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RIESZ MRA OF DYADIC DILATIONS AND THE CORRESPONDING

RIESZ WAVELET ON LCA GROUPS

R. KUMAR1, SATYAPRIYA2∗, M. SINGH3, §

Abstract. We have explored the concept of Riesz multiresolution analysis (Riesz MRA)
on a locally compact Abelian group G, and have done a detailed study of the methods
of construction of a Riesz wavelet from the given Riesz MRA. For simplicity, we have
assumed the order of dilations to be two, i.e. we have worked with dyadic dilations. We
have proved that precisely one function is required to construct a Riesz wavelet basis for
the space L2(G).

Keywords: LCA Groups, Riesz Basis, Multiresolution Analysis, dyadic dilation, refine-
ment equation.
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1. Introduction

Mallet presented the idea of multiresolution analysis (MRA) on the space L2(R) in 1986
[17], and since then it has become a tool of choice for investigation and construction of
wavelet bases. After that, a number of studies have also pursued the application of MRA
for Euclidean spaces [9, 19]. In the following years, Dahlke [8] generalized the concept of
MRA for arbitrary locally compact Abelian (LCA) groups. Then on, many authors have
contributed to the field of construction of wavelet bases on a variety of groups [4, 20, 23].
Gol and Tousi [13] have obtained equivalent multiresolution conditions using the theory
of spectral function and shift-invariant spaces. Bownik and Jahan recently explored the
wavelet theory in compact Abelian groups [4].

In all the mentioned works above, MRA has been used to construct a wavelet orthonor-
mal basis for the underlying space. Here, we wish to generalize this notion and thus
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construct a wavelet Riesz basis through MRA. The primary motivation for studying Reisz
bases is that these bases are found to be very handy for studying the sampling of band-
limited signals (functions). It is well-known that, up to some transformation, Riesz bases
are equivalent to the interpolation property. This makes them a robust tool in compress
sensing and application to signal processing. There are a few works available in literature
which deal with MRA and alike structures for Riesz bases [3, 11, 18, 21, 24]. The authors
of these works have thoroughly explored the construction methods of Riesz wavelt bases
through MRA.

We come across many practical problems in signal processing, data analysis, and time
series problems where the information is in the form of discrete data. Taking this fact
into cognizance, one realizes that a more generalized approach involving LCA groups is a
way out. This also serves as our primary motivation for working in the setting of LCA
groups. Some progress in this direction is made by a few researchers [5, 7, 15, 18, 21].
With an objective to further the exploration towards positive outcomes, in this work we
have delved into a more generalized Riesz wavelet bases in the abstract settings of a LCA
group.

In this paper, we have constructed a Riesz wavelet function and, thus, a Riesz wavelet
basis applying Riesz MRA structure on L2(G). For simplicity, the case of dyadic dilations
has been taken into consideration here. We have structured this paper in the following
framework. Some preliminaries and notations have been given in section 2. A detailed
method for the construction of Riesz wavelet from the given Riesz MRA is presented in
section 3. Finally, we have concluded our work in section 4.

2. Preliminaries and Notations

2.1. LCA Groups. We briefly review some elementary concepts about LCA groups here.
For a detailed study, we refer [12, 22].

We call a topological group G, an LCA group if

• along with being locally compact in its topology, it is also Hausdorff and metrizable;
and,
• it can be written as a countable union of compact sets.

The symbols ′+′ and ′0′ are respectively used to denote the group composition and the
identity element of G. The groups R, T, Z, Zn are some of the frequently used LCA
groups. These groups, along with their higher dimensional variants, are called elementary
LCA groups.

If T denotes the circle group {z ∈ C : |z| = 1}, then a character on G is a function

γ : G → T such that for any x, y ∈ G, γ(x + y) = γ(x)γ(y). Let Ĝ denote the set of all

continuous characters on G. This set Ĝ, called the dual group of G, also forms an LCA
group (see [22]) when equipped with the compact-open topology and the composition

(γ + γ′)(x) = γ(x)γ′(x); γ, γ′ ∈ Ĝ and x ∈ G.

The Pontryagin duality theorem allows us to identify the double dual group
ˆ̂
G with the

group G and hence we can write
ˆ̂
G = G. Therefore, γ(x) can be interpreted as either the

action of γ ∈ Ĝ on x ∈ G; or action of x ∈ ˆ̂
G = G on γ ∈ Ĝ and thus from now on we will

use the notation

(γ, x) = γ(x); γ ∈ Ĝ, x ∈ G.
Clearly, (γ, x) is a member of T. Further, we will denote by −x, the inverse of the element

x ∈ G, and by −γ, the inverse of the element γ ∈ Ĝ. Moreover, these inverse elements



R. KUMAR, SATYAPRIYA, M. SINGH: RIESZ MRA AND RIESZ WAVELET ON LCA GROUPS 191

satisfy the relation

(γ,−x) = (−γ, x) = (γ, x).

