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TRANSFORMS AND APPLICATION TO THE QUATERNIONIC

FRACTIONAL HANKEL TRANSFORM

A. ELKACHKOURI1, A. GHANMI1∗, A. HAFOUD2, §

Abstract. We present a general formalism à la Bargmann for constructing fractional
Fourier transform associated to specific class of integral transforms on separable Hilbert
spaces. As concrete application, we consider the quaternionic fractional Fourier trans-
form on the real half-line and associated to the hyperholomorphic second Bargmann
transform for the slice Bergman space of second kind. This leads to an extended version
of the well-known fractional Hankel transform. Basic properties are derived including
inversion formula and Plancherel identity.
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1. Introduction

The fractional Fourier transform (FrFT), which is special generalization of the Fourier
integral transform, is a powerful tool in many fields of research including mathematics,
physics and engineering sciences [1, 17, 14]. Its introduction goes back to 1929. In fact, it
was considered implicitly in Wiener’s work [20], when discussing the extension of certain
results of H. Weyl and leading later to Fourier developments of fractional order. Mainly,
Wiener sets out to find a one–parameter family of unitary integral operators

Fαϕ(x) :=

∫ +∞

−∞
Kα(x, v)ϕ(v)dv
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on L2(R) for which the n–th Hermite function hn(x) = Hn(x)e−x
2/2 is an eigenfunction

with einα as corresponding eigenvalue. The explicit Wiener formula for the kernel func-
tion Kα is a limiting case of Mehler’s formula for the Hermite functions. This fact was
rediscovered sixty years later in quantum mechanics by Namias [15], and showed earlier
by Hörmander [12]. Recently, this has been extended to a FrFT related to the generalized
Laguerre functions by exploiting their relation to Hermite polynomials [5].

Another and elegant way to define FrFT is given implicitly in Bargmann’s seminal paper
[3] (see also [4, 11, 19]). Indeed, associated to the classical Segal–Bargmann transform B,
mapping L2(Rd) onto the Fock–Bargmann space, one considers Rθ := B−1 ◦ Tθ ◦ B, with
Tθf(z) := f(θz), which defines a unitary homeomorphism transform on L2(Rd) when
θ = eiα; α ∈ R, and satisfies

Reiαhn(x) = einαhn(x).

In the present paper, we provide à la Bargmann a general abstract formalism for con-
structing fractional transform associated to given special invertible integral transform
SX,Y : HX −→ HY ,

SX,Y ϕ(y) =

∫
X
R(x, y)ϕ(x)ωX(x)dλ(x),

on an arbitrary infinite separable functional Hilbert spaceHX = L2(X;ωX(x)dx). Namely,
we deal with integral transforms of the form S−1

X,Y ◦ Tθ ◦ SX,Y , where Tθ ia an appropriate
action of a group G. We show that the performed fractional integral transform inherits
numerous properties from the ones of SX,Y . The explicit computation shows that the

kernel function of S−1
X,Y ◦Tθ◦SX,Y can be expressed explicitly in terms of the kernel function

R(x, y) (see (10) below). As concrete application, we deal with a special quaternionic
fractional Fourier transform (QFrFT) acting on the right quaternionic Hilbert space

L2,α
H (R+) = L2

H
(
R+, xαe−xdx

)
, α > 0,

and associated to the second Bargmann transform for hyperholomorphic Bergman space
of second kind [7]. More precisely, they are the family of (left) integral transforms

Lαθϕ(y) :=

∫ ∞
0

Kα
θ (x, y)ϕ(x)dx, (1)

whose kernel function can be shown to be given in terms of the modified Bessel function
Iα of first kind. They verify Lαθ (ϕαn(x)) = θnϕαn(x). We also prove that Lαθ is continuous,
interpolates continuously the identity operator to the Fourier-Bessel transform and satisfies
the index law (semi-group property) Lαθ ◦Lαη = Lαθη, so that the inverse of Lαθ reads simply

Lα1/θ. When |θ| = 1, the constructed family of QFrFT for L2,α
H (R+) appears embedded

in a strongly continuous one-parameter group of unitary operators and coincides with the
fractional Hankel transform [16, 13] with quaternionic parameter (QFrHT). The exposition
of these ideas in the quaternionic setting add some technical difficulties which we overcome
using tools from the theory of slice regular functions.

