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A GENERALIZATION OF RELATION-THEORETIC CONTRACTION

PRINCIPLE

D. KHANTWAL1∗, S. ANEJA2, G. PRASAD3, U. C. GAIROLA3, §

Abstract. In the present paper, we generalize relation-theoretic contraction principle
using weaker class of contraction mappings which is assumed to be hold on the elements
of a particular subset of the whole space, whose elements are relaxed under the under-
lying relation. We also relaxed the assumption of continuity from the main result of
Alam and Imdad by introducing the notion of (R, k)-continuity. Moreover, our results
do not require the underlying binary relation to be T -closed for existence of fixed points
in relational metric spaces.
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1. Introduction

The Banach contraction principle [3] is very popular tool for guaranteeing the existence
and uniqueness of solution of considerable problem arising in several branches of Math-
ematics. Several extensions of this core result are available in the existing literature of
metric fixed point theory (see [1, 5, 6, 8, 10] and references therein) . In 2015, Alam and
Imdad [1] extended the classical Banach contraction principle using an arbitrary binary re-
lation. In doing so, the authors introduced relation-theoretic contraction condition which
is assumed to be hold on those elements which are related under the underlying binary
relation rather than the whole space. It is easy to see that under universal relation the
result of Alam and Imdad [1] reduces to the Banach contraction principle [3].

In this paper, we introduce notion of (R, k)-continuous mappings which is relatively
weaker notion of the class of continuous mappings as compare to the class of k-continuous
mappings andR-continuous mappings. Using this concept, we extend the relation-theoretic
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contraction principle due to Alam and Imdad [1] for a weaker class of contraction map-
pings. Our results guarantee the existence of fixed points in such cases wherein all the
classical fixed point theorems to an arbitrary binary relation can not be applied. Our
results also show that the assumption of T -closedness of underlying binary relation in
whole space is not necessary condition for the existence of fixed points in relational metric
spaces.

2. Preliminaries

We start our consideration by giving a brief review of the definitions and basic properties
of binary relations. Throughout this paper, we assume that N and N0 stand for the set of
positive integers and the set of non-negative integers respectively.

Definition 2.1. [1]. A binary relation R on a non-empty set X is a subset of X × X.
We say that x relates to y under R if and only if (x, y) ∈ R.

Definition 2.2. [1]. Let R be a binary relation defined on a non-empty set X. We say x
and y are R-comparable if either (x, y) ∈ R or (y, x) ∈ R. We denote it by [x, y] ∈ R.

Definition 2.3. [1]. Let R be a binary relation on a non-empty set X.

1. The inverse or transpose or dual relation of R, denoted by R−1 = {(x, y) ∈ X×X :
(y, x) ∈ R}.

2. The symmetric closure of R, denoted by Rs, is defined to be the set R∪R−1 (i.e.
Rs := R ∪R−1). Indeed, Rs is the smallest symmetric relation on X containing
R.

Definition 2.4. [1]. A binary relation R defined on a non-empty set X is called

(a) reflexive if (x, x) ∈ R for all x ∈ X,
(b) irreflexive if (x, x) 6∈ R for all x ∈ X,
(c) symmetric if (x, y) ∈ R implies (y, x) ∈ R,
(d) antisymmetric if (x, y) ∈ R and (y, x) ∈ R implies x = y,
(e) transitive if (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R,
(f) complete, connected or dichotomous if [x, y] ∈ R for all x, y ∈ X,
(f) weekly complete, weakly connected or trichotomous if [x, y] ∈ R or x = y for all

x, y ∈ X.

Definition 2.5. [1]. Let X be a non-empty set and R a binary relation on X. A sequence
{xn} ⊂ X is called R-preserving if

(xn, xn+1) ∈ R, for all n ∈ N0.

Definition 2.6. [1]. Let (X, d) be a metric space. A binary relation R defined on X is
called d-self-closed if whenever {xn} is an R-preserving sequence on X and

xn
d−→ x

then there exists a subsequence {xnk
} of {xn} with [xnk

, xn] ∈ R for all k ∈ N0.

