =
(1 + 2bϕ(h))xk

1 + bϕ(h)(1 + xk) + aϕ(h)g(xk)yk
,

yk+1 =
(1 + ϕ(h)(d+ g(xk)xk))yk

1 + 2dϕ(h)
. (8)

Theorem 3.1. The sufficient condition for the scheme (7) to be PESN is

ϕ(h) <
b+ ayg′(x∗)

bg(x∗)(1− 3x∗)− hbx∗(1− x∗)g′(x∗)
.

Proof. Since the constants a, b, d and the function g are positive then the system (8) is
unconditionally positive and its equilibrium points are exactly the same equilibria E0, E1

and E∗ of system (5). The Jacobian matrix of the scheme (8) has the following form:

J(x̄, ȳ) =
(1 + 2bϕ(h)) (1 + bϕ(h) + aϕ(h)ȳ(g(x̄)− g′(x̄)x̄))

(1 + bϕ(h)(1 + x̄) + ϕ(h)aȳg(x̄))2 − (1 + 2bϕ(h))aϕ(h)x̄g(x̄)

(1 + bϕ(h)(1 + x̄) + ϕ(h)aȳg(x̄))2

ϕ(h)ȳ(g(x̄) + x̄g′(x̄))

1 + 2dϕ(h)

1 + ϕ(h)(d+ x̄g(x̄))

1 + 2dϕ(h)

 .

Substituting E0 in J we derive

J(0, 0) =


1 + 2bϕ(h)

1 + bϕ(h)
0

0
1 + dϕ(h)

1 + 2dϕ(h)

 ,

from which

λ1 =
1 + 2bϕ(h)

1 + bϕ(h)
and λ2 =

1 + dϕ(h)

1 + 2dϕ(h)
,

since |λ1| > 1 therefore, the equilibrium point E0 is unstable. Now, by substituting E1 in
the Jacobian we have

J(1, 0) =


1 + bϕ(h)

1 + 2bϕ(h)
− ϕ(h)ag(1)

1 + 2bϕ(h)

0
1 + ϕ(h)(d+ g(1))

1 + 2dϕ(h)

 ,

the eigenvalues of J(1, 0) are

λ1 =
1 + bϕ(h)

1 + 2bϕ(h)
and λ2 =

1 + ϕ(h)(d+ g(1))

1 + 2dϕ(h)
.
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If the equilibrium E1 is stable then g(1) < d and therefore |λ1| < 1 and |λ2| < 1. Thus E1

is a stable fixed point of scheme (8).
For the equilibrium E∗ = (x∗, y∗), the Jacobian matrix is as follow:

J(x∗, y∗) =


1− x∗ϕ(h) (g(x∗) + ay∗g′(x∗))

1 + 2bϕ(h)

−adϕ(h)

1 + 2bϕ(h)

ϕ(h)y∗ (g(x∗) + x∗g′(x∗))

1 + 2dϕ(h)
1

 ,

the eigenvalues of J(x∗, y∗) are roots of the quadratic equation λ2 − αλ+ β = 0 where

α = C + 1, β = C +AB,

with

A =
adϕ(h)

1 + 2bϕ(h)
, B =

ϕ(h)y∗ (g(x∗) + x∗g′(x∗))

1 + 2dϕ(h)
,

C =
1 + bϕ(h)(2− x∗)− aϕ(h)x∗y∗g′(x∗)

1 + 2bϕ(h)
.

The equilibrium (x∗, y∗) is stable iff all conditions of Lemma 2.1 hold and is unstable if at
least one of the conditions fails. The first condition of Lemma 2.1 is as follow:

1− α+ β = AB.

Since

A =
adϕ(h)

1 + 2bϕ(h)
> 0, B =

ϕ(h)y∗ (g(x∗) + x∗g′(x∗))

1 + 2dϕ(h)
> 0,

then AB > 0. The first condition of Lemma 2.1 is always true. In addition, since 0 <
x∗ < 1 and g′(x∗) < 0, then C > 0 and we derive 1 + α + β > 0 . Finally, the condition
β < 1 is satisfied, provided that

ϕ(h)(bg(x∗)(1− 3x∗)− hx∗b(1− x∗)g′(x∗)) < b+ ayg′(x∗). (9)

If x∗ ≥ 1
3 , there is nothing to prove and (9) is hold, then β < 1. Next, if x∗ < 1

3 , a way to
ensure (9) is to demand

ϕ(h) <
b+ ayg′(x∗)

bg(x∗)(1− 3x∗)− hx∗b(1− x∗)g′(x∗)
, (10)

Hence, the equilibrium point E∗ is stable. These results guarantee dynamical consistency
between the system (5) and the numerical scheme (8) around all equilibria. Therefore, the
new proposed scheme is elementary stable. �

The scheme developed above was tested for system (5) with a Holling-type II predator

functional response of the form xg(x) =
x

c+ x
, corresponding parameters a = 2, b = 1, c =

0.5, d = 6 and ϕ(h) = 1−e−hq

q [9, 12]. The graphical representations below show the posi-

tivity property of the new scheme while the approximations obtained by the explicit Euler
method, RK2 method and ESN Euler method are not positive, see Figure 1((a),(b),(c)).
Furthermore, the explicit Euler method and RK2 method diverge, Figure 1((a),(c)). Next,
we examine system (5) in the case that the parameters are a = 2, b = 1, c = 1 and d = 0.2.
It can be easily observed that new scheme consistent with the positive behavior of the sys-
tem (5) and it is linearly stable and has only the same equilibrium point as the (5).
Furthermore, unlike the RK2 method the new scheme is not sensitivity to changes in step
size h as well as the initial values, see Figure 2.
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Figure 1. Numerical results obtained by the new method (for q = 1.4), ESN method
(for q = 3.1), explicit Euler method and RK2 with a = 2, b = 1, c = 0.5 and d = 6.
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Figure 2. Numerical results with a = 2, b = 1, c = 1 and d = 0.2 and q = 1.4.

