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A PIECEWISE ANALYTICAL ITERATIVE METHOD FOR A

WIRE-MASS MODEL

SUDI MUNGKASI1, §

Abstract. A wire-mass model is considered, where the wire is elastic and the mass is
attached to the wire. We propose a piecewise analytical iterative method for simulating
the motion of the mass attached to the wire. Our proposed method combines Picard’s
successive approximation and Taylor series expansion methods. Picard’s successive ap-
proximation method is simple to construct, but difficult to compute, as it involves a
nonlinear term in the integrand. Taylor series expansion method is accurate, but only
for small intervals. We combine these two methods to take advantage of the strengths
and avoid the weaknesses of both methods. Therefore, we implement this combination
piecewisely. Numerical tests show that our proposed method is simple to implement but
produces accurate solutions.

Keywords: High order method, Picard–Taylor method, piecewise method, successive ap-
proximation method, wire-mass model.
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1. Introduction

Wire is often needed in engineering installations. When a mass is attached to a wire,
the mass gets involved in the determination of the motion of the whole system. To solve
the problem, it needs to be modelled and simulated. As exact analytical solutions are
generally not available, numerical methods provide a way to deal with the problem.

Other than numerical methods, an analytical approximation can also be taken. An
available analytical approximation is by using Picard’s successive approximation method,
which is a special case of variational iteration method [1–6] due to He [7–9]. The successive
approximation method is simple to construct, but difficult to compute when we have
nonlinear terms in the integrand. Another analytical approximation is by using truncated
Taylor series expansions. Taylor series polynomials are easy to compute, but they are
accurate only for small intervals.

In this paper, we propose a combination of methods to solve the problem of the motion
of a mass attached to a stretched elastic wire. To overcome the difficulty in the integration
process of the successive approximation method, we replace the original nonlinear term
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Figure 1. Illustration of the wire-mass model, where a mass attached to
a stretched elastic wire [10].

with a truncated Taylor series expansion. To maintain the accuracy of the solution,
we implement this combination of Picard and Taylor methods into small subdomains
consecutively. Computational tests confirm that our proposed method can be made high
accuracy simply by taking more number of Picard iterations and more Taylor terms in the
piecewise evolution.

We formulate the problem of the motion of a mass attached to a stretched elastic wire
into a mathematical equation called the wire-mass model following Durmaz et al. [10]. The
wire-mass model is of the type of vibration problems. Its applications can be extended for
the vibration of a bridge, the vibration of a solid structure, etc. Therefore, modelling and
simulation of the wire-mass problem provide insights for solving these extended versions of
the problem, which includes the wire-mass motion in the wire installation problem itself.

The rest of this paper is structured as follows. We first provide the mathematical model
of the problem. Then we provide methods for solving the problem. After that, results and
discussion are presented. Finally, some concluding remarks will close the paper.

2. The Wire-Mass Model

We consider the motion problem of a mass attached in a stretched elastic wire, as shown
in Figure 1. Wire installation may involve a mass in the joint of two pieces of wire. To
determine the position of the mass (the joint) at anytime, a mathematical model has been
proposed in the literature [10–22], but accurately solving the model remains to be an open
problem. To make our paper to be self-contained, we shall rederive the mathematical
model of a mass attached in a stretched elastic wire following the work of Durmaz et
al. [10].

Let us assume that the motion of the mass in the wire-mass system is one dimensional,
that is, in the x-direction. Based on Newton’s second law, the mathematical model gov-
erning the motion of the mass attached to a stretched elastic wire, as shown in Figure 1,
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is [10]:

mẍ = −2T sin θ, (1)

with initial conditions

x(0) = x0, ẋ(0) = 0. (2)

Here, the free variable is time t; m is the mass; x = x(t) is the position of the mass
dependent on time variable t; ẋ means the first derivative of x with respect to time t; ẍ
means the second derivative of x with respect to time t; constant x0 is the initial amplitude
of the mass. Observing Figure 1, we note that

sin θ =
x√

L2 + x2
, (3)

where L is the distance from the mass to the walls in the still condition.
The tension T of the wire is given by

T = T0 +R

√
L2 + x2 − L

L
. (4)

Here, T0 and R are known constants, where T0 is the tension of the wire when there is no
motion, and R is the axial rigidity of the wire such that 0 ≤ T0 ≤ R. (Note that there were
typographical errors in the formulation of tension T in the work of Durmaz et al. [10].)