Definition 2.7. [1, 9]. Let R be a binary relation on a non-empty set X and T be a
self-mapping on X. If for x, y ∈ X with

(x, y) ∈ R ⇒ (Tx, Ty) ∈ R

then the binary relation R is called T -closed and mapping T is called comparative mapping
on X under binary relation R.
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Definition 2.8. [2]. Let (X, d) be a metric space, R a binary relation on X and x ∈ X.
A self-mapping T on X is called R-continuous mapping at point x if for any R-preserving

sequence {xn} such that xn
d−→ x, we have T (xn)

d−→ T (x). Moreover, T is called R-
continuous if it is R-continuous at each point of X.

Clearly every continuous mapping is R-continuous, for any binary relation R and un-
der universal relation the notion of R-continuity coincides with the definition of usual
continuity.

Definition 2.9. [7]. A self-mapping T of a metric space (X, d) is called k- continuous,
k = 1, 2, 3 . . . , at the point x ∈ X if T k(xn) → Tx, whenever {xn} is a sequence in X
such that T k−1(xn)→ x in X. Moreover, T is called k-continuous if it is k-continuous at
each point of X.

It is obvious by definition of k-continuity that every continuous mapping T of a met-
ric space (X, d) is k-continuous mapping and continuity coincides with the notion of 1-
continuity. However k-continuity of a function (for k ≥ 2) does not implies the continuity
of function (see Example 1.2 in [7]).

Definition 2.10. [2] Let (X, d) be a metric space, R be a binary relation on X. We say
that (X, d) is R-complete if every R-preserving Cauchy sequence converges in X.

Every complete metric space is R-complete, for any binary relation R on X and both
the definition coincides under the universal relation.

Definition 2.11. Let R be a binary relation on a non-empty set X. For x, y ∈ X, a path
of lengh k ∈ N in R from x to y is a finite sequence {z0, z1, . . . , zk} ⊆ X satisfying the
following conditions:

(i) z0 = x and zk = y;
(ii) (zi, zi+1) ∈ R, for all i ∈ {0, 1, 2, . . . , k − 1}.

We denote by γ(x, y,R), the family of all paths in R from x to y and by X(T ;R),
the set of all points x ∈ X satisfying (x, Tx) ∈ R. The following result is analoge of the
Banach contraction principle in relational metric space and proved in [1].

Theorem 2.1. Let (X, d) be a complete metric space, R is binary relation on X and
T : X → X be a self mapping on X. Suppose that the following conditions hold:

(a) X(T ;R) is non-empty,
(b) R is T -closed,
(c) either T is continuous or R is d-self-closed,
(d) there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y), for all x, y ∈ X with (x, y) ∈ R. (1)

Then T has a fixed point. Moreover, if

(e) γ(x, y,Rs) is non-empty, for each x, y ∈ X,

then T has a unique fixed point.

Proposition 2.1. Let R be a binary relation on metric space X endowed with metric d
and T be a self-mapping on X. For non-empty subset A of X(T ;R) and α ∈ [0, 1), the
the following conditions are equivalent:

(I) d(Tx, Ty) ≤ αd(x, y) for all x, y ∈ A with (x, y) ∈ R,
(II) d(Tx, Ty) ≤ αd(x, y) for all x, y ∈ A with [x, y] ∈ R.

Proof. The proof of the Preposition 2.1 is similar to the proof of Preposition 2.3 in [1]. �
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3. Main Results

Firstly, we introduce the notion of (R, k)-continuous mappings, which is weaker than
the class of continuous mapping, k-continuous mappings and R-continuous mappings:

Definition 3.1. Let (X, d) be a metric space endowed with a binary relation R. A self
mapping T on X is said to be (R, k)-continuous at a point x ∈ X if for any R-preserving

sequence {xn} in X such that T k−1(xn)
d−→ x, we have T k(xn)

d−→ Tx . Moreover T is
called (R, k)-continuous if it is (R, k)-continuous at each point of X.

By definition of (R, k)-continuity, it is clear that every R-continuous mapping is (R, k)-
continuous mapping and both the definitions coincide for k = 1. Also every k-continous
mapping is (R, k)-continuous mapping and under universal relation the notion of (R, k)-
continuity coincides with the definition of k-continuity introduced by Pant and Pant in
[7].

Remark 3.1. Every continuous, k-continuous and R-continuous mapping is a (R, k)-
continuous mapping but converse is not true. The following example illustrates that (R, k)-
continuity does not imply R-continuity and k-continuity as well.

