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A SEMI–ANALYTICAL STUDY OF DIFFUSION TYPE MULTI–TERM

TIME FRACTIONAL PARTIAL DIFFERENTIAL EQUATION

R. K. PANDEY1, H. K. MISHRA2∗, §

Abstract. This work suggested algorithm for the solution of multi–term time fractional
partial differential equation by the application of homotopy analysis fractional Sumudu
transform method based on iterative process. The method is cumulation of Sumudu
transform and homotopy analysis method. Also, the multi-term time fractional partial
differential equation represented in the form of system of fractional partial differential
equations as per certain conditions of fractional derivatives. The Caputo fractional order
derivatives are taken for the multi–term time fractional partial differential equations.
Numerical examples are discussed for the support of theory and the approximate solu-
tion compared with exact solutions at the integer value of derivatives.
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1. Introduction

Fractional calculus is old as classical calculus, today it plays significant role in various
fields of science and engineering including mathematical modeling astrophysics biology etc.
Recently many researchers and mathematicians give valuable contributions to enhance the
knowledge in this field [1, 2, 3].
For explaining dynamical systems, the integer – order system of differential equations are
significant tool up to recent era. Unfortunately modern studied have depicts that integer-
order derivatives are not reasonably explaining the multifaceted and typical nature of
various types of non dynamical system. Currently differential equations of fractional order
are popularly used by many researchers in all over world to form various scientific models.
Importantly fractional derivatives introduce for understanding of real life phenomena to
reduce shortcoming of classical calculus and also for the explanation Brownian nature of
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particle in non dynamic system. Some classical example can be observed in the study of
ground water system in-heterogeneous media.
In [4], authors discussed a generalized fractional derivative which produced different kinds
of singular and nonsingular fractional derivatives based on different types of kernels. Ku-
mar et al. [5], solve the multidimensional heat equations of arbitrary order with new Yang-
Abdel-Aty-Cattani (YAC) fractional operator by using two approaches homotopy pertur-
bation transform method and residual power series method. Ghanbari et al. [6], solve
fractional immunogenetic tumour model using the Adam Bashforth’s Moulton method,
where the fractional Atangana-Baleanu derivative has been utilized in the structure of
model. Kumar et al. [7], applied the Bernstein wavelet and Euler methods for the so-
lution of nonlinear fractional predator- prey biological model of two species. Alshabanat
et al. [8], generalizes the fractional operator with non-singular derivatives as a special
case of Caputo-Fabrizio fractional derivative. Later discussed the application in electrical
circuits. Kumar et al. [9, 10] applied the operational matrix based on Bernstein wavelets
method, Adams–Bashforth predictor correcter method in SIR model and Haar wavelet
and Adams-Bashforth-Moulton methods in Lotka-Volterra (LV) system. Veeresha et al.
[11] applied the q-homotopy analysis transform method (q-HATM) for the solution of frac-
tional generalized nonlinear Schrödinger (FGNS) equation. Bansal et al. [12] discussed the
solutions for fractional differential equations involving the generalized composite fractional
derivative and integral operator associated with the incomplete H-function with various
special cases. In [13] Singh et al. presented q-local fractional homotopy analysis transform
method (q-LFHATM) and applied it on the solution of local fractional linear transport
equations (LFLTE) in fractal porous media. Authors of [14] presented solution of systems
of nonlinear fractional differential equations by the application of homotopy asymptotic
method.
The multi–term time fractional order partial differential equations played significant role
to explain many physical and non-physical phenomenon’s such as the non-Markovian
diffusion process with memory, propagation of mechanical waves in viscoelastic media,
transport in amorphous semiconductors [15, 16, 17, 18]. The variable order differential
operators may better describe the behaviour of various time varying processes instead of
time varying coefficients [19, 20, 21].
Variable order and distributed order fractional operators are also discussed by Lorenzo and
Hartley [22]. Then many authors proposed the physical meaning of variable operators, see
references therein [23, 24, 25].
Many methods applied to solve system of fractional partial differential equations namely
Adomian decomposition method (ADM)[26, 27, 28, 29, 30, 31], homotopy perturbation
method (HPM) [32], homotopy analysis method (HAM) [33, 34], Predict, Evaluate, Cor-
rect, Evaluate (PECE) [35], Chebyshev spectral methods [36], Variational Iteration Method
[37], Spectral method [38]. These methods have been proposed to obtain exact and ap-
proximate analytical solutions of multi–term fractional partial differential equations.
In this communication, we are interested to solve multi–term time fractional nonlinear
fractional order partial differential equation. Using applicability of HAFSTM [39, 40], we
transform it into system of fractional order partial differential equations [28], some numer-
ical experiments of linear and nonlinear systems of fractional PDE’s will be presented.

