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NEW RESULTS ON ODD HARMONIOUS LABELING OF GRAPHS

P. JEYANTHI1∗, S. PHILO2, §

Abstract. Let G = (V,E) be a graph with p vertices and q edges. A graph G is said to
be odd harmonious if there exists an injection f : V (G)→ {0, 1, 2, · · · , 2q − 1}such that
the induced function f∗ : E(G) → {1, 3, · · · , 2q − 1} defined by f∗(uv) = f(u) + f(v)
is a bijection. If f(V (G)) = {0, 1, 2, · · · , q} then f is called strongly odd harmonious
labeling and the graph is called strongly odd harmonious graph. In this paper we prove
that Spl(Cbn) and Spl(B(m)(n)), slanting ladder SLn, mGn, H-super subdivision of
path Pn and cycle Cn, n ≡ 0(mod 4) admit odd harmonious labeling. In addition we
observe that all strongly odd harmonious graphs admit mean labeling, odd mean labeling,
odd sequential labeling and all odd sequential graphs are odd harmonious and all odd
harmonious graphs are even sequential harmonious.

Keywords: Odd harmonious labeling; Strongly odd harmonious labeling; Odd sequential
labeling; Even sequential harmonious labeling; Mean labeling; Odd mean labeling.

AMS Subject Classification: 05C78.

1. Introduction

Throughout this paper, by a graph, we mean a finite, simple and undirected one. For
standard terminology and notation we follow Harary [11]. One of the major themes in
graph theory is graph labeling, introduced by Alex Rosa in 1967. The graph labeling is an
assignment of integers to the set of vertices or edges or both, subject to certain conditions.
During the last five decades nearly 300 graph labeling techniques have been studied which
are beautifully classified by Gallian [7] in his survey under seven headings. One of such
classifications is harmonious labeling, introduced by Graham and Sloane [9]. The concept
of odd harmonious labeling (one of the variations of harmonious labeling) was due to Liang
and Bai [23] who proved the following results:
1. If G is an odd harmonious graph, then G is a bipartite graph. Hence any graph that
contains an odd cycle is not an odd harmonious.
2. If a (p, q) – graph G is odd harmonious, then 2

√
q ≤ p ≤ (2q − 1).

3. If G is an odd harmonious Eulerian graph with q edges, then q ≡ 0, 2(mod 4).
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Followed by this, some authors have also proved several results on odd harmonious label-
ing. For example, Vaidya and Shah [29], [30], have proved that shadow and splitting of Pn,
K1,n, Bn,n are odd harmonious. Also they established that the arbitrary super subdivision
of path, join sum of two copies of cycle and Hn,n are odd harmonious. Abdel- Aal [1] -[3]
has proved that cyclic snakes, m-shadow of path and complete bipartite graph, n-splitting
of path and star, symmetric product between paths and null graphs and two copies of
even cycles sharing a common edge and a common vertex are odd harmonious. Gustri
Suptri and Sugeng [10] have established that dumbbell graph Dn,k,2 is odd harmonious if
and only if n, k ≡ 2(mod 4). Selvaraju et. al [25] have proved that quadrilateral snake
and k-regular caterpillars are odd harmonious. Fery Firmansah [5], [6] has constructed
the odd harmonious labeling of pleated of the dutch windmill graphs and the variation of
the double quadrilateral windmill graph.

Motivated by the above results, we have [12] - [22] further studied and proved that
several graphs are odd harmonious. In this paper, we establish some new results on odd
harmonious labeling. In order to prove our results we use the following definitions.

Definition 1. A graph G is said to be harmonious if there exists an injection f : V (G)→
Zq such that the induced function f∗ : E(G) → Zq defined by f∗(uv) = (f(u) + f(v))
(mod q) is a bijection and f is called harmonious labeling of G.

Definition 2. A graph G is said to be odd harmonious if there exists an injection f :
V (G)→ {0, 1, 2, · · · , 2q − 1} such that the induced function f∗ : E(G)→ {1, 3, · · · , 2q − 1}
defined by f∗(uv) = f(u) + f(v) is a bijection. If f : V (G) → {0, 1, 2, · · · , q} then f is
called as strongly odd harmonious labeling and G is called a strongly odd harmonious graph.

