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PATHOS DEGREE PRIME GRAPH OF A TREE

H. M. NAGESH1, §

Abstract. Let T be a tree of order n (n ≥ 2). A pathos degree prime graph of T ,
written PDP (T ), is a graph whose vertices are the vertices and paths of a pathos of T ,
with two vertices of PDP (T ) adjacent whenever the degree of the corresponding vertices

of T are unequal and relatively prime; or the corresponding paths P
′
i and P

′
j (i 6= j) of a

pathos of T have a vertex in common; or one corresponds to the path P
′

and the other

to a vertex v and P
′

begins (or ends) at v such that v is a pendant vertex in T . We look
at some properties of this graph operator. For this class of graphs we discuss the pla-
narity; outerplanarity; maximal outerplanarity; minimally nonouterplanarity; Eulerian;
and Hamiltonian properties these graphs.
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1. Introduction

There are many graph operators (or graph valued functions) with which one can con-
struct a new graph from a given graph, such as the line graphs, the total graphs, and
their generalizations. One such graph operator is called the degree prime graph. This was
introduced by Sattanathan et al. in [9].

The degree of a vertex v in a graph G, denoted by dG(v), is the number of edges of G
incident with v, each loop counting as two edges. A pendant vertex is a vertex with degree
one. We denote by ∆(G) the maximum degree of the vertex of G. Two integers a and b
are said to be relatively prime if the only positive integer that divides both of them is one.

Let G = (V,E) be a graph of order n (n ≥ 2). The degree prime graph of G, denoted
by DP (G), is defined as the graph having the same vertex set as G and two vertices are
adjacent in DP (G) if and only if their degrees are unequal and relatively prime in G.

An example of a graph and its degree prime graph is given in Figure.1.
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G DP(G)

Figure.1

Notations and definitions not introduced here can be found in [4].
The concept of pathos of a graph G was introduced by Harary [5] as a collection of

minimum number of edge disjoint open paths whose union is G. The path number of a
graph G is the number of paths in any pathos. The path number of a tree T equals k,
where 2k is the number of odd degree vertices of T [7].

The line graph of a graph G, written L(G), is the graph whose vertices are the edges
of G, with two vertices of L(G) adjacent whenever the corresponding edges of G have a
vertex in common. Muddebihal et al. in [7] extended the concept of pathos of graphs to
trees there by introducing a graph operator called a pathos line graph of a tree.

A pathos line graph of a tree T , written PL(T ), is a graph whose vertices are the
edges and paths of a pathos of T , with two vertices of PL(T ) adjacent whenever the
corresponding edges of T have a vertex in common or the edge lies on the corresponding
path of the pathos.

An example of a tree along with pathos (indicated by dotted lines) and its pathos line
graph is shown in Figure.2.

T PL(T)

T PL(T)
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Figure.2

A pathos vertex of PL(T ) is a vertex corresponding to the path of a pathos of T . For
example, for every tree (on the left) of Figure.2, there are three paths of pathos of T , say

P
′
1, P

′
2, and P

′
3. Thus P

′
1, P

′
2, and P

′
3 are the pathos vertices of the corresponding PL(T ).

Motivated by the studies above, we introduce a natural generalization of the degree
prime graph called a pathos degree prime graph of a tree.

2. Definition of PDP (T )

A pathos degree prime graph of T , written PDP (T ), is a graph whose vertices are the
vertices and paths of a pathos of T , with two vertices of PDP (T ) adjacent whenever
the degree of the corresponding vertices of T are unequal and relatively prime; or the
corresponding paths P

′
i and P

′
j (i 6= j) of a pathos of T have a vertex in common; or one

corresponds to the path P
′

and the other to a vertex v and P
′

begins (or ends) at v such
that v is a pendant vertex in T .

See Figure.3 for an example of a tree along with pathos (indicated by dotted lines) and
its pathos degree prime graph.