The paper is organize as follows. In Sec. 2 some basics definitions of applicable terms are
given. The multi term fractional partial differential equations transformation as a system
of fractional partial differential equations has been discussed in Sec. 3. The algorithm of
method HAFSTM for the solution of system of fractional PDE’s are introduced in Sec. 4.
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The convergence analysis of problem is given in Sec. 5. Next, application of the discussed
algorithm and numerical comparisons with graphical analysis are given in Sec. 6. Finally,
conclusions are drawn in Sec. 7.

2. Some Basic definitions

Definition 1 Let the function f (t) , t > 0, be in the space Cµ, µ ∈ R if there exists a real
number p (> µ) , such that f (t) = tpf1 (t) , wheref1 (t) ∈ C [0,∞) , and it is said to be in

the space Cmµ iff f (m) ∈ Cµ, m ∈ N .

Definition 2 The left sided Liouville Fractional integral operator of order α ≥ 0, of a
function f (t) ∈ Cµ, and µ ≥ −1 is defined as [41, 42]

Jαf (t) = 1
Γ(α)

∫ t
0 (t− τ)α−1 f (τ) dτ, α > 0, x > 0 and J0f (t) = f (t) .

Definition 3 The left sided Riemann–Liouville fractional differential operator of order
α ≥ 0, [1]

Dαf (t) =
dm

dtm
Im−αf (t) , m− 1 < α ≤ m, m ∈ N.

Definition 4 The left sided caputo of f (t) derivative is defined as [1]

Dα
t f (t) =

{
Jm−αDnf (t) ,

1
Γ(n−α)

∫ t
0 (t− T )m−α−1 f (m) (τ) dτ,

where m− 1 < α ≤ m, m ∈ N, t > 0.

Definition 5 In early 90’s, Watugala [43] introduced an incipient integral transforms.
The Sumudu transform is defined over the set of functions

A =

{
f (t)

∣∣∣∣∃M, τ1, τ2 > 0, |f (t)| < Me
|t|
τj , if t ∈ (−1)j × [0,∞)

}
,

by the following formula

f̄ (u) = S [f (t)] =

∫ ∞
0

f (ut) e−t dt, u ∈ (−τ1, τ2) .

Definition 6 The Sumudu transform of f (t) = tα is defined as [44]

S [tα] =

∫ ∞
0

e−ttα dt = Γ (α+ 1) uα, R (α) > 0.

Definition 7 The Sumudu transform S [f (t)] of the Riemann–Liouville fractional integral
is defined as [44]

S [Iαf (t)] = u−αF (u) .
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Definition 8 The Sumudu transform S [f (t)] of the Caputo fractional derivative is defined
as [44]

S [Dα
t f (t)] = u−αS [f (t)]−

∑m−1
k=0 u

−α+kf (k) (0+) , where m− 1 < α ≤ m.

3. Multi-Term FPDE as a system of FPDE

Here, we consider the following time fractional diffusion wave equations of multi–term [45]

n∑
i=1

ci
c
0D

αi
t U (x, t) = Kα1Uxx (x, t) + f (x, t) , (1)

where 0 < α1 < ..., < αn < 1 or 0 < α1 < ..., < αn < 2 and Kα1 , ci are constants,
c
0D

αi
∗ denotes the caputo derivative of arbitrary order ∀αi ∈ Q, αi − αi−1 ≤ 1, ∀i and

0 ≤ αi ≤ 1.
We translate equation (1) as a system of FPDE, using the algorithm proposed in [46].

4. Analysis of the homotopy analysis fractional Sumudu transform method

We apply the homotopy analysis fractional Sumudu transform method to solve the frac-
tional multi –term diffusion equations

Dαi
t Ui (x, t) = Ui+1, i = n− 1, n− 2, ..., 1.

Dαn
t Ui (x, t) = f (x, t, U1, U2, ...., Un) ,

U (k) (x, 0) = Cjk, 0 ≤ k ≤ mj , mj < αi ≤ mj+1, 1 ≤ j ≤ n.
(2)

Now, applying the Sumudu transform in equation (2), we get

S [Dαi
t Ui (x, t)] = S [Ui+1] , i = n− 1, n− 2, ..., 1.

S [Dαn
t Ui (x, t)] = S [f (x, t, U1, U2, ...., Un)] , 0 ≤ k ≤ mj , mj < αi ≤ mj+1, 1 ≤ j ≤ n.

Using the differentiation property of the Sumudu transform

S[U(x,t)]
uαi −

∑n−1
k=0

U(k)(0)

u(αi−k)
= S [Ui+1] , i = n− 1, n− 2, ..., 1.