Definition 3. The Corona of a graph G on p vertices v1, v2, · · · , vp is obtained from G by
adding p new vertices u1, u2, · · · , up and new edges uivi for 1 ≤ i ≤ p, denoted by G ◦K1.
The graph Pn ◦K1 is called a comb Cbn.

Definition 4. The m-splitting graph Splm(G) is obtained by adding to each vertex v of G
new m vertices, say v1, v2, ...., vm such that vi, 1 ≤ i ≤ m is adjacent to every vertex that
is adjacent to v in G.

Definition 5. [31] The graph obtained by attaching m pendant vertices to each vertex of
a path of length 2n− 1 is denoted by B(m)(n).

Definition 6. The slanting ladder SLn is obtained from two paths u1, u2, · · · , un and
v1, v2, · · · , vn by joining each ui with vi+1, 1 ≤ i ≤ n− 1.

Definition 7. [28] The graph 〈K1,n : K1,m〉 is obtained by joining the center u of the star
K1,n and the center v of another star K1,m to a new vertex w. The number of vertices is
n + m + 3 and the number of edges is n + m + 2.

Definition 8. [28] The graph mGn is obtained from m copies of 〈K1,n : K1,n〉 by joining

one leaf of ith copy of 〈K1,n : K1,n〉 with the center of (i+ 1)th copy of 〈K1,n : K1,n〉 where
1 ≤ i ≤ m− 1.

Definition 9. [4] A graph obtained from G by replacing each edge ei by a H- graph in
such a way that the ends of ei are merged with a pendent vertex in p2 and a pendent vertex
p
′
2 is called H- super subdivision of G and it is denoted by HSS(G), where the H- graph

is a tree on 6 vertices in which exactly two vertices of degree 3.
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Definition 10. [27] A mean labeling f is an injective function from V to the set {0, 1, 2, · · · , q}

such that each edge uv is assigned a label f∗(uv) =
f(u) + f(v)

2
if f(u) + f(v) is even and

f∗(uv) =
f(u) + f(v) + 1

2
if f(u) + f(v) is odd, then the resulting edges are distinct.

Definition 11. [24] A graph G(p, q) is said to be an odd mean graph if there exists an
injective function f from the vertex set of G to {0, 1, 2, · · · , 2q − 1} such that the induced

map from the edge set of G to {1, 3, 5, · · · , 2q − 1} defined by f∗(uv) =
f(u) + f(v)

2
if

f(u) + f(v) is even and f∗(uv) =
f(u) + f(v) + 1

2
if f(u) + f(v) is odd, is a bijection.

Definition 12. [26] A graph G(p, q) is said to have an odd sequential labeling if there exists
a function f : V (G) → {0, 1, 2, · · · , q} and each edge uv is assigned the label f(u) + f(v)
such that the resulting edge labels are {1, 3, 5, · · · , 2q − 1}.

Definition 13. [8] A graph G(p, q) is said to have an even sequential harmonious labeling
if there exists a function f : V (G) → {0, 1, 2, · · · , 2q} such that the induced map f∗ :
E(G)→ {2, 4, · · · , 2q} defined by f∗(uv) = f(u)+f(v) if f(u)+f(v) is even and f∗(uv) =
f(u) + f(v) + 1 if f(u) + f(v) is odd, then the resulting edge labels are distinct.

2. Main Results

In this section, first we prove that Spl(Cbn) and Spl(B(m)(n)), slanting ladder SLn,
mGn, H-super subdivision of path Pn and cycle Cn, n ≡ 0(mod 4) admit odd harmonious
labeling.

Theorem 2.1. The graph Spl(Cbn) is odd harmonious.

Proof. Let v1, v2, · · · , vn and v
′
1, v

′
2, · · · , v

′
n be the vertices of comb in which v

′
1, v

′
2, · · ·

, v
′
n are the pendant vertices. Let u1, u2, · · · , un and u

′
1, u

′
2, · · · , u

′
n be the new added

vertices corresponding to v1, v2, · · · , vn and v
′
1, v

′
2, · · · , v

′
n and let G = Spl(Cbn). This

graph has 4n vertices and 6n− 3 edges.
Define f : V (G)→ {0, 1, 2, · · · , 2(6n− 3)− 1} as follows:

f(vi) =

{
2i− 1 if i is odd
2i− 2 if i is even.