T PDP(T)

T PDP(T)

Figure.3

Note that there is freedom in marking the paths of a pathos of a tree T in different
ways, provided that the path number k of T is fixed. For example, consider the marking
of the paths of pathos of the first and second tree (on the left) of Figure.2, where k = 3.
Therefore, we conclude that since the order of marking of the paths of a pathos of a
tree is not unique, the corresponding pathos degree prime graph is also not unique. This
obviously raises the question of the existence of “unique” pathos degree prime graph.

One can easily check that if the path number of a tree is exactly one, i.e., k=1, then the
corresponding pathos degree prime graph is unique. For example, the path number of a
path Pn on n ≥ 2 vertices is one. Thus only for the path Pn, we can speak of “the” pathos
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degree prime graph. Furthermore, one can also observe easily that for different ways of
marking of the paths of a pathos of a star graph K1,n on n ≥ 3 vertices, the corresponding
pathos degree prime graphs are isomorphic.

In this paper we look at some properties of PDP (T ) and study some of the graph
labeling techniques satisfied by PDP (T ). For this class of graphs we also discuss the
planarity; outerplanarity; maximal outerplanarity; minimally nonouterplanarity; Eulerian;
and Hamiltonian properties of these graphs.

3. Properties of PDP (T )

In this section we study certain properties of pathos degree prime graph.

Observation 3.1. For any tree T , DP (T ) ⊆ PDP (T ), where ⊆ is the subgraph notation.

We shall use Pn, Cn, and Kn to denote a path, a cycle, and a complete graph on n
vertices, respectively; and P

′
1, P

′
2, . . . to denote the paths of a pathos of T . Furthermore,

we denote a complete bipartite graph by Km,n.

The Dutch Windmill graph D
(m)
3 , also called a friendship graph, is the graph obtained by

taking m copies of the cycle graph C3 with a vertex in common and therefore corresponds

to the usual Windmill graph W
(m)
n . It is therefore natural to extend the definition to

D
(m)
n , consisting of m copies of Cn.

Proposition 3.1. A pathos degree prime graph PDP (T ) of a tree T is a block if and only
if ∆(T ) ≥ 2, for every vertex v ∈ T .

Proof. Suppose PDP (T ) is a block. Assume that ∆(T ) < 2, for every vertex v ∈ T . The
only tree that has no vertex of degree two is P2 (or K2). If T = P2, then PDP (T ) = P3,
which is not a block, a contradiction.

Conversely, suppose ∆(T ) ≥ 2, for every vertex v ∈ T . Assume that ∆(T ) = 2. Then

T = Pn (n ≥ 3). Clearly, the path number of T is one, say P
′
. We consider the following

three cases.
Case 1. For n = 3, PDP (T ) is a cycle C4, which is a block.
Case 2. For n = 4, PDP (T ) is a complete bipartite graph K2,3, which is also a block.
Case 3. For n ≥ 5, let V (Pn) = {v1, v2, . . . , vn} be the vertices of the path Pn. Then
DP (T ) is the complete bipartite graph K2,n−2, which is a block. Since the path number

of Pn is one, i.e., P
′
, and P

′
is adjacent to both v1 and vn of DP (T ), PDP (T ) is also a

block.
Assume now that ∆(T ) ≥ 3, for every vertex v ∈ T . If there exists a vertex of degree

three in T , i.e., T = K1,3. Let C be the cut-vertex of K1,3, and let P (T ) = {P ′
1, P

′
2}

be a pathos set of T . Then D
(2)
4 − v is the spanning subgraph of PDP (T ), where v is a

vertex at distance one from C. Clearly, D
(2)
4 − v is not a block. Furthermore, since the

pathos vertices P
′
1 and P

′
2 of PDP (T ) are adjacent, the number of cut-vertices of PDP (T )

becomes zero, and thus PDP (T ) is a block. Hence by all the cases above, PDP (T ) is a
block. This completes the proof. �

While defining any class of graphs, it is desirable to know the order and size of each.
Our next result gives a useful property to determine the size of PDP (T ). The proof is
straightforward, so we omit it.

