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NEW WAVE FORM SOLUTIONS OF TIME-FRACTIONAL GARDNER

EQUATION VIA FRACTIONAL RICCATI EXPANSION METHOD

B. KARAMAN1, §

Abstract. In this current paper, the fractional Riccati expansion method is proposed
for obtaining the new exact solutions of the time-fractional Gardner equation. The
fractional derivative is considered in the sense of Jumarie’s modified Riemann-Liouville
fractional derivative (JMRFD). A travelling wave transformation is firstly utilized to
convert the nonlinear fractional partial differential equation (NFPDE) into a fractional
ordinary differential equation (FODE). Our main intention in this present paper is to
indicate that the suggested method is appropriate to obtain the new exact solutions of
fractional partial differential equations. It can be said that the main advantage of the
mentioned scheme is very simple and easy to apply. As a result, all the obtained results
are presented in the paper.
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1. Introduction

Nonlinear fractional partial differential equations (NFPDEs) have impelled common
attention in many disciplines [1, 2] in recent years. It is observed that fractional mod-
els can be better describe nonlinear physical problems and propagation characteristics
in real systems. In order to depict the fractional models of the physical or engineering
phenomena, scientists used different definitions of fractional derivative and integral such
as Caputo, Riemann-Liouville, Grunwald-Letnikov and Modified Riemann Liouville frac-
tional derivatives, etc [3, 4, 5]. All of them are constructed for remodeling of variety
applications such as ocean modeling, atmospheric dynamics, physics turbulence, nonlin-
ear propagation ion-acoustic waves, the description of the interior waves in shallow water,
and stochastic dynamical systems [6, 7, 8, 9].

The classical Gardner equation which is combined KdV-mKdV, or eKdV, can describe
most of the phenomena such as the interior waves in shallow water [9], ion acoustic waves
in plasma with negative ion [10], and the long wave propagation in an homogeneous
two-layer shallow liquid [11]. Then, the classical Gardner equation is converted into the
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time-fractional Gardner equation by the authors [12]. They are used Agarwal’s method
to obtain the time-fractional Gardner equation. The time-fractional Gardner equation
can be used to designate many physical phenomena such as the nonlinear propagation of
ion-acoustic waves in an magnetized plasma [13, 14, 15]. There is a big significant interest
in the construction of the new solutions to this equation. Shimin Guo et. al. [12] is
used variation iteration method to solve the equation numerically. Another approximate
solution of the equation is obtained by using a modified version of the generalized Taylor
power series method [9]. A variety kinds of new analytical solutions of the mentioned
equation is constructed by the authors [16, 17, 18]. Many important results are obtained
in the mentioned studies.

In this paper, we consider the time-fractional Gardner equation as

Dα
t u+ 6(u− ε2u2)ux + uxxx = 0, 0 < α ≤ 1 (1)

where ε is a nonzero constant, and the Dα
t is the JMRFD which is described by Jumarie

as

Dα
t v(t) =


1

Γ(1−α)
d
dt

∫ t
0 (t− ξ)−α(v(ξ)− v(0))dξ, 0 < α < 1,

(v(m)(t))α−m, m ≤ α < m+ 1, m ≥ 1

(2)

This definition has some prominent properties. They are given [19] following as

Dα
t t
p =

Γ(p+ 1)

Γ(p+ 1− α)
tα−p, p > 0 (3)

Dα
t (f(t)g(t)) = f(t)Dα

t g(t) + g(t)Dα
t f(t). (4)

To our knowledge, the time-fractional Gardner equation is not solved by using the
fractional Riccati expansion method. Therefore, we use the proposed method to find
the new solutions of the mentioned equation. Compared with other methods, the main
advantage of this method transforms FPDE into FODE with the same order by using
traveling wave transformation. Then we can give the exact solutions of fractional ordinary
equations using the solutions of the fractional Riccati equation. In addition to this, the
mentioned scheme is very simple and easy to apply.

The structure of the paper is organized as follows. Section 2 introduces the fractional
Riccati expansion method. In Section 3, we construct the implementation of the suggested
method for the time-fractional Gardner equation. Finally, conclusions of this study are
given in Section 4.