, 1 ≤ i ≤ n;

f(ui) =

{
4n + 4i− 5 if i is odd
4n + 4i− 6 if i is even.

, 1 ≤ i ≤ n;

f(v
′
i) =

{
2(i− 1) if i is odd
2i− 1 if i is even.

, 1 ≤ i ≤ n;

f(u
′
i) =

{
12n− 4i− 4 if i is odd
12n− 4i− 3 if i is even.

, 1 ≤ i ≤ n.

The induced edge labels are
f∗(vivi+1) = 4i− 1, 1 ≤ i ≤ n− 1;
f∗(vivi

′) = 4i− 3, 1 ≤ i ≤ n;
f∗(uivi

′) = 4n + 6i− 7, 1 ≤ i ≤ n;
f∗(uivi+1) = 4n + 6i− 5, 1 ≤ i ≤ n− 1;
f∗(viui+1) = 4n + 6i− 3, 1 ≤ i ≤ n− 1;
f∗(viui

′) = 12n− 2i− 5, 1 ≤ i ≤ n.
In view of the above defined labeling pattern, the split of Comb Cbn is an odd harmonious
graph. �
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An odd harmonious labeling of split of comb Cb4 is shown in Figure 1.
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Figure 1. An odd harmonious labeling of Spl(Cb4)

Theorem 2.2. The graph Spl(B(m)(n)), m is even, is odd harmonious.

Proof. Let the vertices be ui, vi, uij , vij , 1 ≤ i ≤ n, 1 ≤ j ≤ m and u
′
i, v
′
i, u

′
ij , v

′
ij , 1 ≤ i ≤ n,

1 ≤ j ≤ m be the new vertices added to the corresponding vertices ui, vi, uij , vij to obtain
Spl(B(m)(n)) . This graph has 4(m + 1)n vertices and 6(m + 1)n− 3 edges.
Define f : V (G)→ {0, 1, 2, · · · , 2[6(m + 1)n− 3]− 1} as follows:

f(vi) =

{
3(i− 1) if i is odd
1 + 3(i− 2) if i is even.

, 1 ≤ i ≤ 2n;

f(ui) =

{
2 + 3(i− 1) if i is odd
5 + 3(i− 2) if i is even.

, 1 ≤ i ≤ 2n;

If i is odd, f(vij) = 12n− 5 + (4m− 3)(i− 1) + 4(j − 1); j = 1, 3, · · · ,m;
If i is even, f(vij) = 12n + 4m− 8 + 4(j − 1) + (4m− 3)(i− 2) + 2, j = 1, 3, · · · ,m− 1;
f(vij) = 12n + 4m− 8 + 4(j − 1) + (4m− 3)(i− 2), j = 2, 4, · · · ,m;
If i is odd, f(uij) = 12n+4m+6(m−1)+(4m−3)(2n−2)+1+2(j−1)+(2m+3)(2n−1−i),
j = 1, , · · · ,m;
If i is even, f(uij) = 12n+4m−2+4(m−1)+(4m−3)(2n−2)+2(j−1)+(2m+3)(2n−i),
j = 1, , · · · ,m.
The induced edge labels are
f∗(vivi+1) = 6i− 5, 1 ≤ i ≤ 2n− 1;
f∗(viui+1) = 6i− 1, if i is odd, 1 ≤ i ≤ 2n− 1;
f∗(viui+1) = 6i− 3, if i is even, 1 ≤ i ≤ 2n− 1;
f∗(uivi+1) = 6i− 3, if i is odd, 1 ≤ i ≤ 2n− 1;
f∗(uivi+1) = 6i− 1, if i is even, 1 ≤ i ≤ 2n− 1;
If i is even, f∗(vivij) = 1 + 3(i − 2) + 12n + 4m − 8 + 4(j − 1) + (4m − 3)(i − 2) + 2,
j = 1, 3, · · · ,m− 1;
f∗(vivij) = 1 + 3(i− 2) + 12n + 4m− 8 + 4(j − 1) + (4m− 3)(i− 2), j = 2, 4, · · · ,m;
If i is odd, f∗(vivij) = 3(i− 1) + 12n− 5 + (4m− 3)(i− 1) + 4(j − 1), j = 1, 2, · · · ,m;
If i is odd , f∗(uivij) = 2 + 3(i− 1) + 12n− 5 + (4m− 3)(i− 1) + 4(j − 1);j = 1, 2, · · · ,m;
If i is even, f∗(uivij) = 5 + 3(i − 2) + 12n + 4m − 8 + 4(j − 1) + (4m − 3)(i − 2) + 2,
j = 1, 3, · · · ,m− 1;
f∗(uivij) = 5 + 3(i− 2) + 12n + 4m− 8 + 4(j − 1) + (4m− 3)(i− 2), j = 2, 4, · · · ,m;
If i is odd, f∗(viuij) = 3(i− 1) + 12n+ 4m+ 6(m− 1) + (4m− 3)(2n− 2) + 1 + 2(j − 1) +
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(2m + 3)(2n− 1− i), j = 1, 2, · · · ,m;
If i is even, f∗(viuij) = 1 + 3(i− 2) + 12n+ 4m− 2 + 4(m− 1) + (4m− 3)(2n− 2) + 2(j −
1) + (2m + 3)(2n− i), j = 1, 2, · · · ,m.
In view of the above defined labeling pattern, the split of B(m)(n) is an odd harmonious
graph. �

An odd harmonious labeling of B(4)(2) is shown in Figure 2.
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Figure 2. An odd harmonious labeling of Spl(B(4)(2))

Theorem 2.3. The slanting ladder SLn is odd harmonious.

Proof. Let the vertices of G = SLn be u1, u2, · · · , un and v1, v2, · · · , vn. This graph has
2n vertices and 3(n− 1) edges.
Define f : V (G)→ {0, 1, 2, · · · , 6(n− 1)− 1} as follows:
f(ui) = i− 1, 1 ≤ i ≤ n; f(vi) = 2n + i− 3, 1 ≤ i ≤ n.
The induced edge labels are
f∗(uiui+1) = 2i− 1, 1 ≤ i ≤ n− 1; f∗(vivi+1) = 4n + 2i− 5, 1 ≤ i ≤ n− 1;
f∗(uivi+1) = 2n+ 2i− 3, 1 ≤ i ≤ n− 1. In view of the above defined labeling pattern, the
slanting ladder SLn is an odd harmonious graph. �

An odd harmonious labeling of slanting ladder SL4 is shown in Figure 3.

t t t t
t t t t

u1 u2 u3 u4

v1 v2 v3 v4

0 1 2 3

6 7 8 9

Figure 3. An odd harmonious labeling of SL4

Theorem 2.4. The graph mGn is odd harmonious.
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Proof. Let G = mGn. Let {si : 1 ≤ i ≤ m}∪{ti : 1 ≤ i ≤ m}∪{ui : 1 ≤ i ≤ m}∪{sij , tij :
1 ≤ i ≤ m, 1 ≤ j ≤ n} be the vertices of G . This graph has 2m(n + 1) + 1 vertices and
2m(n + 1) edges.
Define f : V (G)→ {0, 1, 2, · · · , 4m(n + 1)− 1} as follows:
f(si) = 1 + 4(i− 1), 1 ≤ i ≤ m; f(ti) = 3 + 4(i− 1), 1 ≤ i ≤ m;
f(ui) = 2n(i− 1), 1 ≤ i ≤ m;
f(sij) = 4 + 2mn + 2(j − 1) + 6(m− i) + 2(m− i)(n− 1), 1 ≤ i ≤ m, 1 ≤ j ≤ n;
f(tij) = 2i + 2(j − 1) + 2(i− 1)(n− 1), 1 ≤ i ≤ m, 1 ≤ j ≤ n;
The induced edge labels are
f∗(siui) = 1 + 4(i− 1) + 2n(i− 1), 1 ≤ i ≤ m;
f∗(tiui) = 3 + 4(i− 1) + 2n(i− 1), 1 ≤ i ≤ m;
f∗(sisij) = 1+4(i−1)+4+2mn+2(j−1)+6(m−i)+2(m−i)(n−1), 1 ≤ i ≤ m, 1 ≤ j ≤ n;
f∗(titij) = 3 + 4(i− 1) + 2i + 2(j − 1) + 2(i− 1)(n− 1), 1 ≤ i ≤ m, 1 ≤ j ≤ n;
In view of the above defined labeling pattern, the graph mGn is odd harmonious. �

An odd harmonious labeling of 3G2 is shown in Figure 4.r r r
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Figure 4. An odd harmonious labeling of 3G2

Theorem 2.5. The graph HSS(Pn) is odd harmonious.

Proof. Let G = HSS(Pn). Let the vertices be ui, u
(1)
i(i+1), u

(1)
(i+1)i, u

(2)
i(i+1), u

(2)
(i+1)i, un+1; 1 ≤

i ≤ n and the corresponding edges are uiu
(1)
i(i+1), u

(1)
i(i+1)u

(2)
i(i+1), u

(1)
i(i+1)u

(1)
(i+1)i, u

(1)
(i+1)iu

(2)
(i+1)i,

u
(1)
(i+1)iui+1; 1 ≤ i ≤ n where n ≥ 1. This graph has 5n + 1 vertices and 5n edges.

We define f : V (G)→ {0, 1, 2, · · · , 4m(n + 1)− 1} as follows:
f(ui) = 3(i− 1), 1 ≤ i ≤ n + 1;

f(u
(1)
i(i+1)) = 1 + 3(i− 1), 1 ≤ i ≤ n;

f(u
(1)
(i+1)i) = 2 + 3(i− 1), 1 ≤ i ≤ n;

f(u
(2)
i(i+1)) = 3n + 5 + 7(n− i), 1 ≤ i ≤ n;

f(u
(2)
(i+1)i) = 3n + 2 + 7(n− i), 1 ≤ i ≤ n;

The induced edge labels are
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f(uiu
(1)
i(i+1)) = 6i− 5, 1 ≤ i ≤ n;

f(ui+1u
(1)
(i+1)i) = 6i− 1, 1 ≤ i ≤ n;

f(u
(1)
i(i+1)u

(1)
(i+1)i) = 6i− 3, 1 ≤ i ≤ n;

f(u
(1)
i(i+1)u

(2)
i(i+1)) = 10n− 4i + 3, 1 ≤ i ≤ n;

f(u
(1)
(i+1)iu

(2)
(i+1)i) = 10n− 4i + 1, 1 ≤ i ≤ n;

In view of the above defined labeling pattern, the graph HSS(Pn) is odd harmonious. �

An odd harmonious labeling of HSS(P3) is shown in Figure 5.
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Figure 5. An odd harmonious labeling of HSS(P3)

Theorem 2.6. The graph HSS(Cn), n ≡ 0(mod 4) is odd harmonious.

Proof. Let G = HSS(Cn). Let the vertices be ui, u
(1)
i(i+1), u

(1)
(i+1)i, u

(2)
i(i+1), u

(2)
(i+1)i;

1 ≤ i ≤ n− 1 and un, u
(1)
n1 , u

(2)
n1 , u

(1)
1n , u

(2)
1n . The corresponding edges are uiu

(1)
i(i+1),

u
(1)
i(i+1)u

(2)
i(i+1), u

(1)
i(i+1)u

(1)
(i+1)i, u

(1)
(i+1)iu

(2)
(i+1)i, u

(1)
(i+1)iu(i+1); 1 ≤ i ≤ n− 1 and unu

(1)
n1 , u

(1)
n1 u

(2)
n1 ,

u
(1)
n1 u

(1)
1n , u

(1)
1n u

(2)
1n , u

(1)
1n u1. This graph has 5n vertices and edges.