Property 3.1. Let T be a tree of order n (n ≥ 3). Then the number of edges whose

end-vertices are the pathos vertices in PDP (T ) is at most k(k−1)
2 = β (say), where k is

the path number of T . In particular, if T is a star graph K1,n on n ≥ 3 vertices, then the
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number of edges whose end-vertices are the pathos vertices in PDP (T ) is exactly β, i.e.,
in a pathos degree prime graph of a star graph, the pathos vertices are pairwise adjacent.

The following result gives the number of pendant vertices in a tree T , which is also
needed while determining the size of PDP (T ).

Remark 3.1. Let T be a tree with vertex set V (T ) = {v1, v2, . . . , vn}. Then the number

of pendant vertices of T equals 2 +
∑

dT (v)≥3

(dT (v)− 2).

Proof. Let T be a tree with vertex set V (T ) = {v1, v2, . . . , vn}. Let M be the number of

pendant vertices in T . By the handshaking lemma, we have
∑
v∈T

dT (v) = 2(n−1) = 2n−2.

⇒ −2 =
∑
v∈T

dT (v)− 2n

⇒ −2 =
∑
v∈T

dT (v)−
∑
v∈T

2

⇒ −2 =
∑
v∈T

(dT (v)− 2).

On taking the sum over the vertices of degree one and two, we get

−2 =
∑

dT (v)=1

(−1) +
∑

dT (v)=2

(0) +
∑

dT (v)≥3

(dT (v)− 2)

⇒ −2 = −M +
∑

dT (v)≥3

(dT (v)− 2)

⇒M = 2 +
∑

dT (v)≥3

(dT (v)− 2). �

The maximum number of edges in the degree prime graph DP (G) of a graph G is
determined by Sattanathan et al. in [9] as stated in the following result.

Theorem 3.1. ([9]) : Let G be a graph of order n (n ≥ 2). Then the maximum number

of edges of DP (G) equals (n−s)(n+s−1)
2 , where s is the number of vertices of even degree in

G.

The following result gives the order and size of PDP (T ).

Proposition 3.2. Let T be a tree with vertex set V (T ) = {v1, v2, . . . , vn}. Then

E(PDP (T )) ≤ (n−s)(n+s−1)
2 + 2 +

∑
dT (v)≥3

(deg(v) − 2) +
k(k − 1)

2
, where s is the number

of vertices of even degree in T .

Proof. Let T be a tree with vertex set V (T ) = {v1, v2, . . . , vn}. By definition, the order of
PDP (T ) equals the sum of vertices and the path number of T . Thus V (PDP (T )) = n+k.
The size of PDP (T ) equals the sum of size of DP (T ); number of pendant vertices of T ; and
the number of edges whose end-vertices are the pathos vertices. By Property 3.1, Remark

3.1, and Theorem 3.1, E(PDP (T )) ≤ (n−s)(n+s−1)
2 +2+

∑
dT (v)≥3

(deg(v)−2)+
k(k − 1)

2
. �

We believe that this bound is true but not sharp. We now characterize the trees whose
PDP (T ) admits certain types of graph labeling such as square sum labeling; strongly
square sum labeling; E-cordial labeling; and vertex and edge magic labeling.
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A graph labeling is the assignment of labels, traditionally represented by integers, to
the edges or vertices, or both, of a graph. Arumugam et al. [1] introduced the concept of
square sum labeling and strongly square sum labeling of a graph.

Let G = (V,E) be a (p, q) graph. G is said to be a square sum graph if there exists a
bijection f : V (G)→ {0, 1, . . . , p−1} such that the induced function f∗ = E(G)→ N given
by f∗(u, v) = [f(u)]2 + [f(v)]2 for every (u, v) ∈ E(G) are all distinct. The square sum
labeling f is called a prime sum labeling if f∗(u, v) is 1 or a prime number ∀(u, v) ∈ E(G).

Proposition 3.3. A pathos degree prime graph PDP (T ) of a tree T admits square sum
labeling if T is either P2 or P3.