Example 3.1. Let X = [−1, 2] be a metric space equipped with usual metric d(x, y) =
|x − y|. Define a binary relation R = {( 1

2n ,
1

2n+1 ) : n ∈ N} on X and the mapping
T : X → X defined by

T (x) =

 1/3, if x ∈ [−1, 0],
1/2, if x ∈ (0, 1]
x, if x ∈ (1, 2].

Clearly T is not a continuous mapping in X and {xn} = { 1
2n }, n ∈ N is R-preserving

sequence in X as (xn, xn+1) ∈ R, for all n ∈ N. Since {xn} → 0 as n → ∞ then Txn →
1/2 6= T0. Hence T is not R-continuous mapping in X. Now, for each k = 1, 2, 3, . . .,

T k(x) =

{
1/2, if x ∈ [−1, 1],
x, if x ∈ (1, 2].

Since T k(x) is continuous everywhere in X, except at x = 1. Also there does not exist any
R-preserving sequence {xn} in X such that T k−1(xn) → 1 as n → ∞. So T is obviously
(R, k)-continuous mapping in X. However, for {xn} = {1 + 1

n}, n ∈ N, T k−1(xn) → 1

and T k(xn) → 1 6= T1 yields T is not k-continuous mapping in X. Hence, the mapping
T is (R, k)-continuous mapping in X, but T is neither continuous nor k-continuous and
R-continuous mapping in X.

Now we state our main results.

Theorem 3.1. Let (X, d) be a complete metric space endowed with a binary relation R
on X and T : X → X be a mapping. Suppose that A be any non-empty subset of X(T ;R)
and the following conditions are hold:

(a) T (A) ⊆ A;
(b) T is (R, k)-continuous mapping or R is d-self-closed;
(c) For all x, y ∈ A with (x, y) ∈ R, there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y); (2)

Then T has a fixed point in X.
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Proof. Let A be any non-empty subset of X(T ;R) and x0 ∈ A. Then we have (x0, Tx0) ∈
R. If x0 = Tx0, then the proof is completed. So in view of condition (a), there exists a
point say x1 in A such that x1 = Tx0. Again since x1 ∈ A, so (x1, Tx1) ∈ R. If x1 = Tx1
then x1 is a fixed point of T and proof is completed. Therefore x1 6= Tx1 and in view of
condition (a), there exists a point say x2 ∈ A such that (x2, Tx2) ∈ R. Continuing this
process again and again, we get a sequence of points {xn} in A such that

xn+1 = Txn and (xn, xn+1) ∈ R for all n ∈ N. (3)

Thus the sequence {xn} is R-preserving . Applying condition (c) to (3) for all n ∈ N0, we
deduce that

d(xn+1, xn+2) ≤ αd(xn, xn+1),

which by induction yields that

d(xn+1, xn+2) ≤ αn+1d(x0, x1), for all n ∈ N0. (4)

Using triangular inequality and (4), for all m > n ∈ N, we have

d(xm, xn) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤ (αn + αn+1 + · · ·+ αm−1)d(x0, Tx0)

= αnd(x0, Tx0)
m−n−1∑
j=1

αj → 0 as n→∞,

which implies that {xn} is R-preserving Cauchy sequence in A. Since A ⊆ X and (X, d)
is a complete metric space, so there exists x∗ ∈ X such that

xn
d−→ x∗.

Now in view of assumption (b), we suppose that T is (R, k)-continuous. Then for R-
preserving sequence {xn} = {T k−1(xn−k+1)} and

T k−1(xn−k+1)
d−→ x∗.

We have

xn+1 = T k(xn−k+1)
d−→ T (x∗)

and uniqueness of the limit of sequence {xn} implies T (x∗) = x∗, that is x∗ is a fixed point
of T .