2. Fundamental of the fractional Riccati expansion method

In this section, the fractional Riccati expansion method is presented to solve the NF-
PDE. For a given NFPDE, say in two variables, x and t,

P (u, ut, ux, D
α
t u,D

α
xu, · · · ) = 0, 0 < α ≤ 1, (5)

where Dα
t u and Dα

xu are JMRFD [5] of the unknown function u = u(x, t), and P is a
polynomial of u and its various partial derivatives containing the highest order derivatives
and nonlinear terms. There are main steps to implement the proposed method. These are
as follows.
Stage 1: A travelling wave transformation is used for reducing fractional partial differen-
tial equation into a FODE. In this state, the travelling wave transformation is described
as

u(x, t) = U(ξ), ξ = x+ ct (6)
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where c is an arbitrary constant to be determined later. Eqn. (5) can be rewritten by
using Eqn. (6) as the following FODE for u = U(ξ):

P̃ (U, cαDα
ξ U,D

α
ξ U, c

2αD2α
ξ U, · · · ) = 0 (7)

Stage 2: Assuming the exact solution of Eqn. (7) can be represented by a finite power
series of F (ξ) as the following form:

U(ξ) = a0 +

n∑
j=1

ajF
j(ξ), an 6= 0 (8)

where aj (j = 0, 1, 2, · · · , n) are arbitrary constants to be determined later, n is a positive
integer determined by balancing the linear term of the with nonlinear term in (7). Also,
F (ξ) satisfies the fractional Riccati equation which is defined by

Dα
ξ F (ξ) = A+BF 2(ξ), 0 < α ≤ 1 (9)

where A and B are constants. The equation (9) has the following solutions by using the

Mittag-Leffler function in one-parameter Eα(x) =
∑∞

k=0
xk

Γ(1+kα) , α > 0:

Case 1: If A = B = 1, then the solution is F = tan(ξ, α).
Case 2: If A = B = −1, then the solution is F = cot(ξ, α).
Case 3: If A = 1, B = −1, then the solutions are F1 = tanh(ξ, α), F2 = coth(ξ, α).

Case 4: If A = 1
2 , B = −1

2 , then the solutions are F1 = tanh(ξ,α)
1±sech(ξ,α) , F2 = coth(ξ, α) ±

csch(ξ, α).

Case 5: If A = B = 1
2 , then the solutions are F1 = tan(ξ,α)

1±sec(ξ,α) , F2 = − cot(ξ, α)+csc(ξ, α)

and F3 = tan(ξ, α)± sec ξ, α.

Case 6: If A = B = −1
2 , then the solutions are F1 = cot(ξ,α)

1±csc(ξ,α) , F2 = sec(ξ, α)−tan(ξ, α)

and F3 = cot(ξ, α)± csc ξ, α.

Case 7: If A = 1, B = −4, then the solution is F = tanh(ξ,α)

1+tanh2(ξ,α)
.

Case 8: If A = 1, B = 4, then the solution is F = tan(ξ,α)
1−tan2(ξ,α)

.

Case 9: If A = −1, B = −4, then the solution is F = cot(ξ,α)
1−cot2(ξ,α)

.

In this study, the generalized hyperbolic and trigonometric functions are defined as:

cosh(ξ, α) =
Eα(ξα) + Eα(−ξα)

2
, sinh(ξ, α) = Eα(ξα)−Eα(−ξα)

2

cos(ξ, α) =
Eα(iξα) + Eα(−iξα)

2
, sin(ξ, α) = Eα(iξα)−Eα(−iξα)

2

tanh(ξ, α) =
sinh(ξ, α)

cosh(ξ, α)
, coth(ξ, α) =

cosh(ξ, α)

sinh(ξ, α)

sech(ξ, α) =
1

cosh(ξ, α)
, csch(ξ, α) =

1

sinh(ξ, α)

tan(ξ, α) =
sin(ξ, α)

cos(ξ, α)
, cot(ξ, α) =

cos(ξ, α)

sin(ξ, α)

sec(ξ, α) =
1

cos(ξ, α)
, csc(ξ, α) =

1

sin(ξ, α)

