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BAYESIAN ESTIMATION USING LINDLEY’S APPROXIMATION OF

INVERTED KUMARASWAMY DISTRIBUTION BASED ON LOWER

RECORD VALUES

SANA1∗, M. FAIZAN2, A. A. KHAN1, §

Abstract. In this paper, we have considered estimation of unknown parameters based
on lower record values for Inverted Kumaraswamy distribution. Maximum likelihood
and approximate Bayes estimators based on lower record values for unknown parameters
of this distribution are obtained. Lindley’s approximation (L-approximation) is used to
obtain approximate Bayes estimators under DeGroot loss function based on lower record
values. A Simulation study and a real data analysis are presented to illustrate the results.
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1. Introduction

Chandler (1952) introduced the study of record values and documented many of the
basic properties of records. Record values can be viewed as order statistics from a sam-
ple whose size is determined by the values and the order of occurrence of observations.
Although the conception of record values was not introduced by a long time as other statis-
tical conceptions like common order statistic, there are a considerable stack of publications
on record values. In a little over forty years, a large number of publications devoted to
records have appeared. This is possibly due to the fact that we encounter this notion
frequently in daily life, especially in singling out record values from a set of others and
in registering and recalling record values. Record data arise in a wide variety of practical
situations. Examples include industrial stress testing, meteorological analysis, hydrology,
seismology, sporting, athletic events, economics and life testing.
Some work has been done on statistical inference based on record values. See for instance,
Jaheen (2003), Raqab et al. (2007), Doostparast (2009), Nadar et al. (2013), Danish
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and Aslam (2013), Dey et al. (2013), Hussian and Amin (2014), Mahmoud et al. (2016),
Faizan and Sana (2018) and Sana and Faizan (2019).
Let X1, X2, ... be a sequence of independent and identically distributed (iid) random vari-
ables (rv’s) with a cumulative distribution function (cdf) F (x) and a probability density
function (pdf) f(x). Let Yn = min(X1, X2, ..., Xn), n ≥ 1; then, the observation Xj is a
lower record value of (Xn, n ≥ 1), if it is smaller than all the preceding observations, in
other words, if Yj < Yj−1, j > 1. By definition X1 is a lower, as well as upper record value,
called the base record value. For more details on record values [see, Ahsanullah (2004)].
The Inverted Kumaraswamy distribution with shape parameters α and λ > 0, denoted
by IKum(α, λ), then the probability density function (pdf) and cumulative distribution
function (cdf), respectively, are given by [see, AL-Fattah et al. (2017)]

f(x) = αλ(1 + x)−(α+1)(1− (1 + x)−α)λ−1, x, α, λ > 0 (1)

and

F (x) = (1− (1 + x)−α)λ, x, α, λ > 0. (2)

Bayesian estimation under the loss function is not frequently discussed, perhaps, because
the estimators under asymmetric loss function involve integral expressions, which are
not analytically solvable. Therefore, one has to use the numerical techniques or certain
approximation methods for the solution. Lindley’s approximation technique is one of the
methods suitable for solving such problems.
In this paper, the maximum likelihood estimators of the parameters are calculated and
approximate Bayes estimators of the parameters of the IKum distribution based on lower
record values are obtained under DeGroot loss function using Lindley’s approximation
technique with non-informative prior information. Moreover, a simulation study and a
real data analysis is taken place in section 3 and 4. Finally the conclusions are presented
in section 11.

2. Estimation of the parameters

In this section, we shall be concerned with estimation of the two unknown parameters
α and λ of the IKum distribution based on record values.

2.1. Maximum likelihood estimator. Let XL(1) = x1, XL(2) = x2, ..., XL(m) = xm, are
m lower record values taken from IKum(α, λ) distribution with (pdf) eq(1). In this case,
Arnold et al. (1998) gives the likelihood function as

l(α, λ|x) = f(xL(m);α, λ)
m−1∏
i=1

f(xL(i);α, λ)

F (xL(m);α, λ)
. (3)

Substituting eq(1) and eq(2) in eq(3), we get

l(α, λ|x) = αmλm(1− (1 + xm)−α)λt(x), (4)

where

t(x) =
∏m
i=1

(1+xi)
−(α+1)

(1−(1+xi)−α) and x = (x1, x2, ..., xm).