The paper is organized as follows. In Section 2, we recall the definition of FrHT due to
Namias that we adapt it to the quaternionic setting. In Section 3, we present a general
abstract formalism for constructing QFrHT by means of eigenvalue equation involving
orthogonal basis of certain quaternionic Hilbert space. Section 4 is devoted to the recon-
struction of QFrHT for L2,α

H (R+) by Bargmann versus, and show how to derive in a simple
way their basic properties such as the Plancherel and inversion formulas.

We conclude by noting that all needed notions and notations on hyperholomorphic
Bergman spaces are those fixed in [7].
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2. Quaternionic fractional Hankel transform (à la Namias)

In this section, we adopt the Namias’ approach for constructing fractional Hankel trans-
form for the quaternionic right Hilbert space L2,α

H (R+); α > 0, of all quaternionic-valued
functions on the half real line R+ that are square integrable with respect to the inner
product

〈ϕ,ψ〉α =

∫
R+

ϕ(x)ψ(x)xαe−xdx.

We denote by ‖·‖α the associated norm. A complete orthonormal system in L2,α
H (R+) is

given by the functions

ϕαn(x) :=

(
n!

Γ(α+ n+ 1)

)1/2

L(α)
n (x), (2)

where L
(α)
n (x) denotes the generalized Laguerre polynomials

L(α)
n (x) =

x−αex

n!

dn

dxn
(
xn+αe−x

)
. (3)

The Hille–Hardy identity [2, (6.2.25) p. 288]

Rαθ (x, y) =

+∞∑
n=0

n!

Γ(α+ n+ 1)
θnL(α)

n (x)L(α)
n (y)

=
1

1− θ

(
1

θxy

)α/2
exp

(
−θ(x+ y)

1− θ

)
Iα

(
2
√
θ

1− θ
√
xy

)
(4)

is valid for |θ| < 1 and nonnegative integer α. Here Iα(ξ) denotes the modified Bessel
function of first kind [2, p.222]

Iα(ξ) =

(
ξ

2

)α ∞∑
n=0

1

n!Γ(α+ n+ 1)

(
ξ

2

)2n

. (5)

Thus, we can rewrite the kernel function Kα
θ (x, y) := xαe−xRαθ (x, y) as

Kα
θ (x, y) =

1

1− θ

(
x

θy

)α/2
exp

(
−x+ θy

1− θ

)
Iα

(
2
√
θ

1− θ
√
xy

)
, (6)

so that the corresponding integral operator is well–defined on L2,α
H (R+) by

Lαθ (ϕ)(y) =

∫ +∞

0
Kα
θ (x, y)ϕ(x)dx (7)

is what we call here quaternionic fractional Hankel transform (QFrHT). The Laguerre
polynomial ϕαn(x) in (2) is (left) eigenfunction of Lαθ with θn as corresponding (right)
eigenvalue,

Lαθ (ϕαn(x)) = ϕαn(x)θn.

This readily follows from the definition of Lαθ .

Remark 2.1. Such transform is closely connected to the fractional Hankel transform
[16, 13]. In fact the last one appears as the limit case of Lαθ when restricting θ to |θ| = 1.

We conclude this section by proving that for |θ| < 1, the integral transform Lαθ defines

a continuous k–contraction from L2,α
H (R+) into itself with k = (1− |θ|2)−1/2.
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Proposition 2.1. For |θ| < 1 and every ϕ ∈ L2,α
H (R+), we have

‖Lαθ (ϕ)‖2 ≤
(

1

1− |θ|2

)
‖ϕ‖2 .