Scheme 2. We construct our second new NSFD scheme as follow:
xk+1 − xk

h
= bxk(1− xk+1)− ag(xk)xk+1yk+1,

yk+1 − yk
h

= g(xk)xk+1yk+1 − dyk+1. (11)
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However, before solving the system (5), we are going to make some remarks about imple-
mentation of (11). Suppose that the following predictor-corrector iteration are being used
to solve the nonlinear equations (5).

xck+1 =
(1 + hb)xk

1 + hbxk + ahg(xk)ypk+1

, (12)

yck+1 =
yk + hg(xk)xck+1y

p
k+1

1 + hd
. (13)

More precisely, suppose that x1 = x(0) and y1 = y(0), which is the initial value of (5). By
using an explicit method

xpk+1 =
(1 + hb)xk

1 + hbxk + ahg(xk)yk
, (14)

ypk+1 =
(1 + hxkg(xk))yk

1 + hd
, (15)

we make an initial guess for xk+1 and yk+1 [9]. These values are substituted in to (12).
So, we can obtain an improved approximation xk+1. This value together with ypk+1 are
substituted in (13) to get improved yk+1. Then, the process will continue.

Theorem 3.2. The scheme (12)–(15) is unconditionally PESN.

Proof. Since the constants a, b, d and the function g are positive then the system (12)-(15)
is unconditionally positive and its equilibrium points are exactly the same equilibria E0

and E1 of the system (5). To study the elementary stability of scheme (12), we consider
the following expressions:

F2(xk, yk) =
(1 + hb)xk

1 + hbxk + ahg(xk)G1(xk, yk)
, (16)

G2(xk, yk) =
yk + hg(xk)F2(xk, yk)G1(xk, yk)

1 + hd
,

where

F1(xk, yk) = xpk+1, G1(xk, yk) = ypk+1.

As in the proof of the previous theorem, the Jacobian matrix J of the scheme (16) is
J(xk, yk) = [jmn(xk, yk)]2×2, where
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j11(xk, yk) =
1 + bh

1 + bhxk + ahg(xk)G1(xk, yk)

−
hxk

(
b+ ag′(xk)G1(xk, yk) + ag(xk)∂G1

∂x (xk, yk)(1 + bh)
)

(1 + bhxk + ahg(xk)G1(xk, yk))2
,

j12(xk, yk) = −
hxk

(
ag(xk)∂G1

∂y (xk, yk)(1 + bh)
)

(1 + bhxk + ahg(xk)G1(xk, yk))2
,

j21(xk, yk) =
h

1 + hd

(
g′(xk)F2(xk, yk)G1(xk, yk)

+ g(xk)

(
G1(xk, yk)

∂F2

∂x
(xk, yk) + F2(xk, yk)

∂G1

∂x
(xk, yk)

))
,

j22(xk, yk) =
1 + hg(xk)G1(xk, yk)∂F2

∂y (xk, yk) + hg(xk)F2(xk, yk)∂G1
∂y (xk, yk)

1 + hd
.

Substituting E0 in J(xk, yk) we derive

J(0, 0) =

 1 + hb 0

0
1

1 + hd

 ,

from which

λ1 = 1 + hb, λ2 =
1

1 + hd
.

Since |λ1| > 1 therefore, the equilibrium point E0 is always unstable. The Jacobian matrix
is

J(1, 0) =


1

1 + hb
−ahg(1)(1 + g(1))

(1 + hb)(1 + hd)

0
1 + hd+ hg(1) + h2g2(1)

1 + 2hd+ h2d2

 ,

and the eigenvalues of the matrix J(1, 0)

λ1 =
1

1 + hb
and λ2 =

1 + hd+ hg(1) + h2g2(1)

1 + 2hd+ h2d2
.

If the equilibrium E1 of the system (5) is stable then g(1) < d and therefore |λ1| < 1 and
|λ2| < 1. Thus E1 is an stable equilibrium point of scheme (16). Therefore, these results
guarantee a dynamical consistency between the system (5) and the numerical scheme (16)
around the equilibrium points E0 and E1. Hence, the new proposed scheme is PESN. �

Figure 3, shows that the numerical results obtained from the new scheme, RK2, explicit
Euler and ESN Euler methods for solving (5) with the same parameters used in the pre-
vious scheme. We observe that the new scheme preserve the stability of the equilibrium
(1, 0) and positivity of the solution, while the explicit Euler method and RK2 approxi-
mations to evolve away from the equilibrium (1, 0) and produce the negative value, see
Figure 3((a),(b)). Furthermore, approximation of the solution obtained by ESN method
is negative, Figure 3(c).
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Figure 3. Numerical results obtained by the new method (for q = 1.4), ESN method
(for q = 3.1), explicit Euler method and RK2 with a = 2, b = 1, c = 0.5 and d = 6.

4. Conclusion

In this manuscript, we applied the nonstandard discretization methods to solve numer-
ically the Rosenzweig-MacArthur predator-prey model with a Holling-type II functional
response which has a finite number of hyperbolic equilibria. The new proposed schemes
preserve the stability of all equilibria and the positivity of all solutions. Comparing with
the standard numerical methods e.g. the explicit Euler method and the Runge-Kutta
method, we do feel that our results indicate that a properly implemented version of our
scheme should be useful for the numerical integration of mentioned predator-prey model.
Our interest for future works is to construct more nonstandard schemes for the general
case of biological systems.
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