Alternately, let us assume that R is d-self-closed. As {xn} is an R-preserving sequence
and

xn
d−→ x∗,

then there exists a subsequence {xnk
} of {xn} with [xnk

, x∗] ∈ R for all k ∈ N0. In view
of Preposition 2.1, we obtain

d(xnk+1, Tx
∗) = d(Txnk

, Tx∗) ≤ αd(xnk
, x∗)→ 0 as k →∞,

so xnk+1
d−→ T (x∗). Owing to the uniqueness of limit, we obtain T (x∗) = x∗. �

Example 3.2. Consider X = [−1, 1] equipped with usual metric d(x, y) = |x− y| so that
(X, d) is a complete metric space. Define a binary relation R = {(0, 0), (0,−1), (−1, 0),
(1/2, 1), (1, 0)} ∪ {( 1

n ,
1

n+1) : n ∈ N} on X and the mapping T : X → X by

T (x) =

{
0, if x ∈ [−1, 0],
1, if x ∈ (0, 1].
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Then {xn} = { 1n} is R-preserving sequence in X as (xn, xn+1) ∈ R for all n ∈ N and
xn → 0 and Txn → 1 6= T0. Hence T is not R-continuous mapping in X. However
T is (R, k)-continuous mapping for k = 2, as T 2(x) = 0 for all x ∈ X is a continuous
mapping. Clearly X(T ;R) = {−1, 0, 1/2} as for each x ∈ X(T ;R), (x, Tx) ∈ R. Also for
A = {−1, 0} ⊂ X(T ;R), T (A) ⊂ A and T satisfied condition (2) with α = 0. Hence all
the assumptions of Theorem 3.1 are satisfied and T has a fixed point at x = 0.

Even though the binary relation R used in the Example 3.2 is not T -closed still T has
a fixed point in X, which shows that the assumption of T -closedness of the binary relation
is not a necessary condition for existence of fixed point in relational metric spaces. Also
for (x, y) = (1, 0) ∈ R, T does not satisfies relation-theoretic contraction (1) of Alam and
Imbad [1].

Remark 3.2. It is remarkable here that, if (X, d) be a R-complete metric space, and T
be a self-mapping on X such that T has a fixed point x∗ in X, then T always satisfies our
Theorem 3.1. Clearly for A = {x∗}, T satisfies all the conditions of Theorem 3.1.

In view of Remark 3.1, we obtain the following corollary as a direct consequences of
Theorem 3.1.

Corollary 3.1. Theorem 3.1 remain true if we replace condition (b) by one of the following
conditions (besides retaining the rest of the hypothesis):

(b1) T is continuous
(b2) T is k-continuous
(b3) T is R-continuous.

Theorem 3.2. Let (X, d) be a metric space endowed with a binary relation R and T be a
self-mapping on X. Suppose that X(T ;R) be a non-empty subset of X and the following
conditions are satisfied:

(a) X(T ;R) is invariant under T ;
(b) T is (R, k)-continuous mapping or R is d-self-closed;
(c) for all x, y ∈ X(T ;R) with (x, y) ∈ R, there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y); (5)

(d) X(T ;R) is R-complete.

Then T has at least one fixed point in X.

Proof. Let x0 ∈ X(T ;R), then (x0, Tx0) ∈ R. If x0 = Tx0, the proof is completed. So
there exists a point say x1 in X(T ;R) such that x1 = Tx0. Again since x1 ∈ X(T ;R) so
(x1, Tx1) ∈ R. If x1 = Tx1 again the proof is completed. Otherwise, continuing in the
process, we get a R-preserving sequence {xn} in X(T ;R) such that

xn+1 = Txn and (xn, xn+1) ∈ R for all n ∈ N. (6)

Proceeding as in the proof of Theorem 3.1, we get {xn} is a R-preserving Cauchy sequence
in X(T ;R). Since X(T ;R) is R-complete so there exists x∗ ∈ X(T ;R) such that

xn
d−→ x∗.

Now in view of assumption (b), we suppose that T is (R, k)-continuous mapping on X.
Then for every R-preserving sequence {xn} = {T k−1(xn−k+1)} in X such that

T k−1(xn−k+1)
d−→ x∗,

we have

xn+1 = T k(xn−k+1)
d−→ T (x∗).
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Owing to the uniqueness of limit, we obtain T (x∗) = x∗, that is x∗ is a fixed point of T .
Alternately, let us assume that R is d-self-closed. As {xn} is an R-preserving sequence

and

xn
d−→ x∗,

then there exists a subsequence {xnk
} of {xn} with [xnk

, x∗] ∈ R for all k ∈ N0. In view
of Preposition 2.1, we obtain

d(xnk+1, Tx
∗) = d(Txnk

, Tx∗) ≤ αd(xnk
, x∗)→ 0 as k →∞,

so xnk+1
d−→ T (x∗). Again, owing to the uniqueness of limit, we obtain T (x∗) = x∗. �

Theorem 3.3. In addition to the hypothesis of Theorem 3.2, suppose that R is a transitive
relation on X and γ(x, y,R) is non-empty, for all x, y ∈ X(T ;R). Then T has a unique
fixed point in X(T ;R).