We define f : V (G)→ {0, 1, 2, · · · , 10n− 1} as follows:
f(ui) = 3i− 3, if i is odd;

f(ui) = 3i− 3, if i is even and 2 ≤ i ≤ n

2
;

f(ui) = 3i− 1,
n

2
≤ i ≤ n;

f(u
(1)
i(i+1)) = 3i− 2, 1 ≤ i ≤ n

2
;

f(u
(1)
i(i+1)) = 3i− 2, if i is even and

n

2
+ 2 ≤ i ≤ n− 2;

f(u
(1)
i(i+1)) = 3i, ifi is odd and

n

2
+ 2 ≤ i ≤ n− 1;

f(u
(1)
n1 ) = 3n− 2;

f(u
(1)
(i+1)i) = 3i− 1, 1 ≤ i ≤ n

2
+ 1;

f(u
(1)
(i+1)i) = 3i + 1,

n

2
+ 2 ≤ i ≤ n and i is even;

f(u
(1)
(i+1)i) = 3i− 1,

n

2
+ 3 ≤ i ≤ n− 1 and i is odd;

f(u
(1)
1n)) = 3n + 1;

f(u
(2)
i(i+1)) = 10n− 7i + 5, 1 ≤ i ≤ n

2
;

f(u
(2)
i(i+1)) = 10n− 7i + 5,

n

2
≤ i ≤ n− 2 and i is even;
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f(u
(2)
n1 ) = 3n + 5;

f(u
(2)
i(i+1)) = 10n− 7i + 3,

n

2
+ 1 ≤ i ≤ n− 1 and i is odd;

f(u
(2)
(i+1)i) = 10n− 7i + 2, 1 ≤ i ≤ n

2
+ 1;

f(u
(2)
(i+1)i) = 10n− 7i + 2,

n

2
+ 3 ≤ i ≤ n− 1 and i is odd;

f(u
(2)
(i+1)i) = 10n− 7i,

n

2
+ 2 ≤ i ≤ n− 2 and i is odd;

The induced edge labels are

f∗(uiu
(1)
i(i+1)) = 6i− 5, 1 ≤ i ≤ n

2
;

f∗(uiu
(1)
i(i+1)) = 6i− 5,

n

2
+ 1 ≤ i ≤ n;

f∗(unu
(1)
n1 ) = 6n− 3;

f∗(u1u
(1)
1n ) = 3n + 1;

f∗(ui+1u
(1)
(i+1)i) = 6i− 1, 1 ≤ i ≤ n

2
+ 1;

f∗(ui+1u
(1)
(i+1)i) = 6i + 1,

n

2
+ 3 ≤ i ≤ n− 1;

f∗(u
(1)
i(i+1)u

(2)
i(i+1)) = 10n− 4i + 3, 1 ≤ i ≤ n− 1;

f∗(u
(1)
(i+1)iu

(2)
(i+1)i) = 10n− 4i + 1, 1 ≤ i ≤ n− 1;

f∗(u
(1)
n(n−1)u

(2)
n(n−1)) = 6n + 5;

f∗(u
(1)
n1 u

(2)
n1 ) = 6n + 3;

In view of the above defined labeling pattern, the graph HSS(Cn), n ≡ 0(mod 4) is
odd harmonious. �

An odd harmonious labeling of HSS(C8) is shown in Figure 6.
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Figure 6. A odd harmonious labeling of HSS(C8)
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Further, we conclude the paper with the following observations. Since it is easier to
prove the observations, we omit the proofs.

Observation 2.1. Every strongly odd harmonious graph admits an odd sequential labeling.

Observation 2.2. Every strongly odd harmonious graph admits mean labeling.

Observation 2.3. Every strongly odd harmonious graph admits an odd mean labeling.

Observation 2.4. Every odd sequential graph admits an odd harmonious labeling.

Observation 2.5. Every odd harmonious graph G admits an even sequential harmonious
labeling.

3. Conclusion

In this paper, we obtain some new results showing that the graphs Spl(Cbn), Spl(B(m)(n)),
slanting ladder SLn, mGn, H-super subdivision of path Pn and cycle Cn, n ≡ 0(mod 4)
are odd harmonious. Also, we observe that all strongly odd harmonious graphs admit
mean labeling, odd mean labeling, odd sequential labeling and all odd sequential graphs
are odd harmonious and all odd harmonious graphs are even sequential harmonious.
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