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INVERSE PROBLEM FOR ALBERTSON IRREGULARITY INDEX

A. Y. GUNES1, M. TOGAN1, M. DEMIRCI1, I. N. CANGUL1, §

Abstract. Graph indices have attracted great interest as they give us numerical clues
for several properties of molecules. Some indices give valuable information on the
molecules under consideration using mathematical calculations only. For these reasons,
the calculation and properties of graph indices have been in the center of research. Nat-
urally, the values taken by a graph index is an important problem called the inverse
problem. It requires knowledge about the existence of a graph having index equal to a
given number. The inverse problem is studied here for Albertson irregularity index as
a part of investigation on irregularity indices. A class of graphs is constructed to show
that the Albertson index takes all positive even integers. It has been proven that there
exists at least one tree with Albertson index equal to every even positive integer but 4.
The existence of a unicyclic graph with irregularity index equal to m is shown for every
even positive integer m except 4. It is also shown that the Albertson index of a cyclic
graph can attain any even positive integer.
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1. Introduction and preliminaries

Throughout this paper, let G = (V,E) be a connected, undirected and unweighted
graph with | V (G) |= n vertices and | E(G) |= m edges having no isolated vertices, unless
otherwise stated. For a vertex v ∈ V (G), we denote the degree of v by dG(v) or dv. A
vertex with degree one is called a pendant vertex and we shall use the term pendant edge
for an edge having a pendant vertex.

Topological graph indices have been defined and used in many areas in the last few
decades to study several properties of different objects such as atoms and molecules solely
by means of some mathematical techniques. Several topological graph indices have been
defined and studied by many mathematicians and chemists as most graphs are generated
from molecules by replacing atoms with vertices and bonds between them with edges.

1 Faculty of Arts and Science, Department of Mathematics, Uludag University, 16059, Bursa-Turkey.
e-mail: ayurttas@uludag.edu.tr, https://orcid.org/0000-0001-8873-1999.
e-mail: capkinm@uludag.edu.tr, https://orcid.org/0000-0001-5349-3978.
e-mail: mdemirci@uludag.edu.tr, https://orcid.org/0000-0002-6439-8439.
Corresponding author.
e-mail: ncangul@gmail.com, https://orcid.org/0000-0002-0700-5774.

§ Manuscript received: April 30, 2020; accepted: August 22, 2020.
TWMS Journal of Applied and Engineering Mathematics, Vol.12, No.3 © Işık University, Department
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These indices are defined as invariants measuring several physical, chemical, pharmaceu-
tical, biological properties of graphs which are modelling real situations. They can be
grouped mainly into three classes according to the way they are defined; by vertex de-
grees, by distances or by matrices.

Two of the earliest defined topological graph indices are called the first and second Za-
greb indices defined in 1972 by Gutman and Trinajstic, [15], and are often referred to due
to their uses in QSAR and QSPR studies. In [7], some results on the first Zagreb index
together with some other indices are given. In [8], the multiplicative versions of these
indices are studied. Some relations between Zagreb indices and some other indices such as
ABC, GA and Randic indices are obtained in [18]. Zagreb indices of subdivision graphs
were studied in [21] and these were calculated for the line graphs of the subdivision graphs
in [20]. In [26], all versions of Zagreb indices of subdivision graphs were studied and in [25],
several inequalities on Zagreb indices of r-subdivision graphs were obtained. The effect of
cut edges and cut vertices on some topological indices is investigated in [30]. In [23], the
(a,b)-Zagreb index of some derived networks was considered. The sum-edge characteristic
polynomials of graphs was investigated in [19]. In [2], the Narumi–Katayama index of the
subdivision graphs was studied. In [5, 6], the complexity of graphs is studied and in [22],
total edge irregularity strength of graphs is discussed.

The existence of the inverse problems in many areas of science, and naturally mathe-
matics, is quite important, and the one for the graph theory is a recent one. The inverse
problem for graph indices is the one about the existence of a graph having index equal to
a given non-negative integer. This problem which formed the beginning of what is now
called the inverse problem for graph indices was first proposed in [16]. In [24], the inverse
problem for the first Zagreb index M1(G) was solved by showing that all positive even
integers except for 4 and 8 are equal to the first Zagreb index of a special type of graph
called caterpillar graph. In [28], Wagner showed that each integer greater than 469 is the
Wiener index of a special graph class called starlike trees. In [29], all 49 positive integer
values which are not the Wiener index of any tree are listed. Some more results for the
Wiener index was obtained in [3] and [9] and in [12], Goldman et. al. gave the final result
for Wiener index: Except 2 and 5, all positive integers can be the Wiener index of at least
one graph.