S[U(x,t)]
uαn −

∑n−1
k=0

U(k)(0)

u(αn−k)
= S [f (x, t, U1, U2, ...., Un)] ,

(3)

we define nonlinear operator as

Ni [ϕi (x, t; q)] = S [ϕi (x, t; q)]−
∑n−1

k=0
U(k)(0)

u(−k)
− uαiS [ϕi+1 (x, t; q)] , i = 1, 2, ..., n− 1,

Nn [ϕn (x, t; q)] = S [ϕn (x, t; q)]−
∑n−1

k=0
U(k)(0)

u(−k)
− uαnS [f (x, t, ϕ1, ϕ2, ...., ϕn)] ,

(4)
where q ∈ [0, 1] be an embedding parameter and ϕ (x, t; q) is a real function of x, t and q.
we construct the homotopies are as follow:

(1− q) S [ϕi (x, t; q)−Ui0 (x, t)] = ~iqHi (x, t)N [ϕi (x, t; q)] ,
(1− q) S [ϕn (x, t; q)−Un0 (x, t)] = ~nqHn (x, t)N [ϕn (x, t; q)] .

(5)

~i 6= 0 and Hi (x, t) 6= 0, i = 1, 2, 3, ..., n are nonzero auxiliary functions, Ui0 (x, t) are
initial guess of Ui (x, t)and ϕi (x, t; q) is unknown function. It is important that one has
great freedom to choose auxiliary parameter in HAFSTM. Obviously, when q = 0 and
q = 1 it holds

ϕi (x, t; 0) = Ui0 (x, t) , ϕi (x, t; 1) = Ui (x, t) , i = 1, 2, 3, ..., n. (6)
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Thus as q increases from 0 to 1,then the solution varies from initial guess Ui0 (x, t) to
Ui (x, t) Now, expanding ϕ (x, t; q) on Taylor’s series with respect to q, we get

ϕi (x, t; q) = Ui0 (x, t) +
∞∑
m=1

qm Uim (x, t) , (7)

where

Uim (x, t) =
1

|m
∂mϕi (x, t; q)

∂qm

∣∣∣∣
q=0

. (8)

The convergence of the series solution (7) is controlled by ~. If the auxiliary linear operator,
the initial guess, the auxiliary parameter ~ and the auxiliary function are properly chosen,
the series (7) converges at q = 1. Hence we obtain

Ui (x, t) = Ui0 (x, t) +
∞∑
m=1

Uim (x, t) , (9)

which must be one of the solutions of original nonlinear equations. The above expression
provides us with a relationship between the initial guess Ui0 (x, t) and the exact solution
U (x, t) by means of the terms Uim (x, t) (m = 1, 2, 3, ...) , which are still to be determined.
Define the vectors

−→
U = {Ui 0 (x, t) , Ui 1 (x, t) , Ui 2 (x, t) , ..., Uim (x, t)} . (10)

Differentiating the eq. (5) m times with respect to embedding parameter q and then
setting q = 0, and finally dividing them by m!, we obtain the mth order deformation
equation as follows:

S
[
Uim (x,t)− χmUi(m−1) (x,t)

]
= ~iHi (x,t)Ni [Ui (x,t)] ,

S
[
Unm (x,t)− χmUn(m−1) (x,t)

]
= ~nHn (x,t)Nm [Un (x,t)] .

(11)

Operating the inverse Sumudu transform of both sides, we get

Uim (x, t) = χmUi(m−1) (x, t) + ~iS−1
[
Hi (x, t)Rim

(−→
U i(m−1), x, t

)]
,

Unm (x, t) = χmUn(m−1) (x, t) + ~nS−1
[
Hn (x, t)Rnm

(−→
U n(m−1), x, t

)]
,

(12)

where

Rim

(−→
U i(m−1), x, t

)
=

1

(m− 1)!

∂m−1ϕi (x, t; q)

∂qm−1

∣∣∣∣
q=0

. (13)

and

χm =

{
0, m ≤ 1,
1 m > 1.

In this way, it is easy to obtain Uim (x, t) for m ≥ 1, at M th order, we have

Ui (x, t) =

M∑
m=0

Uim (x, t) , (14)

where M →∞, we obtain an accurate approximation of the original equation (2).
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5. Convergence Analysis

Theorem 5.1 Let T : Ω → Ω is nonlinear mapping defined on Banach space (Ω, ‖ . ‖) .
The series solution (14) of problem (1) using HAFSTM converges if |Ai1| < γ where γ > 0,
using the Banach’s fixed point theory [47].

Proof: Consider a Banach space (C (X) , ‖ . ‖) with all continuous functions on Xwith
norm ‖V (t)‖ = maxt∈X |V (t)| .