The log-likelihood function is

L(α, λ|x) = m(logα+ logλ) + λlog(1− (1 + xm)−α)



SANA, M. FAIZAN, A. A. KHAN: BAYESIAN ESTIMATION USING LINDLEY’S APPROXIMATION... 67

−(α+ 1)
m∑
i=1

log(1 + xi)−
m∑
i=1

log(1− (1 + xi)
−α). (5)

By differentiating the equation eq(5) with respect to α and λ and equating to zero, we get

∂L(α, λ|x)

∂α
=
m

α
+ λ

(1 + xm)−αlog(1 + xm)

(1− (1 + xm)−α)
−

m∑
i=1

log(1 + xi)

−
m∑
i=1

(1 + xi)
−αlog(1 + xi)

(1− (1 + xi)−α)
= 0 (6)

and

∂L(α, λ|x)

∂λ
=
m

λ
+ log(1− (1 + xm)−α) = 0. (7)

From equation eq(7), we get

λ̂ = − m

log(1− (1 + xm)−α)
. (8)

It should be noted that the equation eq(6) is complicated to solve mathematically because
it is a non linear equation, so a numerical technique, such as Newton-Raphson method,
can be used to obtain the MLE’s of the unknown parameters α and λ.

2.2. Loss Function. A loss function represents losses incurred when we estimate the
parameter θ by θ̂. A asymmetric loss function are proposed for use, among this, we use
the following loss function.

2.2.1. Degroot Loss Function (DLF). DeGroot(1970) discussed different types of loss func-
tions and obtained the Bayes estimates under these loss functions. Here is one example
of the asymmetric loss function defined for the positive values of the parameter. If θ̂ is an
estimate of θ then the DeGroot loss function is defined as:

LDeGroot(θ̂, θ) =

(
θ − θ̂
θ̂

)2

.

The Bayes estimator under DLF can be derived by using following formulae:

θ̂DeGroot =
Eθ|x(θ2)

Eθ|x(θ)
.

2.3. Bayes Estimator. In this subsection, we investigate the Bayes estimators for pa-
rameters α and λ. Assuming that both of the parameters α and λ are unknown and
independent distributions, the joint non-informative prior of α and λ is

g(α, λ) =
1

αλ
, α, λ > 0. (9)

Applying Bayes Theorem, The joint posterior distribution of α and λ can be obtained
using eq(4) and eq(9) as follows

π(α, λ|x) ∝ l(α, λ|x)g(α, λ), (10)

∝ αm−1λm−1(1− (1 + xm)−α)λt(x),

= Cαm−1λm−1(1− (1 + xm)−α)λt(x), (11)
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where
C−1 =

∫∞
o

∫∞
o αm−1λm−1(1− (1 + xm)−α)λt(x)dαdλ,

which is a normalizing constant.
Now, from eq(11), we get

π(α, λ|x) =
αm−1λm−1(1− (1 + xm)−α)λt(x)∫∞

o

∫∞
o αm−1λm−1(1− (1 + xm)−α)λt(x)dαdλ

. (12)

It may be noted here that the posterior distribution of α and λ takes a ratio form that
involves an integration in the denominator and cannot be reduced to a closed form. Hence,
the evaluation of the posterior expectation for obtaining the Bayes estimator of α and λ will
be tedious. Among the various methods suggested to approximate the ratio of integrals of
the above form, perhaps the simplest one is Lindley (1980) approximation method, which
approaches the ratio of the integrals as a whole and produces a single numerical result.
Thus, we propose the use of Lindley’s approximation for obtaining the Bayes estimator of
α and λ . Many authors have used this approximation for obtaining the Bayes estimators
for various distributions; see among others, Howlader and Hossain (2002), Nassar and
Eissa (2005), Singh et al. (2008), Xu and Tang (2010), Kim et al. (2011) and Dey et al.
(2016).
Lindley (1980), proposed an approximation procedure to evaluate the ratio of two integrals
such that