If all vertices of a graph have the same degree, then the graph is called regular. Regular-
ity makes calculations easier in many occasions and regular graphs usually form examples
or counterexamples in many areas of graph theory. A graph which is not regular, that is
which has at least two unequal vertex degrees, is called irregular. Irregularity may occur
slightly or strongly. As a result of this, several measures for irregularity have been defined
and used by some authors. The most throughly investigated ones are the Albertson index
(which is also called irregularity index, third Zagreb index or Kekule index) defined as

Alb(G) =
∑

uv∈E(G)

|du − dv|, (1)

see [1], [10], [11], the Bell index

B(G) =
∑

v∈V (G)

(
dv −

2m

n

)2

, (2)
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see [4] and [11] and the sigma index

σ(G) =
∑

uv∈E(G)

(du − dv)2. (3)

In [14], the inverse problem for σ index was completely solved. In [27], the inverse problem
is answered for Bell index. In [13], Gutman et.al. compared the irregularity indices for
chemical trees, and the inverse problem for four topological indices were studied in [17].
Recently, the problem for the second Zagreb index M2(G), forgotten Zagreb index F (G),
and the hyper-Zagreb index HM(G) were completely solved in [31]. For the second Zagreb
index M2(G), 10 values of positive integers which cannot be the second Zagreb index of
any graph were found. Similarly, it was found that there are 10 values of positive even
integers which cannot be the forgotten index of any graph. In the same paper, also the
50 values of positive even integers which cannot be the hyper-Zagreb index of any graph
were determined.

In this paper, we study the inverse problem for the Albertson irregularity index. We
shall show that it must be even for any simple (without loops and multiple edges) graph.
We shall also study the inverse problem for trees, unicyclic graphs and cyclic graphs.

2. Albertson irregularity index

Now we can obtain some properties of the Albertson index which will be used to solve
the inverse problem. First we have,

Theorem 2.1. The Albertson index Alb(G) of a simple graph G is even.

Proof. Recalling the definitions of Albertson and sigma indices, the result follows by the
fact that the sigma index of a simple graph is even and the parities of each term |du− dv|
and (du − dv)2 in these sums are the same, see [14]. �

The effect of adding a new edge to a graph on its Albertson index can be determined
as follows:

Theorem 2.2. Let G be a connected simple graph having at least three vertices. Let
the neighbours of the vertex u with degree dGu = t > 1 be v1, v2, · · · , vt with degrees
dG1, dG2, · · · , dGt, respectively. Let k be a positive integer such that dGi ≤ dGu for
i = 1, 2, · · · , k with k ≤ t, and dGi > dGu for i = k + 1, k + 2, · · · , t. Then Alb(G)
increases by 2k when a new pendant edge e is added to G at u.

By the definition of Alb(G), we can omit calculating the terms |du − dv| corresponding
to the edges with du = dv. We can apply this fact to paths and cycles. Whenever there
are n consecutive vertices on a path all having degree 2, replacing these n vertices with a
single vertex of degree 2 does not change the Albertson index. In [14], this simplification
method was named as path reduction. Similarly, if there are n successive vertices on a
cycle all having degree 2, we can replace them with a single vertex of degree 2. This is
called cyclic reduction, see Fig. 1. These two reduction ideas are very useful in eliminat-
ing or reducing the graphs under question in calculating the Alb(G). We can replace all
branches of length at least two with an edge as they have the same irregularity index.

For example, if we want to calculate the Albertson index of the tadpole graphs T5,4,
T7,3 or in general Tr,s, with r ≥ 3 and s ≥ 1, instead, we can calculate only the Albertson
index of T3,2 as all of these indices are the same after path and cyclic reduction.
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Figure 1. Cyclic reduction

3. Inverse problem for the Albertson index

In [24], Tavakoli and Rahbarnia had made use of a special type of tree called caterpil-
lars to solve the inverse problem for the first Zagreb index M1(G). They added a new
pendant edge to increase M1(G) regularly by 4 and they obtained infinitely many positive
integers corresponding to constructed graph family. In [14], the authors constructed a new
class of graphs denoted by Ca,b named as comb graphs obtained by adding one pendant
edge to each of the b adjacent vertices v2, v3, · · · , vb+1 of a path Pa+b+1 having vertices
v1, v2, · · · , va+b+1, see Fig. 2.

Figure 2. Some Ca,b graphs

To solve the inverse problem for the Albertson irregularity index, we first have

Transformation 1. Let G be a graph possessing a vertex v of degree dGv ≥ 3. Let
u be a pendant vertex of G adjacent to v. Construct the graph G∗ by attaching two new
pendant edges to u, cf. Fig. 3.