Substituting sin θ given by equation (3) and tension T given by equation (4) into equa-
tion (1), we eliminate θ from the mathematical model, so the mathematical model for the
motion of a mass attached in a stretched elastic wire becomes

mẍ(t) + 2R
x(t)

L
+

2(T0 −R)x(t)
L√

1 +
(
x(t)
L

)2
= 0, (5)

with initial conditions

x(0) = x0, ẋ(0) = 0. (6)

Taking dimensionless variables

u =
x

L
, τ =

t√
mL
2R

, (7)

and introducing new parameters

µ = 1− T0

R
, u0 =

x0

L
, (8)

we obtain that the dimensionless model for the motion of the mass attached to the
stretched elastic wire is

u′′(τ) + u(τ)− µu(τ)√
1 + u(τ)2

= 0, (9)

with initial conditions

u(0) = u0, u′(0) = 0. (10)

In dimensionless model (9), τ is the free variable, u is the dependent variable, and the
constant µ is on interval 0 ≤ µ ≤ 1. Here, u′ means the first derivative of u with respect
to the dimensionless time τ ; and u′′ means the second derivative of u with respect to the
dimensionless time τ . Solving model (9) with initial conditions (10) leads to solving the
problem.
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3. Methods for Solving the Wire-Mass Model

In this section, we recall an existing iterative method, which is Picard’s successive
approximation method, for solving dimensionless model (9) with initial conditions (10).
As the existing iterative method is not accurate for a long period of time and it has difficult
task in the integration process, we need a better solving method. Therefore, in this paper,
we propose a combination of Picard’s successive approximation method for initial value
problems and Taylor’s series method for function approximations in a piecewise domain.
We call the method that we propose the piecewise Picard–Taylor iterative method.

3.1. Existing iterative method and its limitations. An available (existing) iterative
method is Picard’s successive approximation method. It works as follows. We consider a
general initial value problem

y′(x) = ϕ(x, y), y(x0) = y0, (11)

where ϕ(x, y) is assumed to be continuous on a domain containing the point (x0, y0).
Then, we have the following theorem.

Theorem 3.1. Any solution to the initial value problem (11) is also a solution to the
integral equation

y(x) = y0 +

∫ x

x0

ϕ(z, y(z))dz (12)

and conversely.

The proof of this theorem can be found in the literature, such as, Agarwal and O’Regan [23].
Based on Theorem 3.1, Picard’s successive approximations are constructed as

yn(x) = y0 +

∫ x

x0

ϕ(z, yn−1(z))dz, (13)

where n = 1, 2, 3, .... If the sequence {yn(x)} converges uniformly to a function y(x), then
the solution to the initial value problem (11) is

y(x) = lim
n→∞

yn(x), (14)

where y(x) is continuous in an interval containing x0.
Model (9) can be written equivalently into

u′ = v, (15)

v′ = −u+
µu√

1 + u2
. (16)

Solving model (9) is equivalent to solving the system of equations (15) and (16). Picard’s
successive approximation method for solving the system of equations (15) and (16) with
initial conditions (10) is

un(τ) = u0 +

∫ τ

0
vn−1(ξ)dξ, (17)

vn(τ) = v0 +

∫ τ

0

[
−un−1(ξ) +

µun−1(ξ)√
1 + un−1(ξ)2

]
dξ, (18)

where n = 1, 2, 3, ... and v0 = u′(0) = 0.
There are at least two limitations of the existing Picard’s successive approximation

method. First, in order to obtain accurate solutions, we need to iterate formulas (17) and
(18) many times, but doing so is impractical. Second, the integration of equation (18) is

difficult to do when n is large, because of the presence of the nonlinear term µu/
√

1 + u2
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in the integrand. This motivates that a simple but highly accurate method for solving the
model is desired.