Proof. Suppose that T = P2, and let V (P2) = {v1, v2}. Then the path number of P2

is one, say P
′
. By definition, PDP (T ) = P3. Let V (P3) = {v1, v2, P

′} and E(P3) =

{(v1, P
′
), (P

′
, v2)}. Define f : V (P3) → {0, 1, 2} and f(v1) = 0; f(P

′
) = 1; and f(v2) =

2. Then f induces a function f∗ such that f∗(v1, P
′
) = [f(v1)]

2 + [f(P
′
)]2 = 1; and

f∗(P
′
, v2) = [f(P

′
)]2 + [f(v2)]

2 = 5. Clearly, f∗(v1, P
′
) 6= f∗(P

′
, v2). Hence f∗ is injective

and f is a square sum lebeling of PDP (T ).
On the other hand, suppose that T = P3, and let V (P3) = {v1, v2, v3}. By definition,

PDP (T ) = C4. Let V (C4) = {v1, v2, v3, P
′} and E(C4) = {(v1, v2), (v2, v3), (v3, P

′
), (P

′
, v1)}.

Define f : V (C4)→ {0, 1, 2, 3} and f(v1) = 0; f(v2) = 1; f(v2) = 2; and f(P
′
) = 3. Then f

induces a function f∗ such that f∗(v1, v2) = [f(v1)]
2 + [f(v2)]

2 = 1; f∗(v2, v3) = [f(v2)]
2 +

[f(v3)]
2 = 5; f∗(v3, P

′
) = [f(v3)]

2+[f(P
′
)]2 = 13; and f∗(P

′
, v1) = [f(P

′
)]2+[f(v1)]

2 = 9.
Clearly, f∗(u, v) 6= [f(u)]2+[f(v)]2 for any edge (u, v) ∈ E(PDP (T )). Hence f∗ is injective
and f is a square sum lebeling of PDP (T ). This completes the proof. �

Let G = (V,E) be a (p, q) graph. G is said to be a strongly square sum graph if there
exists a bijection f : V (G) → {0, 1, . . . , p − 1} such that f∗(u, v) = [f(u)]2 + [f(v)]2 for
every (u, v) ∈ E(G) are all distinct and f∗(E(G)) consists the first q consecutive numbers
of the form a2 + b2, a ≤ p− 1, a 6= b, then f is said to be a strongly square sum labeling of
G.

The following result is proved in [1].

Theorem 3.2. The cycles C4 and C5 can be embedded as an induced subgraph of a strongly
square sum graph.

In view of Theorem 3.2, we can state the following result.

Property 3.2. The pathos degree prime graph of a path P3 can be embedded as an induced
subgraph of a strongly square sum graph.

The concept of cordial labeling was introduced by Cahit [2] as a weaker version of
graceful and harmonious labeling. After this, some other labeling techniques were also
introduced having the same idea of cordial labeling. Some of them are cordial labeling,
product cordial labeling, and total product labeling.

Let G = (V,E) be a graph. A mapping f : V (G) → {0, 1} is called a binary vertex
lebeling of G and f(v) is called the label of the vertex v of G under f . For and edge
e = (u, v), the induced edge labeling f∗ : E(G) → {0, 1} is given by f∗(e = (u, v)) =
|f(u) − f(v)|. Let vf (0), vf (1) be the number of vertices of G having lables 0 and 1
respecttively, under f and let ef (0), ef (1) be the number of edges of G having lables 0 and
1 respectively, under f∗.

A binary lebeling of a graph G is cordial labeling if |vf (0) − vf (1)| ≤ 1 and |ef (0) −
ef (1)| ≤ 1. A graph is cordial if it admits cordial labeling.
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Proposition 3.4. A pathos degree prime graph PDP (T ) of a tree T admits E-cordial
labeling if T is P2.

Proof. Suppose that T = P2, and let V (P2) = {v1, v2}. By definition, PDP (T ) = P3.

Let V (P3) = {v1, v2, P
′} and E(P3) = {(v1, P

′
), (P

′
, v2)}. Define f : E(P3) → {0, 1}.