Remark 2.1. Note that the usage of the symbol ′+′ and ′−′ will depend entirely on the
context, whether it is being used as a group operation or as a usual sum. To be more
precise, whenever we will be dealing with elements of G or Ĝ, + will be used as a group
operation and in all other cases, + will mean the usual sum.

We now equip the group G with a translation invariant Radon measure µG i.e.∫
G
f(x+ y)dµG(x) =

∫
G
f(x)dµG(x), ∀ y ∈ G

and for all compactly supported functions f on G. This measure, which is unique up to
a constant, is called the Haar measure. We refer [22] for the existence and uniqueness of
Haar measure. The Haar measure µG has been kept fixed throughout this paper. Based
on this Haar measure, we define the spaces Lp(G) (1 ≤ p ≤ ∞) in the usual way. Out of
these spaces, only L2(G) is a Hilbert Space and in fact a separable Hilbert space due to
our assumptions of G being metrizable and being a countable union of compact sets (see
[12]).

We now define the operator of Fourier transform on L1(G) by:

F : L1(G)→ C0(Ĝ), F(f)(γ) =

∫
G
f(x)(γ,−x)dµG(x). (1)

Here, C0(Ĝ) is the space of all continuous functions on Ĝ vanishing at infinite.

The Haar measure µĜ on Ĝ can be appropriately normalized so that for a specific class of
functions, the following inversion formula holds, (see[22, Chapter 1]);

f(x) =

∫
Ĝ
f̂(γ)(γ, x)dµĜγ, x ∈ G. (2)

In this paper, we shall always choose a normalized Haar measure µĜ for Ĝ so that the
inversion formula holds. Once this is done, the Fourier transform can be extended to a
surjective isometry F : L2(G) → L2(Ĝ) exactly as in the classical case of G = R. To
simplify notations, from now onwards, in all integrals when the context is clear, we will
write dµG(x) = dx and dµĜ(γ) = dγ.

Apart from the operator of Fourier transform, the operators of traslation, modulation
and dilation will also be used frequently throughout this paper. So we need to have
generalized versions of these three operators. The first two operators, i.e. the translation
operator and the modulation operator can be extended to L2(G) without much difficulty.
For instance, for any y ∈ G, the operators:

Tyf(x) = f(x− y) and Eyf(γ) = (γ, y)f(γ); ∀ x ∈ G, ∀ γ ∈ Ĝ,

respectively define the generalized translation and modulation operators on L2(G) and

L2(Ĝ). Also, for any ξ ∈ Ĝ, Tξ and Eξ will be used to denote the generalized translation

and modulation operators on L2(Ĝ) and L2(G) respectively.
To define a generalized version of dilation operator, we need a dilative automorphism

(see [15]) on G. For if α is a dilative automorphism on G, then the dilation operator D
on L2(G) is given by

D : L2(G)→ L2(G), Df(x) = δ
1/2
α f(α(x));
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where the constant δα > 0 is such that∫
G
f(x)dx = δα

∫
G
f(α(x))dx

for any appropriate function f on G.
This constant δα is called the order of dilation for the operator D. Further, using

this dilation operator D, we can construct a dilation operator D for the space L2(Ĝ).
The following lemma sums up the required information of the operator D. We omit the
striaghtforward proof. See [18] for similar constructions.

Lemma 2.1. Let G be an LCA group and Ĝ be its dual group. Suppose α : G → G is a
dilative automorphism on G. Then the following hold:

(i) The map, α̂ : Ĝ→ Ĝ given by

(α̂(γ), x) = (γ, α(x)); x ∈ G,

is a dilative automorphism (algebraic automorphism and topological homeomorphism)

on Ĝ.

(ii)

∫
Ĝ
F (γ)dγ = δα

∫
Ĝ
F (α̂(γ))dγ for any appropriately defined function F on Ĝ.

(iii) The operator D : L2(Ĝ) → L2(Ĝ) given by DF (γ) = δ
1/2
α F (α̂(γ)) is also a unitary

operator on L2(Ĝ). This operator D works as dilation operator on L2(Ĝ).

It is easy to note that all these generalized operators satisfy all the commutative relations
amongst them and behave similarly under Fourier transform and inverse Fourier transform,
as in the case of G = R.

We now introduce lattices, an important class of subgroups of LCA groups. A lattice
Λ, (sometimes called a uniform lattice), in an LCA group G, is a countable, closed and
discrete subgroup Λ of G for which the quotient group G/Λ is compact in the quotient
topology. The annihilator Λ⊥ of a lattice Λ is defined by

Λ⊥ = {γ ∈ Ĝ : (γ, λ) = 1, ∀λ ∈ Λ}.