Let the sequence {Ari} be defined as Ari =
r∑

m=0
Uim (x, t), which is a part of solution (14),

Since,

Dαn
t Ui (x, t) = f (x, t, U1, U2, ...., Un) =

r∑
m=0

Uim (x, t) (15)

Where f satisfies the Lipschitz condition with Lipschitz constant τ such as,

|f (x, t, Ar1, Ar2, ...., Arn)− f (x, t, At1, At2, ...., Atn)| = τ

n∑
j=0

∣∣Aj(i(r−1)) −Aj(i(t−1))

∣∣ (16)

From (4.2) and ,

Uim = (χm + ~i)Ui(m−1) − ~iHi (x, t) S−1
[
u−αiS [f (x, t, U1, U2, ...., Un)]

]
(17)

Assuming Ari and Ati are the two arbitrary partial sums where ri > ti,

Ari = (χm + ~i)Ai(r−1) − ~iHi (x, t)S−1
[
u−αiS [f (x, t, Ar1, Ar2, ...., Arn)]

]
(18)

and

Ati = (χm + ~i)Ai(t−1) − ~iHi (x, t) S−1
[
u−αiS [f (x, t, At1, At2, ...., Atn)]

]
(19)

Now, we can show that sequence {Ari} is Cauchy sequence in Banach space (Ω, ‖ . ‖)

Ari −Ati = (χm + ~i)
(
Ai(r−1) −Ai(t−1)

)
−~iHi (x, t)S−1

[
u−αiS [f (x, t, Ar1, Ar2, ...., Arn)− f (x, t, At1, At2, ...., Atn)]

]
|Ari −Ati| =

∣∣(χm + ~i)
(
Ai(r−1) −Ai(t−1)

)
−~iHi (x, t) S−1

[
u−αiS [f (x, t, Ar1, Ar2, ...., Arn)− f (x, t, At1, At2, ...., Atn)]

]∣∣
≤ (χm + ~i)

∣∣Ai(r−1) −Ai(t−1)

∣∣
−~iHi (x, t)S−1

[
u−αiS [|f (x, t, Ar1, Ar2, ...., Arn)− f (x, t, At1, At2, ...., Atn)|]

]∣∣
Applying the convolution theorem of Sumudu transform [44]

|Ari −Ati| ≤ (χm + ~i)
∣∣Ai(r−1) −Ai(t−1)

∣∣
−~iHi (x, t)

t∫
0

[|f (x, t, Ar1, Ar2, ...., Arn)− f (x, t, At1, At2, ...., Atn)|] (t− θ)αi

Γ (αi + 1)

Using (22)
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|Ari −Ati| ≤ (χm + ~i)
∣∣Ai(r−1) −Ai(t−1)

∣∣− ~iHi (x, t) τ
n∑
j=0

∣∣Aj(i(r−1)) −Aj(i(t−1))

∣∣
Taking maximum value

‖Ari −Ati‖ ≤ λ
∥∥Ai(r−1) −Ai(t−1)

∥∥ (20)

Replacing ri = ti+ 1 in (26) then,

‖Ati+1 −Ati‖ ≤ λ ‖Ati −Ati−1‖ ≤ λ2 ‖Ati−1 −Ati−2‖ ≤ ..... ≤ λti ‖A0i −A1i‖
Using the triangle inequality

‖Ari −Ati‖ ≤ ‖Ati+1 −Ati‖+ ‖Ati −Ati−1‖+ ‖Ati−1 −Ati−2‖+ . . . + ‖Ari −Ari−1‖

≤
[
λti + λti+1 + . . . + λri−1

]
‖A0i −A1i‖

≤ λti
[
1 + λ+ λ2 + . . . + λri−ti−1

]
‖A0i −A1i‖

≤ λti
[

1− λri−ti−1

1− λ

]
‖A0i −A1i‖ .

Where 0 < λ < 1, then
1− λri−ti−1 < 1

‖Ari −Ati‖ ≤
λti

1− λ
‖A0i −A1i‖

‖Ari −Ati‖ ≤
λti

1− λ
maxt∈X |Ai1|

Given that
|Ai1| < γ

and as ti→∞ then ‖Ari −Ati‖ → 0 and
hence the sequence {Ari} is a Cauchy sequence in this Banach space (Ω, ‖ . ‖). Therefore
(14) is converges.
Remark: Since the function satisfies the Lipschitz condition (22) (5.2) then the (1) posses
the unique solution in (C (X) , ‖ . ‖).

6. Illustrative Examples

To illustrate the efficiency and accuracy of above discussed method, we consider some
multi –term time fractional diffusion equations. We transform the MTTFDE as a system
of FPDE and evaluate it using the HAFSTM.