I(x) = E[u(α, λ|x)] =

∫
(α,λ) u(α, λ)eL(α,λ)+G(α,λ)d(α, λ)∫

(α,λ) e
L(α,λ)+G(α,λ)d(α, λ)

, (13)

where
u(α, λ) = function of α and λ only;
L(α, λ)= log of likelihood;
G(α, λ) = log of joint prior of α and λ
can be evaluated as

I(x) = u(α̂, λ̂) +
1

2
[(ûλλ + 2ûλp̂λ)σ̂λλ + (ûαλ + 2ûαp̂λ)σ̂αλ

+(ûλα + 2ûλp̂α)σ̂λα + (ûαα + 2ûαp̂α)σ̂αα]

+
1

2
[(ûλσ̂λλ + ûασ̂λα)(L̂λλλσ̂λλ + L̂λαλσ̂λα + L̂αλλσ̂αλ + L̂ααλσ̂αα)

+(ûλσ̂αλ + ûασ̂αα)(L̂αλλσ̂λλ + L̂λαασ̂λα + L̂αλασ̂αλ + L̂ααασ̂αα)], (14)

where
α̂= MLE of α;
λ̂= MLE of λ;

ûλ = ∂u(α̂,λ̂)

∂λ̂
; ûα = ∂u(α̂,λ̂)

∂α̂ ; ûλα = ∂2u(α̂,λ̂)

∂λ̂∂α̂
; ûαλ = ∂2u(α̂,λ̂)

∂α̂∂λ̂
;

ûλλ = ∂2u(α̂,λ̂)

∂λ̂2
; ûαα = ∂2u(α̂,λ̂)

∂α̂2 ; L̂λλα = ∂3L(α̂,λ̂)

∂λ̂∂λ̂∂α̂
; L̂λλλ = ∂3L(α̂,λ̂)

∂λ̂∂λ̂∂λ̂
;

L̂λαλ = ∂3L(α̂,λ̂)

∂λ̂∂α̂∂λ̂
; L̂ααλ = ∂3L(α̂,λ̂)

∂α̂∂α̂∂λ̂
; L̂αλλ = ∂3L(α̂,λ̂)

∂α̂∂λ̂∂λ̂
; L̂λαα = ∂3L(α̂,λ̂)

δλ̂∂α̂∂α̂
;

L̂ααα = ∂3L(α̂,λ̂)
∂α̂∂α̂∂α̂ ; L̂αλα = ∂3L(α̂,λ̂)

∂α̂∂λ̂∂α̂
; p̂α = ∂G(α̂,λ̂)

∂α̂ ; p̂λ = ∂G(α̂,λ̂)

∂λ̂
;
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2.4. Bayes estimator of α under DeGroot loss function. To estimate the Bayes
estimator of α, the following are considered
u(α̂, λ̂) = α and u(α̂, λ̂) = α2,

L(α, λ|x) = m(logα+ logλ) + λlog(1− (1 + xm)−α)

−(α+ 1)
m∑
i=1

log(1 + xi)−
m∑
i=1

log(1− (1 + xi)
−α).

G(α̂, λ̂) = ln(g(α, λ)) = −ln(α)− ln(λ).

