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NUMERICAL OPTIMIZATION ALGORITHM BASED ON GENETIC

ALGORITHM FOR A DATA COMPLETION PROBLEM

B. JOUILIK1, J. DAOUDI2, C. TAJANI2∗, J. ABOUCHABAKA1, §

Abstract. This work presents numerical optimization algorithm based on genetic algo-
rithm to solve the data completion problem for Laplace’s equation. It consists of covering
the missing data on the inaccessible part of the boundary from measurements on the ac-
cessible part. This problem is known to be severely ill-posed in Hadamard sense; then,
regularization methods must be exploited. Metaheuristics are methods inspired by nat-
ural phenomena and which have shown their effectiveness in solving several optimization
problems in different domains. Thus, adapted genetic operators for real coded genetic
algorithm is proposed by formulating the problem into an optimization one. Numerical
results with irregular domain are presented showing the efficiency of the proposed algo-
rithm.
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1. Introduction

A data completion problem is a class of inverse problems which consists of reconstruct-
ing the missing data on the inaccessible part of the boundary of the domain, that cannot
be evaluated because of physical difficulties or geometric inaccessibility, from the overspec-
ified boundary data on the remaining part. In other words, unlike the direct problem, in
the data completion problem the geometry of the domain is determined, but the conditions
on the boundary are not all known. The goal is to find the unknown boundary conditions
based on the additional information provided on the boundary of domain [1].
This Cauchy problem arises in many areas of engineering and can be considered as a
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challenge in many fields of industry such as detection of corrosion, medical imaging, struc-
tural mechanics, non-destructive testing of structure · · · We refer for example to [2,3,4].
However, it is known to be severely ill-posed in Hadamard sense [5]; indeed, experimental
measurements are not sufficient to correctly determine the model parameters and a small
perturbation of these measures influence the solution which makes its resolution by di-
rect methods very difficult and leads to very unstable solutions. Hence, the investigation
of many researchers to develop regularizing methods and efficient numerical approaches.
Among them we mention the method of Quasi-reversibility [6], Thikhonov method [7] and
the iterative method [8].
The metaheuristic methods as artificial bee colony [9], genetic algorithms (GAs) [10, 11],
particle swarm optimization [12], ant colony optimization [13] and the Bat algorithm [14]
are methods inspired by natural phenomena and which show their effectiveness in solving
several problems in different areas. These techniques do not guarantee the best solution
but it is to come as close as possible to the optimum value in a reasonable amount of time.
However, the application of these methods, in particular GAs, requires an adaptation of
these operators when solving each problem that can influence the quality of the solution
and the time required to obtain the optimal solution, which explains the large number of
genetic operators developed and adapted to each type of encoding.
Several researchers have used genetic algorithms to solve different inverse problems [15,
16, 17, 18, 19, 20]. Our goal is to adapt the genetic algorithm with a good choice of genetic
operators with real coded genetic algorithm to approach the desired solutions for the data
completion problem for the Laplace equation. Then; in this paper, the considered inverse
problem is formulated as an optimization problem and we investigate the use of genetic
algorithm with a real encoding, which showed its efficiency compared to the binary encod-
ing, with adapted crossover and mutation operators, where the obtained direct problem
for Laplace’s equation is discretised using the finite element method.
The remainder of this paper is organized as follows: Section 2 gives the mathematical for-
mulation of the data completion problem and its formulation on an optimization problem.
Section 3 provides a brief review of genetic algorithms and the adapted genetic algorithm
for the studied inverse problem. Section 4 presents a number of numerical results showing
the effectiveness of the proposed algorithm.

2. Data completion problem for Laplace’s equation

2.1. Mathematical formulation. The goal in the data completion problem is to find
the unknown boundary conditions based on the additional information provided on the
accessible part of boundary of the domain.

We consider an open bounded domain Ω ⊂ R2 of boundary ∂Ω = Γ = Γ0∪Γ1 such that
Γ0 ∩ Γ1 = ∅ and mes(Γ1) 6= 0.

The data completion problem is to construct the function u solution of the Cauchy
problem for the Laplace equation: −∆u = 0 in Ω

u = f on Γ0

∂nu = g on Γ0

(1)

where, u is the potential (or the temperature) at each point of the domain Ω,
∂nu is the normal derivative of u,
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f and g are respectively the known values of the function u and its flow on Γ0.
The considered problem is severely ill-posed in the sense of Hadamard, since existence,
unicity and stability are not always ensured. However, for compatible data (f, g) ∈
H

1
2 (Γ0)×H−

1
2 (Γ0), the problem (1) admits at most one solution [21].

2.2. Formulation on optimization problem. Since the function u on the boundary Γ1

is to be determined, we consider it as a control χ ∈ L2(Γ1) in a direct problem formulation
to fit the Cauchy data g ∈ L2(Γ0).
Thus, we consider the direct problem: −∆u = 0 in Ω

∂nu = g on Γ0

u = χ on Γ1

(2)

We note that if g ∈ L2(Γ0) and χ ∈ L2(Γ1), then there is a unique solution u(g, χ), of
the direct problem (2), and we aim to find χ such that:

u(g, χ)/Γ0
= f

In doing so we attempt to minimize the functional:

J(χ) = ‖u(g, χ)/Γ0
− f‖L2(Γ0)

by using Genetic Algorithm approach.