Proof. Since (ϕαn)n in (2) is a complete orthonormal system in L2,α
H (R+), we can expand

any f ∈ L2,α
H (R+) as f(x) =

+∞∑
n=0

ϕαncn for some cn ∈ H. Hence, using the fact that

Lαθ (ϕαn)(x) = ϕαn(x)θn, we get

Lαθ (f)(x) =
+∞∑
n=0

ϕαn(x)θncn. (8)

Using the orthogonality of ϕαn, we obtain

‖Lαθ (ϕ)‖2 =

+∞∑
n=0

|θ|2n|cn|2

≤

(
+∞∑
n=0

|θ|2n
)(

+∞∑
n=0

|cn|2n
)

≤
(

1

1− |θ|2

)
‖ϕ‖2

which requires |θ| < 1. �

3. Abstract Bargmann’s formalism for fractional integral transform

This section is devoted to present a general formalism for constructing like fractional
Fourier transform. For this, we explore Bargmann’s idea related to Segal-Bargmann trans-
form. It will be applied in Section 4 to recover the quaternionic fractional Hankel trans-
form discussed in Section 2. Thus, let HX and HY be two arbitrary infinite functional
right quaternionic separable Hilbert spaces with orthonormal bases {ϕn;n = 0, 1, · · · } and
{ψn;n = 0, 1, · · · } defined on given sets X and Y , respectively. The corresponding inner
scalar products are given by

〈ϕ, φ〉HX =

∫
X
ϕ(x)φ(x)ωX(x)dx

and

〈Ψ,Φ〉HY =

∫
Y

Ψ(y)Φ(y)ωY (y)dy,

respectively, for some weight functions ωX and ωY . Associated to the data (X,HX , ϕn)
and (Y,HY , ψn), we consider the integral transform SXY : HX −→ HY of the form

SXY (ϕ)(y) =

∫
X
R(x, y)ϕ(x)ωX(x)dx.

We assume that SXY is well defined on HX such that SXY (ϕn) = ψn. This is equivalent
to say that the kernel function R(x, y) on X × Y can be expanded as

R(x, y) =
∞∑
n=0

ϕn(x)ψn(y)
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whenever the series in the right-hand side is uniformly and absolutely convergent. Subse-
quently, SXY is an invertible integral kernel transform, whose inverse is given by

S−1
XY ψ(x) =

∫
Y
R(x, y)ψ(y)ωY (y)dy

for x ∈ X and ψ ∈ HY . We then perform the fractional transform associated to SXY to
be the Fg given by the commutative diagrams

HX
SXY //

Fg
��

	

HY
Γg
��

HX HY
S−1
XY

oo

Y
ψ //

Γ̃g
��

	

H
Γg
��

Y
ψ
// H

F(U) // G(U)

F(V )

OO

// G(V )

OO

for every g ∈ G, ψ ∈ HY , where Γ̃ : G × Y −→ Y ; (g, y) 7−→ Γ̃(g, y) = Γ̃g(y) = g(y),
is a special action of some group G on Y that we have extended to HY by considering
Γ : G × HY −→ HY with Γ(g, ψ)(y) = Γg(ψ)(y) = ψ(g(y)) with y ∈ Y and ψ ∈ HY .
Namely,

Fg = S−1
XY ◦ Γg ◦ SXY ; g ∈ G.

Therefore, for every ψ ∈ HY , we have

Fg(ϕ)(x) =

∫
Y
R(x, y)

(∫
X
R(x′, g(y))ϕ(x′)ωX(x′)dx′

)
ωY (y)dy. (9)

To change the order of the integrals, stronger conditions need to be imposed on the inte-
grand so the requirements of Fubini’s theorem are met. This holds true when for example
ωY (y)dy is a finite measure on Y and the function (x′, y) 7−→ R(x, y)R(x′, g(y)) belongs
to L2(X × Y, ωX(x′)ωY (y)dx′dy) for every fixed x ∈ X and g ∈ G. A sufficient condition,
when ωX(x′)dx′ and ωY (y)dy are finite measures on X and Y , respectively, is |R(x, y)|2 ∈
L2(Y, ωY (y)dx′dy) for every fixed x ∈ X and |R(x′, g(y))|2 ∈ L2(X×Y, ωX(x′)ωY (y)dx′dy)
for every fixed g ∈ G. Thus, under such kind of conditions, we get

Fg(ϕ)(x)
Fubini

=

∫
X
R̃g(x

′, x)ϕ(x′)ωX(x′)dx′,

where R̃g(x
′, x) stands for

R̃g(x
′, x) =

〈
R(x′, g(y)), R(x, y)

〉
HY
. (10)