Example 1 we consider the following two –term time fractional diffusion equation [45]
c
0D

α1
t U (x, t) +c

0 D
α2
t U (x, t) = ∂xxU (x, t) + F (x, t) ,

U (x, 0) = 0, x ∈ (0, 1) ,
U (0, t) = U (1, t) = 0, t ∈ (0, 1] ,

(21)

where

F (x, t) =
6

Γ (4− α1)
t3−α1 sin πx +

6

Γ (4− α2)
t3−α2 sin πx

+π2 t3 sin πx.
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The exact solution of Eq. (21) is U (x, t) = t3 sin πx.
We can convert the Eq. (21) in following system of time fractional partial differential
equation

Dα2
t U (x, t) = V (x, t) , U (x, 0) = 0,

Dα1−α2
t V (x, t) = −V (x, t) + ∂xxU (x, t) + F (x, t).

(22)

Applying the Sumudu transform of Eq. (22)

S [U (x, t)]

uα2
−
n−1∑
k=0

U (k) (0)

u(α2−k)
− S [V (x, t)] = 0,

S [V (x, t)]

uα1−α2
−
n−1∑
l=0

V (l) (0)

u(α1−α2−l)
+ S [V (x, t)− ∂xxU (x, t)− F (x, t)] = 0,

S [U (x, t)]−
n−1∑
k=0

U (k) (0)

u(−k)
− uα2 S [V (x, t)] = 0,

S [V (x, t)]−
n−1∑
l=0

V (l) (0)

u(−l) + uα1−α2S [V (x, t)− ∂xxU (x, t)− F (x, t)] = 0.

(23)

Now, the nonlinear operator is defined as

N [φ1 (x,t;q)] = S [φ1 (x,t;q)]−
n−1∑
k=0

φ1
(k) (0)

u(−k)
− uα2 S [φ1 (x,t;q)] ,

N [φ2 (x,t;q)] = S [φ2 (x,t;q)]−
n−1∑
l=0

φ2
(l) (0)

u(−l) + uα1−α2S [φ2 (x,t;q)− ∂xxφ1 (x,t;q)− F (x, t)] .

(24)
In the view of discussion, we can construct the zeroth –order deformation equation

(1− q) S [ϕ1 (x, t; q)−U0 (x, t)] = ~1qH1 (x, t)N [ϕ1 (x, t; q)] ,
(1− q) S [ϕ2 (x, t; q)− V0 (x, t)] = ~2qH2 (x, t)N [ϕ2 (x, t; q)] .

(25)

The mth− order deformation equation is given by

Um (x, t) = χmUm−1 (x, t) + ~1S−1
[
H1 (x, t)R1m

(−→
U (m−1), x, t

)]
,

Vm (x, t) = χmVm−1 (x, t) + ~2S−1
[
H2 (x, t)R2m

(−→
V m−1, x, t

)]
,

(26)

where

R1m

(−→
U m−1

)
= S [Um−1 (x, t)]− uα2 S [Um−1 (x, t)] ,

R2m

(−→
V m−1

)
= S [Vm−1 (x, t)] + uα1−α2S [Vm−1 (x, t)

−∂xxUm−1 (x, t)− (1− χm)F (x, t)] .

(27)

On solving above equation from m = 1, 2, ..., we get

U1 (x, t) = 0,
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V1 (x, t) = −~26t3−2α1 sin πx

(
tα1

Γ (4− α1)
+

tα2

Γ (4− 2α1 + α2)
+

π2tα1+α2

Γ (4− 2α1 + α2)

)
,

U2 (x, t) = ~1~26t3−2α1+α2 sin πx

(
tα1

Γ (4− α1 + α2)
+

tα2

Γ (4− 2α1 + 2α2)

+
π2tα1+α2

Γ (4− α1 + 2α2)

)
,

V2 (x, t) = −~26t3−2α1 (1 + ~2) sin πx

(
tα1

Γ (4− α1)
+

tα2

Γ (4− 2α1 + 2α2)

+
π2tα1+α2

Γ (4− α1 + 2α2)

)
− ~2

26t3−2α1+α2 sin πx

(
tα1

Γ (4− 2α1 + α2)

+
tα2

Γ (4− 3α1 + 2α2)
+

π2tα1+α2

Γ (4− 2α1 + 2α2)

)
,

U3 (x, t) =
12~1~2t

3−α1+α2 sin πx

Γ (4− α1 + α2)
+

12~1~2t
3−α1+α2 sin πx

Γ (4− α1 + α2)

+
12π2~1~2t

3−α1+α2 sin πx

Γ (4− α1 + α2)
+

6 ~2
1~2t

3−α1+α2 sin πx

Γ (4− α1 + α2)

