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NUMERICAL SOLUTION OF SECOND ORDER LINEAR

HYPERBOLIC TELEGRAPH EQUATION

E. KIRLI1, D. IRK2, M. ZORSAHIN GORGULU2, §

Abstract. This paper is of about a numerical solution of the second order linear hy-
perbolic telegraph equation. To solve numerically the second order linear hyperbolic
telegraph equation, the cubic B-spline collocation method is used in space discretization
and the fourth order one-step method is used in time discretization. By using the fourth
order one-step method, it is aimed to obtain a numerical algorithm whose accuracy is
higher than the current studies. The efficiency and accuracy of the proposed method
is studied by two examples. The obtained results show that the proposed method has
higher accuracy as intended.

Keywords: Collocation method, cubic B-spline functions, one-step method, second order
linear hyperbolic telegraph equation.
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1. Introduction

The hyperbolic-type equations [37, 20, 23, 30] like as telegraph, Klein-Gordon, sine-
Gordon, etc. is encountered in the many fields of engineering and science such as vibra-
tions of structures into beams, machines and buildings and represented the fundamental
equations of atomic physics. The rapidly developing of the communication systems has
been increasing the importance of the studies in this fields. In transmission media, the
use of telegraph equation is commonly encountered in the studies for the analysis of in-
formation transmission signals and the propagation of electrical signals. The numerical
solution of this equation, which has an important place in engineering and science, by vari-
ous numerical methods is proposed. Mohanty obtained the numerical solution of telegraph
equation by using the implicit three-level difference scheme [28]. Dehghan and Shokri used
collocation points and approximated the numerical solution using thin plate splines radial
basis function [6]. El-Azad and El-Gamel investigated Rothe-Wavelet method to get the
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numerical solution of the telegraph equation [13]. The work of Dehghan and Lakestani
was about the numerical method based on the Chebyshev cardinal functions for solving
the telegraph equation numerically [7]. In study [39], he developed Legendre multiwavelet
Galerkin method for solving the hyperbolic telegraph equation. Saadatmandi and De-
hghan proposed a numerical algorithm to solve the telegraph equation [34]. Biazar et al.
solved numerically the second order hyperbolic partial differential equation by variational
iteration method [4]. Borhanifar and Abazari employed the unconditionally stable parallel
difference scheme to solve the second order one dimensional telegraph equation [5]. The
work of Lakestani and coworker included the numerical technique based on interpolat-
ing scaling functions. In study [8], they used two methods for the solution of hyperbolic
telegraph equation as the boundary integral equation method and the dual reciprocity
technique. Salkuyeh and Ghehsareh applied the variational iteration method to get a nu-
merical solution for the telegraph equation [35]. Dosti and Nazemi had an approach for the
numerical solution of the telegraph equation by using quartic B-spline, septic B-spline and
cubic B-spline quasi-interpolation collocation methods [10, 11, 12]. In studies [31] and [21],
they obtained the differential quadrature algorithms to find the numerical solution of hy-
perbolic telegraph equation. Ding et al. worked on the numerical solution of the telegraph
equation by the finite difference method based on non-polynomial splines [9]. Hosseini et
al. used the numerical method as Rothe-wavelet-Galerkin method to get the solution of
telegraph equation [18]. Mittal and Rachna used the modified cubic B-spline collocation
method in space discretization and the strong-stability-preserving Runge-Kutta scheme in
time discretization to solve the telegraph equation [27]. The study [25] included an un-
conditionally stable fourth-order method for the numerical solution of telegraph equation.
Srivastava et al. performed a numerical study using the reduced differential transform
method [38]. Inc et al. applied the reproducing Kernel Hilbert space method to be having
the numerical solution of the telegraph equation [19]. The work [15] included the sinc-
collocation method for solving the telegraph equation. In study [16], they developed an
algorithm which obtained by the Chebyshev wavelets method for the numerical solution
of telegraph equation. Abbasbandy et al. proposed two meshfree methods based on the
radial basis functions [1]. The work [32] included the cubic B-spline collocation method for
the numerical solution of telegraph equation. Rashidinia and Jokar had an approximation
based on the polynomial scaling functions for the numerical solution of telegraph equation
[33]. The work [14] was about the numerical solution algorithm of the telegraph equa-
tion by the high-order shifted Gegenbauer pseudospectral method. Mirzaee and Bimesl
analyzed the telegraph equation by an approach based on the uniformly convergent Euler
matrix method [26]. The work of Zhang et al. [41] was about an unconditionally stable
method for solving the telegraph equation. Sharifi and Rashidinia used the finite difference
and the finite element methods to get the numerical solution of the equation in study [36].
Yuzbasi presented a study [40] about the numerical solution of equation by using Bessel
collocation method. Lu and Jiang studied the symplectic schemes for telegraph equation
in the reference [24]. The study [2] which is about a numerical algorithm based on modified
cubic trigonometric B-spline functions to solve the hyperbolic-type wave equations took
place in the literature . Zhang and his coworker solved numerically the telegraph equation
by using the Galerkin method and the orthogonal property of weighted Laguerre polyno-
mials in the study [42]. Nazir et al. introduced the cubic trigonometric B-splines approach
for the numerical solution of telegraph equation in the study [29]. Hong et al. obtained
the numerical solution of telegraph equation by using adaptive Monte Carlo method [17].