An expansion of R̃g(x
′, x), at least formally, is the following

R̃g(x
′, x) =

∞∑
m=0

∞∑
n=0

ϕn(x)〈ψn,Γgψm〉HY ϕm(x′)

=

∞∑
n=0

ϕn(x)χn(g)ϕn(x′) =: Rg(x
′, x). (11)



A. ELKACHKOURI, A. GHANMI, A. HAFOUD: BARGMANN’S VERSUS FOR FRACTIONAL ... 1361

The last equality follows under the additional assumption that

Γgψm(y) = ψm(g(y)) = χm(g)ψm(y). (12)

According to the above discussion, we reformulate the following definitions.

Definition 3.1. If the series in the right-hand side of (11) converges absolutely and
uniformly to Rg(x

′, x), then

Fg(ϕ)(x) :=

∫
X
Rg(x

′, x)ϕ(x′)ωX(x′)dx′

defines a like-fractional Fourier transform for the data (HX , ϕn, χn).

Remark 3.1. We have Fg(ϕn) = ϕnχn(g). This gives an integral representation for ϕn.

Definition 3.2. We call fractional Fourier transform associated to SXY and Γ the integral
transform

F̃g(ϕ)(x) =

∫
X
R̃g(x

′, x)ϕ(x′)ωX(x′)dx′

with

R̃g(x
′, x) =

〈
R(x′, g(y)), R(x, y)

〉
HY

(13)

provided that (13) exists.

Remark 3.2. The construction is valid for any arbitrary complex or quaternionic Hilbert
spaces. Its description is more simpler when dealing with complex Hilbert spaces. Thus,
when the quaternionic Hilbert spaces are considered, the fractional Fourier transforms in
Definitions 3.1 and 3.2 are called quaternionic (QFrFT).

Remark 3.3. The equality F̃g(ϕ)(x) = S−1
XY ΓgSXY (ϕ)(x) holds true under further as-

sumptions on the kernel function allowing the application of Fubini’s theorem to (9). In
this case, if χm in (12) is a character of the group G, i.e., Γg satisfies Γgg′ = ΓgΓg′, then

F̃g is invertible with inverse given by F̃g−1.

Remark 3.4. Possible description of other properties of the considered QFrFT, like its
behavior with ordinary derivatives, with fractional derivatives, with fractional integrals, as
well as the discussion of its eventual role in the resolution of ordinary and partial differ-
ential equations is closely connected to the initial transform TX,Y and its kernel function.

4. Application: The QFrFT for L2,α
H (R+)

The needed notions and the notations from the theory of slice regular functions as
mentioned at the end of the introductory section are those used in [7].

In view of the explicit expression of the kernel function in (6), we see that we can consider
the limit case of the Hille–Hardy formula which corresponds to |θ| = 1 with θ 6= 1. We show
below that this can recovered by the formalism presented in Definition 3.2 and specified
for L2,α

H (R+), so that for θ = 1 the considered transform reduces further to the identity

operator of L2,α
H (R+). To this end, we begin by recalling that the hyperholomorphic second

Bargmann integral transform [7], defined by

[Aαsliceϕ](q) =
1√

πΓ(α) (1− q)α+1

∫ +∞

0
exp

(
tq

q − 1

)
ϕ(t)tαe−tdt, (14)
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is the quaternionic analogue of the complex second Bargmann transform introduced by
Bargmann himself in [3, p.203]. It establishes a unitary isometry from L2,α

H (R+) onto the
slice hyperholomorphic Bergman space (of second kind) on the unit ball B in R4,

A2,α
slice(B) := SR(B) ∩ L2,α(BI), (15)

where I ∈ S = {q ∈ H; q2 = −1}; BI = B ∩ CI is the unit disc in the slice CI = R + IR,
and

L2,α(BI) :=

{
f : B −→ H;

∫
BI
|f(z)|2dλαI (z) < +∞

}
.

Here dλαI denotes the Bergman measure on the unit disc BI in R2 given by

dλαI (z = x+ Iy) =
(
1− x2 − y2

)α−1
dxdy.

Consequently, we have

A2,α
slice(B) =

{
f(q) =

∞∑
n=0

qncn; cn ∈ H,
∞∑
n=0

n!