+
6 ~2

1~2t
3−2α1+2α2 sin πx

Γ (4− 2α1 + 2α2)
+

6π2 ~2
1~2t

3−α1+2α2 sin πx

Γ (4− α1 + 2α2)

+
6 ~2

2~1t
3−α1+α2 sin πx

Γ (4− α1 + α2)
+

12 ~2
2~1t

3−2α1+2α2 sin πx

Γ (4− 2α1 + 2α2)

+
6π2 ~2

2~1t
3−α1+2α2 sin πx

Γ (4− α1 + 2α2)
+

6π2~2
2~1t

3−2α1+3α2 sin πx

Γ (4− 2α1 + 3α2)
,

V3 (x, t) =
−6~2t

3−α1 sin πx

Γ (4− α1)
− 6~2t

3−2α1+α2 sin πx

Γ (4− 2α1 + α2)

−6π2~2t
3−α1+α2 sin πx

Γ (4− α1 + α2)
− 12~2

2t
3−α1 sin πx

Γ (4− α1)

−24 ~2
2t

3−2α1+α2 sin πx

Γ (4− 2α1 + α2)
− 12π2~2

2t
3−α1+α2 sin πx

Γ (4− α1 + α2)

−12 ~2
2t

3−3α1+2α2 sin πx

Γ (4− 3α1 + 2α2)
− 12π2~2

2t
3−2α1+2α2 sin πx

Γ (4− 2α1 + 2α2)

+
6π2~1~2

2t
3−2α1+2α2 sin πx

Γ (4− 2α1 + 2α2)
+

6π2~1~2
2t

3−3α1+3α2 sin πx

Γ (4− 3α1 + 3α2)

+
6π4~1~2

2t
3−2α1+3α2 sin πx

Γ (4− 2α1 + 3α2)
− 6 ~3

2t
3−α1 sin πx

Γ (4− α1)

−18 ~3
2t

3−2α1+α2 sin πx

Γ (4− 2α1 + α2)
− 6π2~3

2t
3−α1+α2 sin πx

Γ (4− α1 + α2)

−18 ~3
2t

3−3α1+2α2 sin πx

Γ (4− 3α1 + 2α2)
− 12π2~3

2t
3−2α1+2α2 sin πx

Γ (4− 2α1 + 2α2)

−6 ~3
2t

3−4α1+3α2 sin πx

Γ (4− 4α1 + 3α2)
− 6π2~3

2t
3−2α1+3α2 sin πx

Γ (4− 3α1 + 3α2)
,
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Figure 1: Plot of U (x, t) w.r.t t at x = 0.5 for α = 0.3, 0.6, 0.9, 1.0 and exact solution.
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Figure 3: Plot of approximate solutions and exact solution w.r.t. t.

Figs. 1, 2 reflects the association of Brownian variation of variable order multi–term time
fractional advection differential equations at ~1 = ~2 = −1, for x = 0.5 with respect to
time variable t. The figure 3 shows the he comparative study of exact and approximate
solutions of certain value which can be controlled by parameters ~1, ~2, the values are
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taken α1 = 0.248, α2 = 0.074, ~1 = −2, ~2 = −0.023.

Example 2 we consider the following two –term time fractional diffusion equation [45]


c
0D

α1
t U (x, t) +c

0 D
α2
t U (x, t) +c

0 D
α3
t U (x, t) = ∂xxU (x, t) + F (x, t) ,

U (x, 0) = 0, x ∈ (0, 1) ,
U (0, t) = U (1, t) = 0, t ∈ (0, 1] ,

(28)

where

F (x, t) = π2 t3 sin πx+
6

Γ (4− α1)
t3−α1 sin πx +

6

Γ (4− α2)
t3−α2 sin πx

+
6

Γ (4− α3)
t3−α3 sin πx.

The exact solution of Eq. (28) is U (x, t) = t3 sin πx.
We can convert the Eq. (28) in following system of time fractional partial differential
equation

Dα3
t U (x, t) = V (x, t) , U (x, 0) = 0,

Dα2−α3
t V (x, t) = W (x, t) , V (x, 0) = 0,

Dα1−α2
t W (x, t) = −W (x, t)− V (x, t) + ∂xxU (x, t) + F (x, t) .