In this study, the cubic b-spline colocation method, which is one of the numerical
solution methods frequently encountered in the literature, is used for space dicretization of
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the telegraph equation. And differently from the previous ones, the one-step method which
is of order four is used for time discretization of the telegraph equation. The organization
of this paper is as follows. First, the time discretization of telegraph equation is described
in Section 2. Then, the cubic B-spline collocation method is applied to the time discretized
telegraph equation in Section 3. Two examples are given to investigate the efficiency of
the proposed method, and a comparison with the existed studies is made in Section 4.
Finally, the conclusion is given in Section 5.

The second order linear hyperbolic telegraph equation is given by

Utt + 2µUt + λ2U = Uxx + f(x, t) (1)

where µ and λ are known positive constant parameters, the initial and boundary conditions
are

U (x, 0) = α0(x), Ut(x, 0) = α1(x), a ≤ x ≤ b,
U(a, t) = β0(t), U(b, t) = β1(t), t ≥ 0.

(2)

Suppose that α0(x), α1(x) and their derivatives are continuous functions and similarly,
β0(t), β1(t) and their derivatives are continuous functions.

If we set Ut(x, t) = Ũ(x, t) in the equation of the form (1), it can be written as follows

Ut = Ũ , (3)

Ũt = Uxx − 2µŨ − λ2U + f(x, t). (4)

The boundary and initial conditions can be rewritten as

U(a, t) = β0(t), U(b, t) = β1(t), t ≥ 0,

Ũ(a, t) = ∂β0
∂t (t), Ũ(b, t) = ∂β1

∂t (t), t ≥ 0,

U(x, 0) = α0(x), Ũ(x, 0) = α1(x), a ≤ x ≤ b.
(5)

Let divide [a, b] by N equally subinterval with the knots xl = a+ jh, l = 0, 1, 2, .., N and
tk = k∆t, k = 0, 1, 2, ... where h and ∆t are mesh sizes in the space and time direction
respectively.

2. Description of time discretization

In this section, we discretizate Eqs. (3) and (4) in time by using one-step method which
is of order four. The Eqs. (3) and (4) are discretized in time as follows

Uk+1 = Uk + θ1Ũ
k+1 + θ2Ũ

k + θ3Ũ
k+1
t + θ4Ũ

k
t (6)

Ũk+1 = Ũk + θ1Ũ
k+1
t + θ2Ũ

k
t + θ3Ũ

k+1
tt + θ4Ũ

k
tt (7)

where θ1,θ2, θ3 and θ4 are known parameters and they can be obtained by using Taylor
expansion. When θ1 = ∆t

2 , θ2 = ∆t
2 , θ3 = 0 and θ4 = 0, we obtain Crank-Nicolson

approximation which is second order accurate in time. When θ1 = ∆t
2 , θ2 = ∆t

2 , θ3 = −(∆t)2

12

and θ4 = (∆t)2

12 , we have high order accurate which is fourth order accurate in time.
By substituting Eq. (3) into Eq. (6), taking derivative with respect to t in the Eq. (3),

and using Eq. (4), we obtain

Uk+1 − θ3

(
Uk+1
xx + f(x, tk+1)− 2µŨk+1 − λ2Uk+1

)
− θ1Ũ

k+1 =

Uk + θ2Ũ
k + θ4

(
Ukxx + f(x, tk)− 2µŨk − λ2Uk

)
.

(8)

After some simplifications, (8) can be written in the folowing form:(
1 + θ3λ

2
)
Uk+1 + (2µθ3 − θ1) Ũk+1 − θ3U

k+1
xx = p(x, tk) (9)
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where

p(x, tk) = (1− θ4λ
2)Uk + (−2µθ4

+θ2)Ũk + θ4U
k
xx + θ4f(x, tk) + θ3f(x, tk+1).