3.2. Proposed method to overcome the limitations of the existing method. In
this section, we propose a new strategy for solving the system of equations (15) and (16).
Two actions are taken to overcome two limitations of Picard’s successive approximation
method. The first action is to subdivide the time domain into a finite number of subdo-
mains consecutively. This will make the iterative method produce accurate solutions for
a long period of time. The second action is to replace factor u/

√
1 + u2 using a truncated

Taylor series expansion about the initial point of each of subdomains. This will make
the integration in Picard’s successive approximation method easy to do. The resulting
proposed method is called the piecewise Picard–Taylor iterative method (PPTIM).

Suppose that we are given the time domain [τ0, τf ] for determining the position of
the mass. We subdivide the domain into K subdomains consecutively, that is, [τk−1, τk]
for k = 1, 2, 3, ...,K. We implement Picard’s successive approximation method up to N
iteration(s) for each of subdomains, where N is a positive integer. We denote un,k(τ) the
solution of PPTIM at the nth iteration of Picard’s successive approximation method on
the kth subdomain.

Our proposed PPTIM works as follows. For each k = 1, 2, 3, ...,K and for each n =
1, 2, 3, ..., N :

un,k(τ) = u0,k +

∫ τ

τk−1

vn−1,k(ξ)dξ, (19)

vn,k(τ) = v0,k +

∫ τ

τk−1

[−un−1,k(ξ) + µPN−1,k(ξ)] dξ, (20)

where

u0,1 = u0, v0,1 = v0, (21)

and

u0,k = uN,k−1(τk−1), v0,k = vN,k−1(τk−1), (22)

when k = 2, 3, 4, ...,K. Here

PN−1,k(ξ) ≈
u(ξ)√

1 + u(ξ)2
, (23)

where PN−1,k(ξ) denotes the Taylor polynomial of degree N − 1, which approximates

u(ξ)/
√

1 + u(ξ)2 about point ξ = τk−1.
We remark that the upper bound of the integrals in formulas (19) and (20) is τ , because

these formulas are defined for all τ in the whole subdomain [τk−1, τk]. When the formulas
(19) and (20) are used to obtain the solution at τk, the upper bound τ is replaced by τk.
In addition, to show the simplicity of our proposed PPTIM, we provide a pseudocode of
the PPTIM written as Algorithm 1.

4. Results and Discussion

In this section, we report our research results and discussion. The exact analytical
solution to the model is not known, but we can take an available highly accurate solution
as the reference. In our computational tests, we take the following parameters: µ = 0.5,
u0 = 1, τ0 = 0, τf = 8, ∆τ = τk − τk−1 for all k. We use the notation PPTIMN
for the PPTIM method using N successive iterations. Specially when we take N = 1,
we observe from formulas (19) and (20) that PPTIM1 evaluated at τk is the same as
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Algorithm 1 Pseudocode for the piecewise Picard–Taylor iterative method

1: procedure PPTIM(τ0, τf , u0, v0, µ,K,N) . Defined inputs for the PPTIM
2: ∆τ ← (τf − τ0)/K . Compute the time-step
3: T ← τ0 : ∆τ : τf . Define the discrete time
4: U ← 0 ∗ T . Define the storage for values of u
5: V ← 0 ∗ T . Define the storage for values of v
6: U(1)← u0 . Initial value of u
7: V (1)← v0 . Initial value of v
8: for k ← 1 : K do . Loops through each subdomain
9: Y (1)← U(k) . Initial Picard’s approximation of u at the kth subdomain

10: Z(1)← V (k) . Initial Picard’s approximation of v at the kth subdomain

11: TaylorSeries ← The Nth order Taylor series of u/
√

1 + u2 about τk
12: for n← 1 : N do . Loops of Picard’s successive approximation method
13: Y (n+ 1)← Y (1) +

∫ τ
τk
Z(n) dξ

14: Z(n+ 1)← Z(1) +
∫ τ
τk

(−Y (n) + µ∗TaylorSeries) dξ

15: U(k + 1)← Value of Y (n+ 1) at τk+1

16: V (k + 1)← Value of Z(n+ 1) at τk+1

17: return U . Discrete solution values of u are returned in vector U

Figure 2. Euler’s, PPTIM2 and PPTIM3 solutions produced using the
dimensionless time step ∆τ = 0.25.