Γ(α+ n+ 1)
|cn|2 < +∞

}
,

so that the restriction to BI is the classical Bergman space on the unit disc of CI . It
should be mentioned here that the scalar product defining L2,α(BI),

〈f, g〉I :=

∫
BI
f(z)g(z)dλαI (z),

is independent of I when acting on A2,α
slice(B) × A2,α

slice(B), i.e., 〈f, g〉I = 〈f, g〉J for any

f, g ∈ A2,α
slice(B) and any I, J such that I2 = J2 = −1.

The inverse of the second Bargmann transform Aαslice is well–defined from A2,α
slice(B) onto

L2,α
H (R+), and is given by [7]

[Aαslice]−1f(t) =
1√
πΓ(α)

∫
BI

exp

(
tz

z − 1

)
(1− |z|2)α−1

(1− z)α+1 f |BI (z)dxdy. (16)

Notice for instance that the definition of A2,α
slice(B) is based on the classical one on a

given disc BI . This was possible by extending the complex holomorphic functions to the
whole B by the representation formula (see for example [6]). While the transform Aαslice
in (14) is associated to the kernel function

Aαslice(x; q) :=
1√

πΓ(α) (1− q)α+1 exp

(
xq

q − 1

)
(17)

on R+ × B, and obtained as bilinear generating function involving the functions (ϕαn)n in

(2) and the orthonormal basis of A2,α
slice(B) given by the functions

fn(q) =

(
Γ(n+ α+ 1)

πΓ(α)n!

)1/2

qn. (18)

Now, by means ofAαslice, its inverse [Aαslice]−1 and the angular unitary operator Γθ(f)(q) =
f(qθ), we perform the transform

L̃αθ := [Aαslice]−1ΓθAαslice (19)

on L2,α
H (R+). According to Definition 3.2 and Remark 3.2, this transform is the quater-

nionic fractional Fourier transform associated to Aαslice. Here we consider the UH(1)–action
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θ(q) := qθ of G = UH(1) on B, that we extend to the hyperholomorphic Bergman space

A2,α
slice(B) by considering

Γθ(f)(q) = f?(qθ) :=
∞∑
n=0

qnθncn (20)

for given f(q) =
∑∞

n=0 q
ncn ∈ A2,α

slice(B). The function q 7−→ f?(qθ) is in fact the slice

regularization of q 7−→ f(qθ) obtained by making use of the left ?Ls -product for left slice

regular functions f(q) =

∞∑
n=0

qnan and g(q) =

∞∑
n=0

qnbn on H defined by [9]

(f ?Ls g)(q) =
∞∑
n=0

qn

(
n∑
k=0

akbn−k

)
. (21)

In particular, we have

(fn)?(qθ) := fn(q)θn, (22)

and therefore we may prove the following.

Proposition 4.1. For θ ∈ H with |θ| ≤ 1, the transform L̃αθ in (19) defines a continuous

integral transform from L2,α
H (R+) onto L2,α

H (R+) with norm not exceed 1. For |θ| = 1, we
have 〈

L̃αθϕ, L̃αθψ
〉

= 〈ϕ,ψ〉.

Proof. The operator L̃αθ in (19) is well–defined from L2,α
H (R+) into itself if and only if the

action Γθ leaves the space A2,α
slice(B) invariant, which is clear from the definition of Γθ given

through (20). Moreover, using the fact Aαsliceϕαn = fn as well as (22), we get

L̃αθ (ϕαn(y)) = [Aαslice]−1 (fn(·)θn) (y) = ϕαn(y)θn.

In addition, under the condition that |θ| = 1, it is clear that Γθ preserves the scalar product

in A2,α
slice(B). Indeed, for every f =

∑∞
n=0 fncn and g =

∑∞
n=0 fndn ∈ A

2,α
slice(B), we have

〈Γθf,Γθg〉A2,α
slice(B)

=
∞∑

n,m=0

cnθn〈fn, fm〉A2,α
slice(B)

θmdm

=
∞∑
n=0

cn|θn|2dn

= 〈f, g〉
A2,α
slice(B)

.