3. Approach genetic for the data completion problem

3.1. Overview of Genetic algorithms. Genetic Algorithms (GAs) are most famous
Evolutionary Algorithms (EAs) which are inspired from natural evolution and selection.
It is essentially a searching method based on the Darwinian principles of biological evo-
lution. Genetic algorithms, primarily developed by Holland [22], have been successfully
applied to various optimization problems [23, 24].
GAs search from a population of possible solutions instead of a single one. It uses ran-
dom operators throughout the process including reproduction, crossover, and mutation.
Thus, In a genetic algorithms, a population of individuals (possible solutions) is randomly
selected. These individuals are subject to several genetic operators (selection, crossover,
mutation, insertion, ..) to produce a new population containing in principle better individ-
uals [10]. This population evolves more and more until a stopping criterion is satisfied and
declaring obtaining optimal best solution. The performance of genetic algorithms depends
on the choice of operators that will intervene in the production of the new populations.
The fitness or cost function are used to resolve the redundancy has no requirement for
continuity in the derivatives, so virtually any fitness function can be selected for optimiz-
ing.
Irrespective of the problems treated, genetic algorithms are based on six principles:

• Creation of an initial population formed by a finite number of solutions. Each
treated problem has a specific way to encode the individuals of the genetic pop-
ulation. A chromosome (a particular solution) has different ways of being coded:
numeric, symbolic, matrix or alphanumeric;
• Definition of an evaluation function (fitness) to evaluate a solution;
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• Selection mechanism to generate new solutions are used to identify individuals in
a population. There are several methods in the literature, citing the method of
selection by rank, roulette, by tournament, random selection, etc.;
• Reproduce the new individuals by using Genetic operators:

- Crossover operator: It is a genetic operator that combines two chromosomes
(parents) to produce a new chromosome (children) with crossover probability Pc ;
- Mutation operator: It avoids establishing a uniform population unable to evolve.
This operator is used to modify the genes of a chromosome selected with a mutation
probability Pm;
• Insertion mechanism: to decide who should stay and who should disappear.
• Stopping test: to make sure about the optimality of the solution obtained by the

genetic algorithm.

3.2. Choice of Genetic operators for the optimization problem. To solve the opti-
mization problem using GAs, it is necessary to adapt the genetic operators, starting with
the type of encoding, the crossover operator and the mutation operator.
To implement an GA, the decision variables must be encoded as strings of binary alpha-
bets zero and one [25] or encoded as real numbers [26].

It is khown that the performance of real coded genetic algorithm is superior to binary
coded genetic algorithm requiring huge computational time and memory, in particular,
for high dimensional problems in which higher degree of precision is desired. Then, in
this problem, a real coded GA are used where the decision variables are encoded as real
numbers.

For the other operators, we have chosen the Arithmetic crossover [27] and the Power
mutation [28], defined us follow:

• Arithmetic crossover
Different types of crossover operators adapted to real coded GA have been de-
veloped by several authors that have shown their effectiveness in solving several
optimization problems [29]. We opt for this proposed algorithm for the arithmetic
crossover.
In arithmetic crossover, two parents produce two offspring. The offspring are
arithmetically represented by:

y
(1)
i = αix

(1)
i + (1− αi)x

(2)
i

y
(2)
i = αix

(2)
i + (1− αi)x

(1)
i

(3)

where αi are uniform random numbers, say in [−0.5, 1.5] [10].

• Power Mutation (PM)
Several mutation operators are developed with real coded GA. However, we use
the power mutation (PM) introduced for real coded genetic algorithms by [28].
The GA with (PM) outperforms other GAs which has shown its effectiveness in
comparison with other operators in optimizing different problems.

This mutation is based on power distribution. It is used to create a solution x′

in the vicinity of a parent solution x. A uniform random number t between 0 and
1 is created. Also, a random number s is created which follows the power where
the distribution function is given by: f(x) = pxp−1 0 ≤ x ≤ 1
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The following formula is used to form the mutated solution:

x′ =

{
x− s(x− V arMin), if t < α
x+ s(V arMax− x), if t ≥ α (4)

where t = x−V arMin
V arMax−V arMin ,

V arMin and V arMax are lower and upper bounds of the decision variable and
α is a uniformly distributed random number between 0 and 1 .

3.3. Approach genetic for the data completion problem. The approach genetic
used to solve the inverse problem is defined following the steps:

• Step 1: Given an initial population χ0
k , k = 1, 2, .....n, with n number of individ-

uals in the generation, solve the problems (Pk) in (5) by finite element method. −∆u = 0 in Ω
∂nu = g on Γ0

u = χ0
k on Γ1

(5)

• Step 2: Evaluate J(χ0
k)

• Step 3: Using J(χ0
k) as indicator of fitness of each individual, the next generation

χ1
k is created by GA with the following rule:
χ1
k = Mu.Cr.Se(χ

0
k)

where Se the selection, Cr the crossover and Mu the mutation.
• Step 4: Go to step 1 with χ1

k replacing χ0
k and continue.