(29)

Applying the Sumudu transform of Eq. (29)

S [U (x, t)]

uα3
−
n−1∑
k=0

U (k) (0)

u(α3−k)
− S [V (x, t)] = 0,

S [V (x, t)]

uα2−α3
−
n−1∑
l=0

V (l) (0)

u(α2−α3−l)
− S [W (x, t)] = 0,

S [W (x, t)]

uα1−α2−α3
−

n−1∑
m=0

W (m) (0)

u(α1−α2−m)
+ S [V (x, t) +W (x, t)− ∂xxU (x, t)− F (x, t)] = 0,

S [U (x, t)]−
n−1∑
k=0

U (k) (0)

u(−k)
− uα3 S [V (x, t)] = 0,

S [V (x, t)]−
n−1∑
l=0

V (l) (0)

u(−l) − u
α2−α3 S [W (x, t)] = 0,

S [W (x, t)]−
n−1∑
m=0

W (m) (0)

u(−m)
+ uα1−α2S [V (x, t) +W (x, t)− ∂xxU (x, t)− F (x, t)] = 0.

(30)
Now, the nonlinear operator is defined as
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N [φ1 (x,t;q)] = S [φ1 (x,t;q)]−
n−1∑
k=0

φ1
(k) (0)

u(−k)
− uα3 S [φ1 (x,t;q)] ,

N [φ2 (x,t;q)] = S [φ2 (x,t;q)]−
n−1∑
l=0

φ2
(l) (0)

u(−l) − uα2−α3 S [φ2 (x,t;q)] ,

N [φ3 (x,t;q)] = S [φ3 (x,t;q)]−
n−1∑
m=0

φ3
(m) (0)

u(−m)
+ uα1−α2S [φ2 (x,t;q)

+φ3 (x,t;q)− ∂xxφ3 (x,t;q)− F (x, t)] .

(31)

In the view of discussion, we can construct the zeroth –order deformation equation

(1− q) S [ϕ1 (x, t; q)−U0 (x, t)] = ~1qH1 (x, t)N [ϕ1 (x, t; q)] ,
(1− q) S [ϕ2 (x, t; q)− V0 (x, t)] = ~2qH2 (x, t)N [ϕ2 (x, t; q)] ,
(1− q) S [ϕ3 (x, t; q)−W0 (x, t)] = ~3qH3 (x, t)N [ϕ3 (x, t; q)] .

(32)

The mth− order deformation equation is given by

Um (x, t) = χmUm−1 (x, t) + ~1S−1
[
H1 (x, t)R1m

(−→
U (m−1), x, t

)]
,

Vm (x, t) = χmVm−1 (x, t) + ~2S−1
[
H2 (x, t)R2m

(−→
V (m−1), x, t

)]
,

Wm (x, t) = χmWm−1 (x, t) + ~1S−1
[
H3 (x, t)R3m

(−→
W (m−1), x, t

)]
,

(33)

where

R1m

(−→
U m−1

)
= S [Um−1 (x, t)]− uα3 S [Um−1 (x, t)] ,

R2m

(−→
V m−1

)
= S [Vm−1 (x, t)]− uα3−α2 S [Vm−1 (x, t)] ,

R3m

(−→
Wm−1

)
= S [Wm−1 (x, t)] + uα1−α2S [Wm−1 (x, t)− Vm−1 (x, t)

−∂xxUm−1 (x, t)− (1− χm)F (x, t)] .

(34)

On solving above equation from m = 1, 2, ..., we get

U1 [x, t] = 0,

V1 [x, t] = 0,

W1 [x, t] =
−6~3t

3+α1−2α2 sin πx

Γ (4 + α1 − 2α2)
− 6~3t

3−α2 sin πx

Γ (4− α2)

−6~3π
2t3−α2 sin πx

Γ (4− α2)
− 6~3t

3+α1−α2−α3 sin πx

Γ (4 + α1 − α2 − α3)
,

U2 [x, t] = 0,

V2 [x, t] =
6~2~3t

3+α1−2α3 sin πx

Γ (4 + α1 − 2α2)
+

6~2~3t
3−α3 sin πx

Γ (4− α3)

+
6π2~2~3π

2t3+α1−α3 sin πx

Γ (4 + α1 − α3)
+

6~2~3t
3+α1−α2−α3 sin πx

Γ (4 + α1 − α2 − α3)
,
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W2 [x, t] =
−6~3t

3+α1−2α2 sin πx

Γ (4 + α1 − 2α2)
− 6~3t

3−α2 sin πx

Γ (4− α2)

−6~3π
2t3+α1−α2 sin πx

Γ (4 + α1 − α2)
− 6~3t

3+α1−α2−α3 sin πx

Γ (4 + α1 − α2 − α3)

−6~2
3t

3+α1−2α2 sin πx

Γ (4 + α1 − 2α2)
− 6~2

3t
3−α2 sin πx

Γ (4− α2)

−6π2~2
3t

3+α1−α2 sin πx

Γ (4 + α1 − α2)
− 6~2

3t
3+α1−α2−α3 sin πx

Γ (4 + α1 − α2 − α3)
,

U3 [x, t] = −6~1~2~3 sin πx

(
t3

6
+

π2t3+α1

Γ (4 + α1)