It can easily be verified that:
If u(α̂, λ̂) = α, then
ûα = 1 and ûλ = ûλα = ûλλ = ûαα = 0.
If u(α̂, λ̂) = α2, then
ûα = 2α, ûαα = 2, and ûλ = ûλα = ûλλ = 0.
Now,
p̂λ = − 1

λ , p̂α = − 1
α , L̂λ = m

λ + log(1 − (1 + xm)−α), L̂λλ = −m
λ2

, L̂α = m
α +

λ (1+xm)−αlog(1+xm)
(1−(1+xm)−α) −

∑m
i=1 log(1 + xi)−

∑m
i=1

(1+xi)
−αlog(1+xi)

(1−(1+xi)−α) ,

L̂λα = (1+xm)−αlog(1+xm)
(1−(1+xm)−α) , L̂αα = −m

α2 − λa(xm) +
∑m

i=1 a(xi),

L̂λλα = L̂αλλ = 0, L̂ααα = 2m
α3 + λc(xm)−

∑m
i=1 c(xi),

L̂λαα = L̂ααλ = −a(xm) and L̂λλλ = 2m
λ3

.
where
a(xm) = (1 + xm)−α(log(1 + xm))2[ 1

(1−(1+xm)−α)2 ],

a(xi) = (1 + xi)
−α(log(1 + xi))

2[ 1
(1−(1+xi)−α)2 ],

b(xm) = [2(1−(1+xm)−α)2(1+xm)−α+2(1−(1+xm)−α)((1+xm)−α)2

(1−(1+xm)−α)2 ],

b(xi) = [2(1−(1+xi)
−α)2(1+xi)−α+2(1−(1+xi)−α)((1+xi)−α)2

(1−(1+xi)−α)2 ],

c(xm) = a(xm)log(1 + xm)[1 + b(xm)]
and
c(xi) = a(xi)log(1 + xi)[1 + b(xi)].
Again, because α and λ are independent,
σ̂λα = 0; σ̂λλ = − 1

L̂λλ
and σ̂αα = − 1

L̂αα
.

Evaluating u-terms, L-terms and p-terms mentioned above at point (α̂, λ̂) and using eq(14)
we get, the Bayes estimator of α under the DeGroot loss function is

α̂DeGroot =
α2 + [ 1

− m
α2
−λa(xm)+

∑m
i=1 a(xi)

] + α[
2m
α3

+λc(xm)−
∑m
i=1 c(xi)

(− m
α2
−λa(xm)+

∑m
i=1 a(xi))

2 ]

[α+ 1
α [ 1
− m
α2
−λa(xm)+

∑m
i=1 a(xi)

] + 1
2 [

2m
α3

+λc(xm)−
∑m
i=1 c(xi)

(− m
α2
−λa(xm)+

∑m
i=1 a(xi))

2 ]]
.

2.4.1. Bayes estimator of λ under DeGroot loss function. To estimate the Bayes estimator
of λ, the following are considered
u(α̂, λ̂) = λ and u(α̂, λ̂) = λ2,

L(α, λ|x) and G(α̂, λ̂) are the same as those given in section (7).
It can easily be verified that:
If u(α̂, λ̂) = λ, then
ûλ = 1 and ûα = ûλα = ûλλ = ûαα = 0.
If u(α̂, λ̂) = λ2, then
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ûλ = 2λ, ûλλ = 2 and ûα = ûλα = ûαα = 0.
Following the procedure as discussed in section (7), we get after simplification, the Bayes
estimator of λ under the DeGroot loss function is

λ̂DeGroot =
λ2 − λ2

m − [λ
3

m (− 2
λ −

a(xm)
− m
α2
−λa(xm)+

∑m
i=1 a(xi)

)]

[λ− λ
m + 1

2(−λ2

m (− 2
λ −

a(xm)
− m
α2
−λa(xm)+

∑m
i=1 a(xi)

))]
.

3. A Simulation Study

Simulation study is conducted to illustrate all the results described in the previous
Sections.
The MLE’s and Bayes estimators are obtained according to following steps:
(i) Samples of lower records with different sizes of m ∈ {8, 9, 10} are generated from the
IKum(α, λ) distribution for α = 3 and λ = 2.
(ii) Estimates of α and λ are obtained.
(iii) Above steps are repeated 1,000 times to evaluate these estimates.
All these results are presented in Table [1].