Figure 3. Transformation 1 giving G∗

The following result says that applying Transformation 1 to a connected simple graph
having a pendant vertex increases the Albertson index by 2:
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Lemma 3.1. For any connected simple graph G different than the null graphs and path
graphs,

Alb(G∗) = Alb(G) + 2. (4)

Proof. As dGv ≥ 3 and as Alb(G) = dGv − 1 +
∑

xy∈E(G−{u}) |dGx− dGy| and Alb(G∗) =

dGv − 3 + 2 + 2 +
∑

xy∈E(G−{u}) |dGx− dGy|, we obtain the required result. �

Note that we had the condition that v is a vertex of degree at least 3 in defining
Transformation 1. If we omit this condition and allow that dGv could be any positive
integer, then we would have

Alb(G) = Alb(G− u) + dGv − 1, (5)

for the graph G on the left in Fig. 3. The graph G+ {e1, e2} on the right has

Alb(G+ {e1, e2}) = Alb(G− u) + |dGv − 3|+ 4. (6)

Then we have,

Alb(G+ {e1, e2})−Alb(G) = |dGv − 3| − dGv + 5. (7)

Now we have several cases to consider: If dGv = 1, then G is P2 which has Albertson
irregularity index equal to 2, and G + {e1, e2} is S4 = C1,1. In this case, the increase of
Albertson irregularity index is 6 by Eq. (2). If dGv = 2, then our graph G is as in Fig. 4.
Here the increase is 4 by Eq. (2).

Figure 4. Transformation 1 with dGv = 2 gives G∗

If dGv = 3, then the increase of Albertson index is equal to 2. Therefore starting with
graph C1,1 which has Albertson index 6, we obtain the graphs C1,2, C1,3, · · · , C1,s with
Albertson indices 8, 10, · · · , 2s+ 4, respectively. That is, all even integers greater than 4
can be attained by the Albertson index Alb. Also the path graph Pn has Albertson index
2, and the tadpole graph T3,1 has Alb(T3,1) = 4. As all regular graphs have Albertson
index equal to 0, we have just proved the following.

Theorem 3.1. For every even non-negative integer m, there is at least one graph G such
that Alb(G) = m.

Note that amongst all graphs that are used in obtaining Theorem 3.3, only the tadpole
graph T3,1 is not acyclic. So we can immediately state the following result for trees:

Corollary 3.1. For every even positive integer m 6= 4, there is at least one tree T such
that Alb(T ) = m.
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Finally, we ask the same question for unicyclic graphs. That is what positive integer
values can be attained by the Alb index of a unicyclic graph. We construct a graph class
to give the result. Consider a cyclic graph Cn for n ≥ 3 and add one pendant edge to each
of the n vertices of Cn. The resulting graph, that we shall denote by Th(Cn) is called the
thorn graph of Cn in some sources, see Fig. 5. In Th(Cn), all the vertices on the cycle
have degree 3 and all other vertices have degree 1. Therefore each of the n edges on the
cycle contributes |3 − 3| = 0 and each of the n pendant edges contributes |3 − 1| = 2 to
Alb(Th(Cn)). Also the tadpole graph T3,1 has the Albertson index 4. Therefore we proved
the following result:

Figure 5. Thorn graph of Cn

Theorem 3.2. For every even positive integer m = 2n ≥ 4, there is at least one unicyclic
graph G such that Alb(G) = m.

As the graph in Fig. 6 has Albertson index 2, we have

Figure 6. A tricyclic graph with Albertson index 2

Theorem 3.3. For every even positive integer m = 2n, there is at least one cyclic graph
G such that Alb(G) = m.

The Albertson index has an interesting property which does not hold for other topolog-
ical indices: Clearly because of cyclic and path reductions, the graph obtained by adding
a new pendant edge to an existing pendant vertex of a graph G or increasing the number
of edges in an existing cycle would have the same Albertson index with the graph G. As
we can repeatedly apply these reductions infinitely many times, we obtain the following
result:

Corollary 3.2. For each fixed non-negative even integer m 6= 4, there exist infinitely
many connected simple graphs G with Alb(G) = m.

That is, each even positive integer except 4 can be attained as the Albertson index of
infinitely many graphs.
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4. Results and discussion

We used the fact that modelling a molecule by a graph gives the required information
on the properties of the molecule by means of some mathematical calculations made on
the graph. To achive this, we need to calculate the values of the index under consideration
and also determine which values are attained by this index. This latter problem is called
the inverse problem for graph indices. In this paper, inverse problem is solved for the Al-
bertson irregularity index. It is shown that the Albertson index takes all the even integer
values. For every positive even integer m but 4, the existence of a tree with Albertson
index m is shown. Also, results on Albertson index of unicyclic and cyclic graphs are
obtained. The other graph types such as bicyclic, threecyclic, etc are not considered as
the ones studied here are enough to solve the inverse problem. In a sequel paper, the
values of Albertson index could be calculated for other graph types.
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