For n = 2, f(v1, P
′
) = 0; f(P

′
, v2) = 1. In view of this pattern of labeling, f satisfy the

conditions of E-cordial labeling. This completes the proof. �

The authors in [3] introduces the concept of total labeling of a graph.
A total lebeling of a graph with v vertices and e edges is defined as a one-to-one map

taking the vertices and edges onto the integers 1, 2, . . . , v + e. Such a labeling is vertex
magic if the sum of the label on a vertex and the labels on its incident edges is a constant
independent of the choice of vertex, and edge magic if the sum of an edge label and the
label of the end vertices of the edge is constant.

The following result is proved in [8].

Theorem 3.3. ([8]) : If n > m+1, then the complete bipartite graph Km,n has no labeling.

For a graph G, if there exist a total labeling that is both edge magic and vertex magic,
then the graph G is said to be a totally magic graph. It is proved in [3] that every tree
of order n (n > 1) has at least two pendant vertices, and thus K1 and star graph are the
only two magic trees. But in view of Theorem 3.3, Km,n can never be vertex magic for
|m− n| > 1. Hence no star graph except K1,2 is vertex magic. Therefore, we have

Property 3.3. The pathos degree prime graph of a path P2 is the only totally magic tree
(except K1).

4. Characterization of PDP (T )

4.1. Planar pathos degree prime graphs. A planar graph is a graph that can be
embedded in the plane, i.e., it can be drawn on the plane in such way that its edges
intersect only at their end vertices. In other words, it can be drawn in such a way that no
edges cross each other. Such a drawing is called a plane graph or planar embedding of the
graph. We now characterize the graphs whose PDP (T ) is planar.

Theorem 4.1. A pathos degree prime graph PDP (T ) of a tree T is planar if and only if
T is the star graph K1,n (2 ≤ n ≤ 6).

Proof. Suppose PDP (T ) is planar. Assume that T is K1,n (n ≥ 7). Suppose T =
K1,7. Clearly, the each edge in T lie on exactly one cut-vertex, say C. Let P (T ) =

{P ′
1, P

′
2, P

′
3, P

′
4} be a pathos set of T . Then D

(4)
4 −v is the spanning subgraph of PDP (T ),

where v is a vertex at distance one from the central vertex C. Furthermore, since the
pathos vertices P

′
i (1 ≤ i ≤ 4) of PDP (T ) are pairwise adjacent, the crossing number of

PDP (T ) becomes one, cr(PDP (T )) = 1 (see Figure.4), a contradiction.
Conversely, suppose that T = K1,n (2 ≤ n ≤ 6). We consider the following three cases.

Case 1. If T = K1,2 = P3, then PDP (T ) = C4, which is planar.

Case 2. For n = 3 and 4, the path number of T is two. Then D
(2)
4 − v and D

(2)
4 ,

respectively, is the spanning subgraph of PDP (T ). Since the pathos vertices of PDP (T )
are pairwise adjacent, the crossing number of PDP (T ) becomes zero, cr(PDP (T )) = 0.

Case 3. For n = 5 and 6, the path number of T is three. Then D
(3)
4 − v and D

(3)
4 ,

respectively, is the spanning subgraph of PDP (T ). Since the pathos vertices of PDP (T )
are pairwise adjacent, the crossing number of PDP (T ) becomes zero, cr(PDP (T )) = 0.
Therefore, by all the cases above, PDP (T ) is planar. This completes the proof. �
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T

PDP(T):

Figure.4

Note that the path number of the star graph K1,8 is four and the corresponding pathos ver-
tices are pairwise adjacent in PDP (T ). This shows that the crossing number of PDP (T )
is one. Therefore, the necessity of Theorem 4.1 can also be proved by assuming T = K1,8.

We now establish a characterization of graphs whose PDP (T ) are outerplanar; maximal
outerplanar; minimally nonouterplanar; and crossing number one.

For a planar graph G, the inner vertex number i(G) is the minimum number of vertices
not belonging to the boundary of the exterior region in any embedding of G in the plane.
If a planar graph G is embeddable in the plane so that all the vertices are on the boundary
of the exterior region, then G is said to be outerplanar, i.e., i(G) = 0.

Theorem 4.2. A pathos degree prime graph PDP (T ) of a tree T is outerplanar if and
only if ∆(T ) ≤ 2, for every vertex v ∈ T , and T contains exactly one vertex of degree two.