Table 1. MLE’s and Bayes estimates based on generated lower record
values of sample size n=2000, when the parameters are α = 3 and λ = 2

Number
of
Records
m

MLEs Bayes

α̂MLE λ̂MLE α̂DeGroot λ̂DeGroot
8
9
10

3.0006
3.0020
3.0024

2.0017
2.0027
2.0052

2.9996
2.9996
2.9997

2.2500
2.2222
2.2000

4. An Illustrative Example

In this Section, we provide a real data analysis in order to indicate fit to the IKum(α, λ)
distribution.
(i) The vinyl chloride data obtained from clean upgrading, monitoring wells in mg/L;
this data set was used by Bhaumik et al. (2009). The data is
5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5,
2.3, 1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2.
(ii) The data consists of thirty successive values of March precipitation (in inches) in
Minneapolis/St Paul; this real data set is given by Hinkley (1977). The data is
0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05.
(iii) The data refers to the time between failures for repairable items; this data set is
given by Murthy et al. (2004). The data is
1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73,
2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17.
Firstly, we have examined whether these data set fit to the IKum(α, λ) distribution.
The parameters of this distribution are estimated by maximum likelihood method. The
estimated parameters and Kolmogorov-Smirnov (K-S) distance between the theoretical
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Table 2. MLE’s and Kolmogorov-Smirnov test statistics summary of
IKum(α, λ) distribution for the real data set

Real data set α̂MLE λ̂MLE K −S distance
D(30,0,1)

p− value

First
Second
Third

3.0006
3.0020
3.0024

2.0017
2.0027
2.0052

2.9996
2.9996
2.9997

2.2501
2.2222
2.2000

and empirical distribution functions and p-values are given in Table [2]. From this table,
it is clear that the data sets fit to the IKum(α, λ) distribution.
From the data sets, the observed lower record values are obtained as follows;
M(1) : 5.1, 1.2, 0.6, 0.5, 0.4, 0.2, 0.1,
M(2) : 0.77, 0.47, 0.32
and
M(3) : 1.43, 0.11.
The MLE’s and Bayes estimates for unknown parameters of IKum(α, λ) distribution
based on observed lower record values are given in Table [3].

Table 3. MLE’s and Bayes estimates for unknown parameters based on
observed lower record values

Sample
size
n

Observed Lower Records MLEs Bayes

α̂MLE λ̂MLE α̂DeGroot̂λDeGroot
34
30
30

5.1, 1.2, 0.6, 0.5, 0.4, 0.2, 0.1
0.77, 0.47, 0.32
1.43, 0.11

0.9973
1.2838
1.1076

2.9161
2.4907
0.9029

1.3154
1.2117
1.5628

3.2775
3.4969
4.3423

5. Conclusions

In this chapter, theoretical results of the study are explained numerically. In Section
3, we apply the simulation algorithm with 1,000 replication to obtain the MLE’s and
Bayes estimators. The simulated estimators are presented in Table [1]. From Table [1],
we see that if the no. of record values increases, the MLE’s and Bayes estimators of α
increases regularly, while MLE’s of λ increases and Bayes estimators of λ decreases. In
Section 4, MLE’s and Bayes estimators based on lower record values generated from the
real data set are calculated. Firstly from the real data, we fit the IKum(α, λ) distribution
defined in equation (1). From Table [2], we see that the data sets fit to the IKum(α, λ)
distribution because the p-value is higher enough than significance level usually referred
in statistical literature. In Table [3], from the first real data set, 7 lower record values have
been observed, from the second real data set, 3 lower record values have been observed
and from the third real data set, 2 lower record values have been observed. Now we see
that the no. of record values decreases at different real data sets. It is noted that as no.
of record values decreases, the MLE’s and Bayes estimators of α increases and decreases
irregularly and MLE’s of λ decreases and Bayes estimators of λ increases.
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