• Step 5: The process continue for χ1
k, i = 1, 2, · · · ,Max generation

The genetic procedure is identified in this process (see Figure 1).

4. Numerical experiments

The solution domain considered is an example with non-smooth boundary, which is a
square Ω = (0, 1)× (0, 1) with a piecewise smooth boundary where Γ = Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3;
and mes(Γ0) 6= 0 and mes(Γ2) ≥ mes(Γ0).
The problem is to construct a harmonic function u solution of the Cauchy problem for the
Laplace equation and to find the unknown conditions on the inaccessible part Γ0:

−4u = 0 in Ω
u = f on Γ1

u = g, ∂u
∂n = h on Γ2

∂u
∂n = k on Γ3

(6)

where; Γ0 = {0} × (0, 1)
Γ1 = (0, 1)× {0}
Γ2 = {1} × (0, 1)
Γ3 = (0, 1)× {1}

We note that f , g, h and k are known functions and can be calculated easily for each
considered typical bench-mark test examples, namely the harmonic solution to be retrieved
given by:
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Figure 1. Approach genetic for the data completion problem

Example 1: u(x, y) = x2 − y2

Example 2: u(x, y) = −yx2 + y3/3

Example 3: u(x, y) = cos(x) cosh(y) + sin(x) sinh(y)

It should be noted that in many cases the form of the solution to be found is not known.
Thus, we look for the approximation of the solution based on the polynomial interpolation
of the function.

Setting the parameters to find a suitable combination occurring in a GA is a very
important task and can be the most difficult. For this, a vast experiment is carried out
in the case of our problem with various possible combinations of probability of crossover
and probability of mutation.
The final values of the parameters for the considered GA are given as follows :

• Selection: Random
• V arMin and V arMax, border of the research space,
• MaxIt = 500, maximum number of iterations,
• nPop = 200, maximum number of individuals population
• Probability of crossover Pc = 0.85
• Probability of mutation Pm = 0.04
• Insertion: Elitism

The experiments are done on a intel(R) Core(TM) i5-431OU CPU @ 2.6 GHz machine
with 4.00 Go RAM.

Figures 2, 4 and 6 present the evolution of the numerical solution (Dirichlet condition
on inaccessible part Γ0) during the genetic process in comparison with the exact solution
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for different choices of research domains. These figures show that for all the choices, we
can approach the exact solution either for reduced domains as [−1, 1] or for fairly large
domains like [−5, 5] and [−10, 10]. This amounts to mentioned that even if in the initial
population the best individual (the best solution) is quite far from the exact solution, the
genetic process allows to achieve a good approximation to the exact solution.
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Figure 2. Numerical results during genetic process in [−1, 1] (a), [−5, 5]
(b) and [−10, 10] (c) for example 1
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Concerning the figures 3, 5 and 7, they present evaluation of the functional J(u) =
||u−uex||L2(Ω) during genetic process until iteration 500, which decreases in all cases dur-
ing the genetic process. However, when the choice of the interval is small enough, the
algorithm requires less iterations to have a better solution, which amounts to signaling
less time for a better solution. In particular, in the case of example 2 with the interval
[−1, 1] we obtain an error of 4×10−4 in less than 30 iterations, this same error with the
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Figure 3. Evaluation function during genetic process in [−1, 1] (a),
[−5, 5] (b) and [−10, 10] (c) for example 1
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Figure 4. Numerical results during genetic process in [−1, 1] (a), [−5, 5]
(b) and [−10, 10] (c) for example 2
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Figure 5. Evaluation function during genetic process in [−1, 1] (a),
[−5, 5] (b) and [−10, 10] (c) for example 2

interval [−5, 5] requires more than 55 iterations. In the case where the considered interval
is [−10, 10], we obtain just 1.8×10−3 after 124 iterations.

It should be noted that the same results were found with different domains showing the
effectiveness of the proposed algorithm to produce good approximations.
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Figure 6. Numerical results during genetic process in [−1, 1] (a), [−5, 5]
(b) and [−10, 10] (c) for example 3

5. Conclusion

In this paper, a genetic approach is proposed to solve an important inverse problem
known to be ill-posed. A formulation in an optimization problem is proposed. Adequate
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Figure 7. Evaluation function during genetic process in [−1, 1] (a),
[−5, 5] (b) and [−10, 10] (c) for example 3

choices of genetic operators adapted to the real-value encoding are made to optimize the
functional; in addition to finite element method used to solve the direct problem. The
numerical results presented in the case of an irregular domain gave satisfactory results
showing the efficiency of the genetic algorithms with adaptation of these operators ac-
cording to the studied problem to produce good results.
The objective of this study is to focus on the capacity of genetic algorithms to approach
the solution of the data completion problem as an ill-posed problem. An improvement in
genetic algorithm performance using other crossover and mutation operators is reported
in another paper.
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