Proof. Suppose PDP (T ) is outerplanar. Assume that ∆(T ) ≤ 2 and T contains two
vertices of degree two. Then T ' P4. By Case 2 of sufficiency of Proposition 3.1, PDP (T )
is a complete bipartite graph K2,3 (see Figure.5). Clearly, i(PDP (T )) = 1, and hence
PDP (T ) is nonouterplanar, a contradiction. On the other hand, if there exists a vertex
of degree three in T . Then T ' K1,3. Let C be the cut-vertex of K1,3, and let P (T ) =
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{P ′
1, P

′
2} be a pathos set of T . Then D

(2)
4 − v is the spanning subgraph of PDP (T ), where

v is a vertex at distance one from C. Since the pathos vertices P
′
1 and P

′
2 are adjacent in

PDP (T ), the inner vertex number of PDP (T ) becomes exactly one, i.e., i(PDP (T )) = 1
(see Figure.6), again a contradiction.

Conversely, suppose that ∆(T ) ≤ 2, for every vertex v ∈ T , and T contains exactly one
vertex of degree two. Then T ' P3. By definition, PDP (T ) = C4 (see Figure.3), which is
outerplanar. This completes the proof. �

T PDP(T)

Figure.5

T PDP(T)

Figure.6

An outerplanar graph G is maximal outerplanar if no edge can be added without losing
outerplanarity.

Theorem 4.3. For any tree T , a pathos degree prime graph PDP (T ) is not maximal
outerplanar.

Proof. We use contradiction. Suppose that PDP (T ) is maximal outerplanar. We consider
the following four cases.
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Case 1. Suppose that T = K1,n (n ≥ 7). By Theorem 4.1, PDP (T ) is nonplanar, a
contradiction.
Case 2. Suppose that T = K1,n (3 ≤ n ≤ 6). For n = 4 and 6, D

(2)
4 and D

(4)
4 , respectively,

is the spanning subgraph of PDP (T ). Next, for n = 3 and 5, D
(2)
4 − v and D

(4)
4 − v,

respectively, is the spanning subgraph of PDP (T ). Clearly, the inner vertex number of
these spanning subgraphs is zero. Since all the pathos vertices of these spanning subgraphs
are pairwise adjacent, the inner vertex number of PDP (T ) will be at least one. Thus
PDP (T ) is nonouterplanar, a contradiction.
Case 3. Suppose that T is P4. By necessity of Theorem 4.2, PDP (T ) is nonouterplanar,
a contradiction.
Case 4. Suppose that T is P3. Then PDP (T ) = C4, which is not maximal outerplanar,
again a contradiction. Hence by all the cases above, PDP (T ) is not maximal outerplanar,
which contradicts the assumption that PDP (T ) is maximal outerplanar. This completes
the proof. �

The following characterization of minimally nonouterplanar graphs in [6] is well known.

Theorem 4.4. ([6]) : A graph G is minimally nonouterplanar if and only if the inner
vertex number of G is one, i.e., i(G) = 1.

Theorem 4.5. A pathos degree prime graph PDP (T ) of a tree T is minimally nonouter-
planar if and only if T is either P4 or K1,3.

Proof. Suppose PDP (T ) is minimally nonouterplanar. Assume that T = K1,n (n ≥ 4). If
T = K1,4. By Case 2 of sufficiency of Theorem 4.1, cr(PDP (T )) = 0, but i(PDP (T )) = 2,
a contradiction. On the other hand, assume that T = Pn (n ≥ 5). By Case 3 of sufficiency
of Proposition 3.1, PDP (T ) = K2,n−2. Clearly, i(PDP (T )) ≥ 2, again a contradiction.

Conversely, suppose that T is either P4 orK1,3. By necessity of Theorem 4.2, i(PDP (T )) =
1, and thus Theorem 4.4 implies that PDP (T ) is minimally nonouterplanar. This com-
pletes the proof. �

The least number of edge crossings of a graph G, among all planar embeddings of G, is
called the crossing number of G and is denoted by cr(G).