With similar way, substituting Eq. (4) into Eq. (7) we have

Ũk+1 − θ1(Uk+1
xx + f(x, tk+1)− 2µŨk+1 − λ2Uk+1)

−θ3Ũ
k+1
tt = Ũk + θ2(Ukxx + f(x, tk)− 2µŨk − λ2Uk)

+θ4Ũ
k
tt,

(10)

and taking derivative with respect to t in Eq. (4) we get

Ũtt = (Uxx)t − 2µŨt − λ2Ut + ft(x, t),

= (Ut)xx − 2µŨt − λ2Ut + ft(x, t), (11)

= Ũxx − 2µ
(
Uxx − 2µŨ − λ2U + f(x, t)

)
−λ2Ũ + ft(x, t).

By substituting Eq. (11) into (10) and after essential arrangements we get

(λ2θ1 − 2µλ2θ3)Uk+1 + (1 + 2µθ1 + λ2θ3

−4µ2θ3)Ũk+1 + (−θ1 + 2µθ3)Uk+1
xx − θ3Ũ

k+1
xx

= (−λ2θ2 + 2µλ2θ4)Uk + (θ2 − 2µθ4)Ukxx

+(1− 2µθ2 − λ2θ4 + 4µ2θ4)Ũk + θ4Ũ
k
xx

+(−2µθ4 + θ2)f(x, tk) + θ4
∂f(x, tk)

∂t

+(θ1 − 2µθ3)f(x, tk+1) + θ3
∂f(x, tk+1)

∂t

This equation can be edited as follows:

(λ2θ1 − 2µλ2θ3)Uk+1 + (1 + 2µθ1 + λ2θ3

−4µ2θ3)Ũk+1 + (−θ1 + 2µθ3)Uk+1
xx − θ3Ũ

k+1
xx = k(x, tk)

(12)

where

k(x, tk) = (−λ2θ2 + 2µλ2θ4)Uk + (1− 2µθ2

−λ2θ4 + 4µ2θ4)Ũk + (θ2 − 2µθ4)Ukxx

+θ4Ũ
k
xx + (−2µθ4 + θ2)f(x, tk) + θ4

∂f(x, tk)

∂t

+(θ1 − 2µθ3)f(x, tk+1) + θ3
∂f(x, tk+1)

∂t
.
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3. Cubic B-spline collocation method

Let define cubic B-spline [22, 3] for l = −1, 0, ...N + 1 in the following way

Bl(x) =
1

h3



(x− xl−2)3, xl−2 ≤ x < xl−1,

h3 + 3h2(x− xl−1)
+3h(x− xl−1)2

−3(x− xl−1)3, xl−1 ≤ x < xl,

h3 + 3h2(xl+1 − x)
+3h(xl+1 − x)2

−3(xl+1 − x)3, xl ≤ x < xl+1,

(xl+2 − x)3, xl+1 ≤ x < xl+2,

0, otherwise.

(13)

The approximate solutions UN (x, t) and ŨN (x, t) are expressed in terms of the cubic
B-spline functions as

UN (x, t) =
N+1∑
l=−1

δl(t)Bl(x), ŨN (x, t) =
N+1∑
l=−1

σl(t)Bl(x) (14)

where δl and σl, l = −1, 0, 1, ..., N + 1 are unknowns time depend parameters to be
determined from collocation form of Eqs. (3) and (4).

Using Eqs. (13) and (14) ,the approximate functions UN , ŨN and their derivatives at
the knots xl can be written as

UN (xl) = δl−1 + 4δl + δl+1,

ŨN (xl) = σl−1 + 4σl + σl+1,
U ′N (xl) = 3

h(−δl−1 + δl+1),

Ũ
′
N (xl) = 3

h(−σl−1 + σl+1),

U
′′
N (xl) = 6

h2
(δl−1 − 2δl + δl+1),

Ũ
′′
N (xl) = 6

h2
(σl−1 − 2σl − σl+1).