Accordingly, the identity
〈
L̃αθϕ, L̃αθψ

〉
= 〈ϕ,ψ〉 follows as composition of operators pre-

serving scalar product. �

Remark 4.1. As particular case, we have the Plancherel formula
∥∥∥L̃αθψ∥∥∥ = ‖ψ‖ when

|θ| = 1. This can be recovered directly from the definition of L̃αθ , since in this case Γθ is
un isometry like the Bargmann transform and its inverse.

Corollary 4.1. If |θ| = 1, then the QFrFT in (19) defines a unitary transform from

L2,α
H (R+) into L2,α

H (R+).
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Remark 4.2. The family of one–parameter transforms Lαθ verifies the semi-group property
Lαθ ◦Lαη = Lαθη, so that its inverse is Lα1/θ when θ 6= 0. But we do not have Lαθ ◦Lαη = Lαη ◦Lαθ
in general, for lack of commutativity in H. However, Lαθ ◦ Lαη = Lαθη = Lαη ◦ Lαθ holds only

when θ and ψ belongs to the same slice CI := R + IR ⊂ H; I2 = −1.

The next result gives the explicit expression of the inverse of L̃αθ .

Proposition 4.2. For any quaternionic θ 6= 0, the inverse of L̃αθ is given by

(L̃αθ )−1 = A−1Γ−1
θ A = L̃α1/θ.

Proof. It is immediate form the definition of L̃αθ and the fact that Γθ ◦ Γη = Γθη. �

The following result identifies the kernel function given by (13),

R̃αθ (x, y) := 〈Aαslice(x; θ(·)), Aαslice(y; ·)〉L2,α(BI) (23)

of the QFrFT transform

[L̃αθ (ϕ)](y) =
〈
R̃αθ (·, y), ϕ

〉
L2,α
H (R+)

.

Theorem 4.1. The kernel function R̃αθ (x, y) is a left slice regular and coincides with the
kernel function of the fractional Hankel transform on the quaternionic unit ball. Moreover,

the explicit expression of L̃αθ is given by

L̃αθϕ(y) =
e
θy
θ−1

(1− θ)(θy)α/2

∫ ∞
0

xα/2Iα

(
2
√
θ

(1− θ)
√
xy

)
e

x
θ−1ϕ(x)dx (24)

for any θ ∈ H with |θ| ≤ 1 and θ 6= 1, where Iα is as in (5).

Proof. Notice first that for θ = 1 there is nothing to prove since in this case, the operator

L̃αθ reduces further to the identity operator of the Hilbert space L2,α
H (R+) and the Rαθ (x, y)

in (23) can be considered as the Dirac delta function. To identify the closed expression of

the kernel R̃αθ (x, y), we should notice that the Γθ-action reads

Γθ(q 7−→ Aαslice(x; q)) = (1− qθ)−α−1 ? exp?
(
xqθ, [qθ − 1]−1

)
,

where

exp? (f(q), g(q)) =
∞∑
n=0

fn?(q) ? gn?(q)

n!
.

For θ being a non real quaternionic number, there exists a unique imaginary unit Iθ;
I2
θ = −1, such that θ ∈ CIθ ∩ S3. By means of (23) and the independence of the scalar

product 〈f, g〉I in I when acting on A2,α
slice(B), we may write

R̃αθ (x, y) := 〈ΓθAαslice(x; ·), Aαslice(y; ·)〉L2,α(BIθ )

=
1

πΓ(α)

∫
BI

exp
(
xzθ
zθ−1

)
exp

(
yz
z−1

)
(1− zθ)α+1(1− z)α+1

(
1− |z|2

)α−1
dλI(z)

in view of the explicit expression of the kernel function Aαslice in (17). Using the generating
function for generalized Laguerre polynomials [2, p.288]

(1− z)−α−1 exp

(
xz

z − 1

)
=
∞∑
n=0

L(α)
n (x) zn,
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provided |z| < 1, as well as Fejer’s formula [18, Theorem 8.22.1, p. 198], it is not hard
to see that the involved z-function series are uniformly convergent on any compact set
contained in unit disk. Therefore, direct computation yields

R̃αθ (x, y) =
1

πΓ(α)

∫
D

( ∞∑
n=0

L(α)
n (x)θnzn

)( ∞∑
m=0

L(α)
m (y)zm

(
1− |z|2

)α−1

)
dλ(z)

=
1

πΓ(α)

∞∑
n=0

∞∑
m=0

θnL(α)
n (x)L(α)

m (y)

∫
D
znzm

(
1− |z|2

)α−1
dλ(z)

=

∞∑
n=0

n!