Stage 3: After applying the fractional Riccati expansion method (8) into the FODE (7)
the left hand side (7) can be converted into a polynomial in F (ξ). Setting each coefficient
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of the polynomial to zero yields system of algebraic equations for a0, a1, a2, · · · , an and c.
Stage 4: By solving the system obtained in Stage 3, the constants a0, a1, a2, · · · , an and
c can be expressed by the parameters A and B. Depending on the chosen values A and
B the function F (ξ) possesses the travelling wave solutions are given above, then the
fractional Riccati expansion method (8) has the travelling wave solution of the NFDE (5).

3. Governing of the fractional Riccati expansion scheme to the
time-fractional Gardner equation

In this section, we will implement the suggested techniques described in the above to
obtain the exact wave solution of the time-fractional Gardner equation. By substituting
the travelling wave transformation (6) into Eqn. (1), the following FODE can be found

cαDα
ξ U + 6(U − ε2U2)U ′ + U ′′′ = 0 (10)

Balancing number is

N + 3 = 2N + (N + 1)

N = 1

We suppose that U(ξ) can be expressed by a finite power series of F (ξ) as follows:

U(ξ) = a0 + a1F (ξ), a1 6= 0 (11)

where a0, a1 are arbitrary constants to be determined later. Now substituting Eqn.
(11) into Eqn. (10), we get a polynomial in F (ξ). Then collecting the coefficients of
(F (ξ))j , (j = 0, 1, 2, 3, 4) and setting them to be zero and to solve the obtained system of
equations with the help of Maple, we have the following solution set:

a0 = ± B

2ε3
, a1 = ±B

ε
, ε = ±B, c = exp(

ln(−4AB3+3
2B2 )

α
)

We get the following solutions of (1) by choosing the special values of A and B and the
corresponding function F (ξ),

Case I: The solutions are obtained by choosing the values of A = B = 1, we can obtain
trigonometric solutions of Eqn. (1),

u1(x, t) =
1

2
+ tan(x+ ct, α) (12)

u2(x, t) =
1

2
+ cot(x+ ct, α) (13)

Case II: For A = 1 and B = −1, the hyperbolic solutions are

u3(x, t) =
1

2
+ tanh(x+ ct, α) (14)

u4(x, t) =
1

2
+ coth(x+ ct, α) (15)

Case III: For A = 1
2 , B = −1

2 , we have

u5(x, t) = 2 +
tanh(x+ ct, α)

1± sech(x+ ct, α)
(16)

u6(x, t) = 2 +
coth(x+ ct, α)

1± sech(x+ ct, α)
(17)

Other remaining results can be generated in a similar fashion. By selecting the value of
α = 1, the classical Gardner equation is obtained as a special form of the equation (1).
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4. Graphical Representation of the Solutions

In this section, we will presented only a few figures of the wave solutions of the time-
fractional Gardner equation by setting specific values of the unknown parameters. Figs.
1-2 are the graphical visualization of the fractional soliton solutions for Eqn. (1) with
α = 0.5 and ε = 1.

Figure 1. Graphical illustration of the wave solution for u1(x, t) and α = 0.5

Figure 2. Graphical illustration of the wave solution for u3(x, t) and α = 0.5
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5. Conclusion

In this study, we have obtained new exact solutions of the time-fractional Gardner
equation by using the fractional Riccati expansion method. Jumarie’s modified Riemann-
Liouville fractional derivative is preferred for time fractional derivative. Besides, a travel-
ling wave transform that is simple and effective, is implemented to convert FPDE into an
FODE. We would also like to say that the method can be used for many other nonlinear
fractional differential equations. Another point that is worthy of being emphasize the
fractional Riccati expansion technique satisfies that it reliable and effective to seek many
other nonlinear fractional differential equations in mathematical physics and engineering
and the computation procedure of the suggested method is simple and easy.
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