Theorem 4.6. A pathos degree prime graph PDP (T ) of a tree T has crossing number
one if and only if T is either K1,7 or K1,8.

Proof. Suppose that PDP (T ) has crossing number one. Assume that T = K1,n (n ≥ 9).

If K1,9, then D
(5)
4 −v is the spanning subgraph of PDP (T ). Since all the pathos vertices of

these spanning subgraphs are pairwise adjacent, the crossing number of PDP (T ) is more
than one, a contradiction.

Conversely, suppose that T is K1,7 or K1,8. By necessity of Theorem 4.1, cr(PDP (T )) =
1. This completes the proof. �

4.2. Eulerian pathos degree prime graphs. A tour of a connected graph G is a closed
walk that traverses each edge of G at least once, and an Euler tour one that traverses each
edge exactly once (in other words, a closed Euler trail). A graph is Eulerian if it admits
an Euler tour.

We now investigate the Eulerian property of PDP (T ). The following result is well
known.

Theorem 4.7. (F. Harary [4]) : A connected graph G is Eulerian if and only if each
vertex in G has even degree.
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Theorem 4.8. A pathos degree prime graph PDP (T ) of a tree T is Eulerian if and only
if T is K1,4n−2 (n ≥ 1).

Proof. Suppose that PDP (T ) is Eulerian. We consider the following two cases.
Case 1. Assume that T = K1,2n+1 for n ≥ 1. Clearly, the degree of the central vertex
C of T is 2n + 1, which is odd for n ≥ 1. Since the degree of C remains unchanged in
PDP (T ), Theorem 4.7 implies that PDP (T ) is non-Eulerian, a contradiction.

Case 2. Assume that T = K1,4n for n ≥ 1. Then D
(2n)
4 for n ≥ 1, is the spanning

subgraph of PDP (T ). Clearly, the degree of each vertex in D
(2n)
4 is even. Since all

the pathos vertices of D
(2n)
4 are pairwise adjacent, the degree of every pathos vertex of

PDP (T ) is incremented by 2n − 1 for n ≥ 1. Thus dPDP (T )(P
′
) = 2 + 2n − 1 = 2n + 1.

Since the degree of every pathos vertex of PDP (T ) is odd, Theorem 4.7 implies that
PDP (T ) is non-Eulerian, a contradiction.

Conversely, suppose that T is K1,4n−2 (n ≥ 1). If T = K1,2, then PDP (T ) = C4, which

is Eulerian. If T = K1,4n+2 (n ≥ 1), then D
(2n+1)
4 for n ≥ 1, is the spanning subgraph

of PDP (T ). Clearly, the degree of each vertex in D
(2n+1)
4 is even. Since all the pathos

vertices of D
(2n+1)
4 are pairwise adjacent, the degree of every pathos vertex of PDP (T ) is

incremented by 2n for n ≥ 1. Thus dPDP (T )(P
′
) = 2 + 2n = 2(n+ 1). Since the degree of

every pathos vertex of PDP (T ) is even, Theorem 4.7 implies that PDP (T ) is Eulerian.
This completes the proof. �

4.3. Hamiltonian pathos degree prime graphs. A Hamiltonian cycle is a cycle that
visits each vertex exactly once (except for the vertex that is both the initial and end,
which is visited twice). A graph that contains a Hamiltonian cycle is called a Hamiltonian
graph.

We characterize the graphs whose PDP (T ) is Hamiltonian.

Theorem 4.9. A pathos degree prime graph PDP (T ) of a tree T is Hamiltonian if T is
either P3 or P4.

Proof. Suppose that T = P3. Then PDP (T ) = C4, which is Hamiltonian. On the other
hand, if T = P4, then PDP (T ) is isomorphic to the house graph, which is also Hamiltonian.
This completes the proof. �

5. Conclusion

In this paper we have defined a graph operator called a pathos degree prime graph of a
tree. We do not know of the directed path number of digraphs. Finding the directed path
number of a digraph seems to be interesting one and it leads to the study of many digraph
operators. What one can say about the properties of these digraph operators? All these
facts highlight a wide scope for further studies in this direction.
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