Γ(n+ 1 + α)
θnL(α)

n (x)L(α)
n (y) (25)

for |θz| < 1 which holds true when |θ| ≤ 1 and |z| < 1. This provides the expansion series

of the restriction of R̃αθ (x, y) to any BI . For |θ| < 1, we recognize the Hille–Hardy identity
(4) for Laguerre polynomials. Thus, we have

R̃αθ (x, y) =
1

(1− θ)

(
1

xyθ

)α/2
Iα

(
2θ1/2

1− θ
√
xy

)
exp

(
−θ(x+ y)

1− θ

)
(26)

for |θ| < 1 and θ /∈ R. This leads to (7) by considering the kernel function R̃αθ (x, y)xαe−x.
The right-hand side in (26) is clearly a slice regular function in θ ∈ B for x, y being reals.
The extension of (26) to the whole unit open ball B relies on the Identity Principle for
left slice regular functions [9], since both sides of (26) are left slice regular and coincide
at least on the upper half unit ball. To conclude, we need only to examine the validity of

the closed expression in the right-hand side of (26) for the expansion of R̃αθ (x, y) which
remains valid when |θ| = 1 with θ 6= 1. This can be handled by fixing θ and let ε ∈ (0, 1),
so that (26) holds true for |εθ| < 1, and next sending ε to 1−, at least formally. This
can be rigorously justified making use of test functions and classical argument from the
Schwartz theory of distributions. �

Remark 4.3. By taking θ = −1 with
√
θ = i in (24), we recover the classical Fourier-

Bessel transform [16, 13]

(Hαψ) (y) :=

∫ ∞
0

uJα (yu)ψ(u)du

for ψ ∈ L2(R+), where Jα is the Bessel function of first kind associated to Iα in (5) by

Iα(x) = i−αJα(ix). Indeed, by setting L̃α = L̃α−1 and making the change of variable u2 = x

and the function ψ(u) = xα/2e−x/2ϕ(x) = uαe−u
2/2ϕ(u2) we get

L̃αϕ(y2) =
ey

2/2

iαyα

∫ ∞
0

uα+1Iα (iyu) e−u
2/2ϕ(u2)du =

ey
2/2

yα
(Hαψ) (y).

Remark 4.4. The considered family of QFrFT on the real half-line appears embedded in
a strongly continuous one-parameter group of unitary operators the quaternionic context.
Moreover, it is continuous and interpolates continuously the identity operator (θ = 1) to
the Hankel transform [2, p. 216] corresponding to θ = −1.

Remark 4.5. The considered transform can be used to reintroduce the hyperholomorphic
Bergman space A2,α

slice(B) in (15) as well as some of their specific generalization in the
context of slice regular functions on the unit quaternionic ball by considering the dual

transform of θ 7−→ L̃αθϕ(y), for fixed y ∈ (0,+∞). For the limit case of y = 0, the last
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transform is nothing than the Bargmann transform in (14). The concrete study of the
spectral properties of these dual transforms is studied in [10].

5. Conclusion

By exploring Bargmann’s idea related to Segal-Bargmann transform, we have been able
to present a general abstract formalism for constructing like fractional Fourier transform
associated to given specific integral transform between complex or quaternionc Hilbert
spaces. This formalism is next applied for the hyperholomorphic second Bargmann trans-
form to re-derive the quaternionic fractional Hankel transform constructed à la Namias
and to derive their basic properties. As mentioned by one of the referees, the approach
used in this paper improves some results established (in this paper and its ArXiv version
[8]) an in and can be applied to some Hamiltonians characterizing the Field Reggeons
Theory. Moreover, the obtained results can be applied in several areas. Especially, to
solve certain classes of ordinary and partial differential equations.

Acknowledgment: The authors would like to extend their gratitude to the referee(s) for
their valuable comments and suggestions.
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