the standard Euler’s method for solving equations (15) and (16). This standard Euler’s
method (PPTIM1 evaluated at τk) is

uk = uk−1 + ∆τvk−1, (24)

vk = vk−1 + ∆τ

−uk−1 +
µuk−1√
1 + u2

k−1

 , (25)

where uk = u1,k(τk), vk = v1,k(τk), uk−1 = u1,k−1(τk−1), and vk−1 = v1,k−1(τk−1).
Euler’s, PPTIM2 and PPTIM3 solutions together with the reference solution are shown

in Figure 2 for ∆τ = 0.25, which is a relatively coarse subdivision of the time domain.
In this figure, Euler’s solution is not accurate; PPTIM2 solution is more accurate than
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(a) Absolute error of Euler’s solution. (b) Absolute error of PPTIM2 solution.

(c) Absolute error of PPTIM3 solution. (d) Absolute error of PPTIM4 solution.

Figure 3. Absolute errors of Euler’s, PPTIM2, PPTIM3 and PPTIM4 solu-
tions.

Table 1. List of error and Experimental Order of Convergence (EOC)
of the proposed piecewise Picard–Taylor iterative method. We limit our
simualtions for N = 1, 2, 3, 4.

Value of Error EOC Error EOC Error EOC Error EOC

∆τ (N = 1) (N = 1) (N = 2) (N = 2) (N = 3) (N = 3) (N = 4) (N = 4)

0.32 3.53855E-01 – 2.90628E-02 – 2.36565E-03 – 1.66754E-04 –
0.16 1.51637E-01 1.223 7.10398E-03 2.032 3.08423E-04 2.939 1.00044E-05 4.059

0.08 7.01945E-02 1.111 1.74974E-03 2.021 3.93000E-05 2.972 6.11111E-07 4.033

0.04 3.37961E-02 1.054 4.33791E-04 2.012 4.95870E-06 2.986 3.77328E-08 4.018
0.02 1.65839E-02 1.027 1.07966E-04 2.006 6.22748E-07 2.993 2.34359E-09 4.009

Euler’s solution; PPTIM3 is most accurate. PPTIM3 is able to coincide graphically with
the reference solution. These results indicate that more number of iterations in the PPTIM
evolution leads to a more accurate solution. This means that if we take PPTIM4 for solving
the problem, we shall obtain a more accurate solution.

Taking smaller ∆τ shall also lead to smaller error of the approximate solution. This is
confirmed in Figure 3 plotting the absolute errors of these solutions for ∆τ = 0.02. We
observe from Subfigure 3a that the absolute error of the Euler’s solution and the error
is at the magnitude of 10−2. In addition, Subfigure 3b shows the absolute error of the
PPTIM2 solution and the error is at the magnitude of 10−4. Furthermore, Subfigure 3c
shows the absolute error of the PPTIM3 solution and the error is at the magnitude of
10−6. Moreover, Subfigure 3d shows the absolute error of the PPTIM4 solution and the
error is at the magnitude of 10−9. Overall, higher order accurate method can be achieved
simply by taking larger value of N , where N represents the number of Picard iterations
and N − 1 is the polynomial degree of the truncated Taylor series expansion involved in
the PPTIM formulation.

To investigate the Experimental Order of Convergence (EOC) of PPTIM, we take vari-
ous values of ∆τ and calculate the EOC. Table 1 records the average of absolute errors on
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the whole domain. We observe that, as ∆τ tends to 0, EOC approaches the value of N .
This confirms that if we take N = 1, then the order of accuracy of PPTIM is of the first
order. If we take N = 2, then PPTIM is of the second order accurate method. Taking
N = 3 in the PPTIM evolution, we obtain a third order accurate method. Taking N = 4
leads to that our PPTIM solution is of the fourth order accuracy.

5. Conclusion

We have proposed a new method that we call the piecewise Picard–Taylor iterative
method for simulating the motion of a mass attached to a stretched elastic wire. The
method is simple, but it is accurate. The order of accuracy can be made higher simply
by taking more number of Picard successive iterations and more Taylor series terms in
the piecewise evolution. The model that we solve is for one-dimensional problems. Future
research direction could extend the proposed method to solve higher dimensional problems
involving two and three dimensions.
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