It follows from the definition of topology on Ĝ that Λ⊥ is also a lattice in Ĝ. Further, a
lattice in G can be used to obtain a splitting of groups G and Ĝ into disjoint cosets (see
[6], Chapter 21):

Lemma 2.2. Let G be an LCA group and Λ a lattice in G. Then the following hold:

(i) There exists a Borel measurable relatively compact set Q ⊆ G such that

G =
⋃
λ∈Λ

(λ+Q), (λ+Q) ∩ (λ′ +Q) = ∅ for λ 6= λ′; λ, λ′ ∈ Λ. (3)

(ii) There exists a Borel measurable relatively compact set S ⊆ Ĝ such that

Ĝ =
⋃

ω∈Λ⊥

(ω + S), (ω + S) ∩ (ω′ + S) = ∅ for ω 6= ω′; ω, ω′ ∈ Λ⊥.

Moreover, the sets Q and S are respectively in one to one correspondance with the quotient
groups G/Λ and Ĝ/Λ⊥.

Remark 2.2. In this paper, the uniform lattice Λ and the dilative automorphism α are
chosen such that α(Λ) ⊆ Λ. Moreover, any pair (Λ, α) satisfying this relation is called a
scaling system on G.
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The set Q which appears in equation (3) is called a fundamental domain associated with
the lattice Λ. For our convenience, we will allow sets Q for which two conditions in (3)
hold up to a set of measure zero. Also note that the sets of the form of Q, which satisfies
the two conditions of the equation (3), have been called tiles in [8, 23]. In this paper we
will use the term fundamental domain for such sets. We now further wish to refine the
fundamental domain Q and thus give the definition of a self-similar fundamental domain.
The fundamental domain Q is said to be self-similar if for some finite subset Λ0 of Λ, we
have the following representation (see [8]):

Q =
⋃
λ∈Λ0

(α−1(λ) + α−1(Q)); (4)

Throughout this paper, we will assume that the fundamental domain Q associated
with the lattice Λ is self-similar. Thus for Q, we have a representation of the form (4).
Naturally, the immediate problem we face now is to find a precise representation of the
set Λ0 which appears in (4). The following lemma, proved in [23], gives us the required
insight to this problem.

Lemma 2.3. Let G be an LCA group with a uniform lattice Λ and an automorphism α.
If Q is a self-similar fundamental domain associated to the lattice Λ, then the following
hold:

(i) The set Λ0, which appears in (4), is a complete set of coset representatives for α(Λ)
in Λ.

(ii) |Λ/α(Λ)| = δα.

From now on, we shall also assume that S is a self-similar fundamental domain of Ĝ
associated to the lattice Λ. All the results, which we have stated for Q, hold analogously
for S. Thus S has a representation of the form:

S =
⋃
λ∈Λ⊥0

(α̂−1(ω) + α−1(S)); (5)

where Λ⊥0 ⊂ Λ⊥ is finite.
Now, all the above information presented above and the fact |Λ/α(Λ)| = |Λ⊥/α̂(Λ⊥)|

can be clubbed together to write

Λ/α(Λ) = {λ0 + α(Λ), λ1 + α(Λ), · · · , λδα−1 + α(Λ)} (6)

and

Λ⊥/α̂(Λ⊥) = {ω0 + α̂(Λ⊥), ω1 + α̂(Λ⊥), · · · , ωδα−1 + α̂(Λ⊥)}. (7)

Remark 2.3. To simplify the calculations in this paper, we make a further assumption
that order of dilation is 2, i.e. δα = 2. The Riesz MRA obtained in this case is called the
”MRA of dyadic dilations”.

Further, by using analogue of a result proved by K. Gröchenig and W. R. Madych in
[10, Lemma 4], we can choose

λ0 = 0 ∈ G and ω0 = 0 ∈ Ĝ,

and thus equations (6) and (7) reduce to

Λ/α(Λ) = {α(Λ), λ1 + α(Λ)} and Λ⊥/α̂(Λ⊥) = {α̂(Λ⊥), ω1 + α̂(Λ⊥)}. (8)

The following lemma now asserts a relation between λ1 and ω1 as appearing in (8).
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Lemma 2.4. For γ1 = α̂−1(ω1) and λ1 as chosen in (8), we have that

(γ1, λ1) = −1. (9)

Proof. The proof follows once we note that the element (γ1, λ1) ∈ T has order 2. �

We now conclude the priliminary work on LCA groups by mentioning about the quotient
groups L2(G/Λ) and L2(Ĝ/Λ⊥). Both these groups can be identified with the group L2(T)
when we take G = R. We refer [15, 5, 1] for a detailed information about both these groups.