Proof. Let x∗ and y∗ be two distinct fixed points of T in X(T ;R) then x∗ = Tx∗, y∗ = Ty∗.
Since γ(x, y,R) is non-empty, there is a path (say {z1, . . . , z2}) of some finite length k in
R from x∗ to y∗, so that

z0 = x∗, zk = y∗, (zi, zi+1) ∈ R for each i = 0, 1, 2, . . . , k − 1.

By transitivity of R, we get

(x∗, z1) ∈ R, (z1, z2) ∈ R, . . . , (zk−1, y
∗) ∈ R =⇒ (x∗, y∗) ∈ R.

The condition (5) implies that

d(x∗, y∗) = d(Tx∗, T y∗) ≤ αd(x∗, y∗)

which is not possible. Thus T has a unique fixed point in X(T ;R). �

Now we consider some special cases wherein our results deduce and generalize several
well-known fixed point theorems of the existing literature.

• The Theorem 3.1 and Theorem 3.2 are proper generalizations of Theorem 2.1 of
Alam and Imdad [1]. Clearly as, assumption of (R, k)-continuity is weaker than
the assumption of R-continuity and contraction conditions (2) and (5) are weaker
than the condition (1).
• Under universal relation (R = X2 and X(T ;R) = X), Theorem 3.2 reduces to the

classical Banach contraction principle and condition (a), (b) and (c) trivially hold.
• By Choosing R :=�, the partial order in Theorem 3.1, we get a generalized version

of Nieto and Rodr̀ıguez-Lòpez [6, see Theorem 2.4,Theorem 2.5] and, Ran and
Reurings theorem [8, see Theorem 2.1].
• TakingR :=≺�, the tolerance relation associate with a partial order � in Theorem

3.1, we obtained generalized version of the result of Turinici [11]

Now we furnish an illustrative example in support of Theorem 3.2, which does not satisfy
the hypothesis of all the classical results in relational metric spaces.

Example 3.3. Let X = [0, 1] and d be the standard metric d(x, y) = |x−y| so that (X, d) is
a complete metric space. Define a binary relation R = {(0, 0), (1/4, 0), (1/8, 3/4), (3/4, 1/8)}
on X and the mapping T : X → X by

T (x) =

{
0, if x ∈ [0, 1/2],

1/4, if x ∈ (1/2, 1].

Then it is easy to verify that mapping T is not continuous but is 2-continuous mapping
as T 2(x) = 0 for all x ∈ X and X(T ;R) = {0, 1/4}. We also observe that X(T ;R) is
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invariant under the mapping T and T satisfies the condition (3) for α = 0. Hence all the
conditions of our Theorem 3.2 are satisfied and T has a fixed point at x = 0.

Notice that the binary relationR in Example 3.3 is neither T -closed nor one of the earlier
known standard binary relation such as reflexive, symmetric, transitive, anti-symmetric,
complete or weakly complete. Therefore theorems contained in [1, 2, 3, 4, 6, 8, 9, 11, 12, 13]
can not be applied in the above example. Thus our results extend all the classical results
to an arbitrary binary relation.

Conclusion

In this paper, we introduced a new class of continuous mappings, (namely (R, k)-
continuous mappings) which is weaker than the class of continuous mappings and R-
continuous mappings. Further, we generalized relation-theoretic contraction principle due
to Alam and Imdad [1] for a weaker class of contraction mappings by replacing the as-
sumption of continuity to the notion of (R, k)-continuity.

In order to ensure the existence of fixed points for linear and nonlinear contraction
mappings T , the underlying binary relation is required to be T -closed in the relational
metric spaces. In our results, the underlying binary relation does not require to be T -
closed in the whole space. Moreover, our results also have guaranteed the existence of
fixed points in such cases wherein all the classical fixed point results in relational metric
spaces remain silent.
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