+
t3+α1−α2

Γ (4 + α1 − α2)
+

t3+α1−α3

Γ (4 + α1 − α2)

)
,

V3 [x, t] =
12 ~2~3t

3+α1−2α3 sin πx

Γ (4 + α1 − 2α2)
+

12~2~3t
3−α3 sin πx

Γ (4− α3)

+
12π2~2~3π

2t3+α1−α3 sin πx

Γ (4 + α1 − α3)
+

12~2~3t
3+α1−α2−α3 sin πx

Γ (4 + α1 − α2 − α3)

+
6 ~2

2~3t
3+α1−2α3 sin πx

Γ (4 + α1 − 2α2)
+

6 ~2
2~3t

3−α3 sin πx

Γ (4− α3)

+
6π2 ~2

2~3t
3+α1−α3 sin πx

Γ (4 + α1 − α3)
+

6 ~2
2~3t

3+α1−α2−α3 sin πx

Γ (4 + α1 − α3)

+
6 ~2

2~3t
3+α1−α2−α3 sin πx

Γ (4 + α1 − α2 − α3)
+

6 ~2
3~2t

3+α1−2α3 sin πx

Γ (4 + α1 − 2α3)

+
6π2~2

3~2t
3+α1−α3 sin πx

Γ (4 + α1 − α3)
+

6 ~2
3~2t

3+α1−α2−α3 sin πx

Γ (4 + α1 − α2 − α3)
,

W3 [x, t] =
−6~3t

3+α1−2α2 sin πx

Γ (4 + α1 − 2α2)
− 6~3t

3−α2 sin πx

Γ (4− α2)

−6~3π
2t3+α1−α2 sin πx

Γ (4 + α1 − α2)
− 6~3t

3+α1−α2−α3 sin πx

Γ (4 + α1 − α2 − α3)

−12~2
3t

3+α1−2α2 sin πx

Γ (4 + α1 − 2α2)
− 12~2

3t
3−α2 sin πx

Γ (4− α2)

−12π2~2
3t

3+α1−α2 sin πx

Γ (4 + α1 − α2)
− 12~2

3t
3+α1−α2−α3 sin πx

Γ (4 + α1 − α2 − α3)

+
6~2~2

3t
3+2α1−α2−2α3 sin πx

Γ (4 + 2α1 − α2 − 2α3)
+

6~2~2
3t

3+2α1−2α2−α3 sin πx

Γ (4 + 2α1 − 2α2 − α3)

+
6~2~2

3t
3+α1−α2−α3 sin πx

Γ (4 + α1 − α2 − α3)
+

6π2~2~2
3t

3+2α1−α2−α3 sin πx

Γ (4 + 2α1 − α2 − α3)

−6~3
3t

3+α1−2α2 sin πx

Γ (4 + α1 − 2α2)
− 6~3

3t
3−α2 sin πx

Γ (4− α2)

−6π2~3
3t

3+α1−α2 sin πx

Γ (4 + α1 − α2)
− 6~3

3t
3+α1−α2−α3 sin πx

Γ (4 + α1 − α2 − α3)
,
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Figure 4: Plot of U (x, t) w.r.t t at x = 0.5 for α = 0.3, 0.6, 0.9, 1.0 and exact solution.
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Figure 5: Plot of V (x, t) w.r.t t at x = 0.5 for α = 0.3, 0.6, 0.9, 1.0 and exact solution.
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Figure 7: Plot of approximate solutions and exact solution w.r.t. t.

Figs. 4, 5 and 6 shows the association of Brownian variation of variable order multi –
term time fractional advection differential equations at ~1 = ~2 = ~3 = −1, for x = 0.5
with respect to time variable t. The figure 7 shows the he comparative study of exact and
approximate solutions of certain value which can be controlled by parameters ~1, ~2, ~3, the
values are taken α1 = 0.939, α2 = 0.105, α3 = 0.112, ~1 = −1.235, ~2 = −1.485, ~3 =
−0.055, which adjust the convergence region appropriately for exact and W (x, t) .

7. Conclusion

This work presents effective semi-analytic method for the solution of the multi–order
fractional partial differential equations. These are firstly transformed into the system
of PDE’s and then the HAFSTM method has been applied with the transformation of
domain change using Sumudu transform, which reduces the he complexity without loss of
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generality. The obtained results are compared with existing exact solutions at integer value
of fractional differential equations. The results gained are eloquent in understanding and
free of rounding off errors, which are mostly occurring in mess method or perturbation
methods. This method can be generalized to solve any kind of multi–order fractional
partial differential equations.

Acknowledgment. The authors would like to extend their gratitude to the anonymous
referees for there valuable comments for the improvement of quality of article.
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