(15)

Substituting (14) into Eqs. (9) and (12), and using (15), we obtain;

δk+1
l−1

[
1 + θ3λ

2 − 6
h2
θ3

]
+ δk+1

l

[
4(1 + θ3λ

2 + 12
h2
θ3

]
+

δk+1
l+1

[
1 + θ3λ

2 − 6
h2
θ3

]
+ σk+1

l−1 [2µθ3 − θ1] +

σk+1
l [4(2µθ3 − θ1)] + σk+1

l+1 [2µθ3 − θ1] = p(xl, tk)

(16)

and
δk+1
l−1 [(λ2θ1 − 2µλ2θ3) + 6

h2
(−θ1 + 2µθ3)]

+δk+1
l [4(λ2θ1 − 2µλ2θ3)− 12

h2
(−θ1 + 2µθ3)]

+δk+1
l+1 [(λ2θ1 − 2µλ2θ3) + 6

h2
(−θ1 + 2µθ3)]

+σk+1
l−1 [(1 + 2µθ1 + λ2θ3 − 4µ2θ3)− θ3

6
h2

]

+σk+1
l [4(1 + 2µθ1 + λ2θ3 − 4µ2θ3) + θ3

12
h2

]

+σk+1
l+1 [(1 + 2µθ1 + λ2θ3 − 4µ2θ3)− θ3

6
h2

] = k(xl, tk)

(17)

where l = 0, 1, . . . , N,

p(xl, tk) = (1− θ4λ
2)ukl + (−2µθ4 + θ2)Ũkl

+θ4 (uxx)kl + θ4f(xl, tk) + θ3f(xl, tk+1)
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and

k(xl, tk) = (−λ2θ2 + 2µλ2θ4)ukl + (1− 2µθ2

−λ2θ4 + 4µ2θ4)Ũkl + (θ2 − 2µθ4) (uxx)kl

+θ4(Ũxx)kl + (−2µθ4 + θ2)f(xl, tk)

+θ4ft(xl, tk) + (θ1 − 2µθ3)f(xl, tk+1)

+θ3ft(xl, tk+1).

When Eqs. (16) and (17) are associated, the system of linear equations, which is 2N+2 al-
gebraic equations with 2N+6 unknowns as δ = (δ−1, δ0,..., δN+1)T and σ = (σ−1, σ0, ..., σN+1)T ,
is obtained.

To get unique solutions for δ = (δ−1, δ0,..., δN+1) and σ = (σ−1, σ0, ..., σN+1), we get

help from the boundry conditions (5). So, δk+1
−1 , δk+1

N+1, σ
k+1
−1 and σk+1

N+1 can be eliminated
from the system. Thus we obtain a linear (2N + 2)× (2N + 2) system of equtions which
can be solved by using Gauss elimination procedure.

The values of the parameters δk+1
l and σk+1

l , l = 0, ..., N + 1 can be evaluated after
finding the values of the initial parameters δ0

l and σ0
l , l = −1, 0, ..., N + 1 by the help of

employing the boundary and initial conditions:

(UN )x(a, 0) = 3
h(−δ0

−1 + δ0
1) = ∂α0

∂x (a),
UN (xl, 0) = δ0

l−1 + 4δ0
l + δ0

l+1 = α0(xl),

(UN )x(b, 0) = 3
h(−δ0

N−1 + δ0
N+1) = ∂α0

∂x (b),

(18)

and

(ŨN )x(a, 0) = 3
h(−σ0

−1 + σ0
1) = ∂α1

∂x (a),

ŨN (xl, 0) = σ0
l−1 + 4σ0

l + σ0
l+1 = α1(xl),

(ŨN )x(b, 0) = 3
h(−σ0

−1 + σ0
1) = ∂α1

∂x (b)

(19)

where l = 0, 1, ..., N . The systems in (18) and (19) consist of N + 3 unknown parameters
in N + 3 equation, rescpectively. So the systems can be solved by using Gauss elimination
scheme.

4. Numerical examples

In this part, we applied proposed method to two examples of linear telegraph equation.
To compute the maxmimum error L∞, we used the following formula:

L∞ = ‖U − UN‖∞ = max
l
|Ul − (UN )l| .

The order of convergence is computed by the formula:

order=

log

∣∣∣∣∣ (L∞)∆ti

(L∞)∆ti+1

∣∣∣∣∣
log

∣∣∣∣ ∆ti
∆ti+1

∣∣∣∣ , (20)

where (L∞)∆ti
is the error norm L∞ for time step ∆ti.
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4.1. Example. Consider the telegraph equation (1) with µ = 1
2 and λ = 1 in the space

domain [0, 1]. The initial and boundary conditions are given as follows:

u(x, 0) = 0, ut(x, 0) = 0,
u(0, t) = 0, u(1, t) = 0,

and f(x, t) = (2−2t+t2)(x−x2) exp(−t)+2t2 exp(−t). The exact solution of this example
is u(x, t) = (x− x2)t2 exp(−t).
L∞.error is presented in Table 1 for h = 0.01, 0.005, ∆t = 0.01 at various times t =

1, 2, 3, 4, 5. The estimated solutions are compared with the results obtained by [6, 10, 32,
36, 2, 29]. According to the results in Table 1, the proposed method is considerable good
compared to the collocation methods based on various B-spline functions applied to solve
the telegraph equation. The rate of convergence is listed in Table 2. From this table, it is
seen that the order of the method is almost 4. Fig. 1 is given to see the solution profile
up to time 2. It can be seen that the simulations for numerical and analytical solutions
at t = 1 in Fig. 2.

Table 1. The error norms for example 4.1 with ∆t = 0.01 at various times.

Method h t = 1 t = 2 t = 3 t = 4 t = 5
Present 0.005 1.20× 10−11 5.49× 10−12 4.15× 10−12 2.69× 10−12 1.69× 10−12

Present 0.01 1.20× 10−11 5.46× 10−12 4.17× 10−12 2.67× 10−12 1.69× 10−12

[6] 0.01 1.85× 10−5 1.07× 10−5 1.82× 10−5 1.65× 10−5 1.05× 10−5

[10] 0.005 1.92× 10−4 1.14× 10−4 1.71× 10−4 2.08× 10−4 9.84× 10−5

[32] 0.005 3.40× 10−6 7.78× 10−6 1.72× 10−6 5.75× 10−7 9.70× 10−7

[36] 0.01 1.67× 10−7 4.72× 10−7

[2] 0.01 4.29× 10−5 1.20× 10−5 1.23× 10−5 1.45× 10−5 1.22× 10−6

[29] 0.01 8.76× 10−5 3.29× 10−5 5.90× 10−6 3.04× 10−5 6.92× 10−6

Table 2. The rate of convergence for example 1 with h = 0.005.

∆ti order
1
0.5 3.748
0.25 4.001
0.125 4.031
0.0625 3.996
0.03125 3.999
0.015625 4.000
0.0078125 4.000

4.2. Example. Consider the telegraph equation (1) with µ = 10, λ = 5 in the space
domain [0, 2] and f(x, t) = µ

(
1 + tan2(x+t

2 )
)

+ λ2 tan(x+t
2 ). The initial conditons are

given by

u(x, 0) = tan(
x

2
),

ut(x, 0) =
1

2

(
1 + tan2(

x

2
)
)

and the boundary conditions are

u(0, t) = tan(
t

2
), u(2, t) = tan(

2 + t

2
).
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Figure 1. The solutions at various times with h = 0.005 and ∆t = 0.01.

Figure 2. The solution profile at t = 1 with h = 0.005 and ∆t = 0.01.

The analytical solution of given example is u(x, t) = tan(x+t
2 ). The maximum error L∞

is tabulated in Table 3 for t = 0.2, 0.4, 0.6, 0.8, 1 with h = 0.001 and ∆t = 0.001, 0.005.
The solutions obtained by proposed method are compared with the results obtained by
[12, 27, 36]. We observe that obtained results by the proposed meyhod are more accurate
than the results obtained by the others. The simulation of solution is shown in Fig. 3.
The comparisons of numerical and exact solutions is figured in Fig. 4.

Table 3. The error norms for example 4.2 with h = 0.001 at various times.

Methods ∆t t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1
Present 0.001 1.20× 10−8 3.73× 10−8 1.23× 10−7 6.35× 10−7 1.26× 10−5

Present 0.005 3.00× 10−7 9.32× 10−7 3.07× 10−6 1.59× 10−5 3.15× 10−4

[12] 0.005 1.89× 10−4 3.99× 10−4 7.9715× 10−4 1.88× 10−3 8.01× 10−3

[27] 0.001 3.61× 10−4 1.04× 10−4 2.60× 10−3 7.63× 10−3 4.66× 10−2

[36] 0.001 6.83× 10−5 4.28× 10−5
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Figure 3. The solutions at various times with h = 0.002 and ∆t = 0.001.

Figure 4. The solution profile at t = 0.2 with h = 0.001 and ∆t = 0.001.

5. Conclusion

In this study, the numerical solution of second order linear hyperbolic telegraph equation
is obtained numerical method which had a high accurate. The cubic B-spline collocation
method is used for the space discretization of the telegraph equation. The fourth order
one-step method is used for the time discretization of the telegraph equation. The reason
why the proposed method differs from the existed studies is that the accuracy of the
method used for the time discretization is of order O(∆t4). In this way, it is shown that
the numerical solutions with higher accuracy than the existing studies can be obtained.
The easy application and the high accuracy are the advantages of the proposed method.
As a result, it can be said that it is an useful method for obtaining the numerical solutions
of linear partial differential equations which has significant physical application areas like
telegraph equation.
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