Out of these two quotient groups, the latter will be used more frequently. So below,
we give a lemma which helps us in explicitly representating the elements of the space
L2(Ĝ/Λ⊥). Proof of this lemma follows without much calculations (see [15]).

Lemma 2.5. If, for each λ ∈ Λ, the functions ηλ are defined by ηλ(γ) = (γ, λ)XS(γ), then
the following are equivalent:

(i) F ∈ L2(Ĝ/Λ⊥).
(ii) There exists a sequence {cλ}λ∈Λ ∈ l2(Λ) such that

F =
∑
λ∈Λ

cλελ;

where ελ : Ĝ→ C is given by, ελ(γ) = (γ, λ).

2.2. Riesz Bases. We will now have a brief discussion on Riesz bases in an arbitrary
separable Hilbert space. For a detailed study on Riesz bases and their properties, we refer
[6].

Definition 2.1. Let H be a separable Hilbert space and I be a countable index set. A
sequence of elements {fβ}β∈I is called a Riesz basis for H if there exist a bounded bijective
operator U : H → H and an orthonormal basis {eβ}β∈I of H such that, for each β ∈ I,
fβ = Ueβ.

In the lemma below, we give one of the most used implications of the Riesz bases. For
more details, we refer [6].

Lemma 2.6. If {fβ}β∈I is a Riesz basis for H, then there exist constants A,B > 0 such
that

A||f ||2 ≤
∑
β∈I
|〈f, fβ〉|2 ≤ B||f ||2. (10)

The numbers A and B are called the Riesz bounds. Precisely, A is the lower Riesz
bound and B is the upper Riesz bound. Moreover, the largest possible value of A is called
the optimal lower Riesz bound and the smallest possible value of B is called the optimal
upper Riesz bound.

The following lemma gives us one of the main characterizations of the Riesz bases in a
separable Hilbert space. It does not involve any knowledge of the Riesz bounds. Proof of
this lemma may be deduced by using various results in [6].

Lemma 2.7. Let H be a separable Hilbert space and I be a countable index set. Then, a
sequence {fβ}β∈I in H is a Riesz basis for H if and only if the map T : l2(I)→ H, given
by

T ({cβ}) =
∑
β∈I

cβfβ,

is well defined and bijective.
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In the context of our paper, we mostly deal with a family of the type {Tλφ}λ∈Λ where
φ ∈ L2(G). So, we wish to see some alternate condtions under which such a family is a
Riesz basis. For that, we first introduce a function Φ corresponding to this function φ.

Definition 2.2. Let G be an LCA group with dual group Ĝ and let (Λ, α) be the scaling

system defined on Ĝ. If φ ∈ L2(G) is given then corresponding to this function φ, the
function Φ is given by

Φ(γ) =
∑
ω∈Λ⊥

|φ̂(γ + ω)|2, γ ∈ Ĝ. (11)

It is easy to note that this function Φ is Λ⊥-periodic and that ΦXS ∈ L1(G). So with

the notations used previously in this paper, we can write Φ ∈ L1(Ĝ/Λ⊥). We now give an
equivalent condition for the family {Tλφ}λ∈Λ to be a Riesz sequence, i.e. a Riesz basis for
its closed linear span. A detailed proof of the following lemma can be found in [5].

Lemma 2.8. Let φ ∈ L2(G) be given. Then the family {Tλφ}λ∈Λ is a Riesz sequence with
bounds A and B if and only if

A ≤ Φ(γ) ≤ B,
for a.e. γ ∈ Ĝ.

We shall use above lemma to verify whether a family of the form {Tλφ}λ∈Λ is a Riesz
sequence or not.

3. Riesz MRA and the corresponding Riesz Wavelet

The theory of classical MRA for L2(G) has been presented in [8] and the concept of
MRA with a Riesz basis structure for the space L2(R) has been given [21, 3]. We combine
the definitions in these two papers to give the definition of Riesz MRA on the space L2(G).
Note that we have already given this definition in our paper [16].

Definition 3.1. A Riesz multiresolution analysis for L2(G) consists of a sequence of closed
subspaces {Vj}j∈Z of L2(G) and a function φ ∈ V0 such that

(i) the subspaces Vj are nested, i.e.

· · · ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ · · · ;

(ii) the subspaces Vj have a dense union and a trivial intersection, i.e.

∪
j∈Z

Vj = L2(G) and ∩
j∈Z

Vj = ∅;

(iii) they are related by the dilation property: Vj = DjV0;
(iv) the subspaces Vj are translation invariant, i.e.

f ∈ Vj =⇒ Tλf ∈ Vj ,∀ λ ∈ Λ and ∀ j ∈ Z;

(v) {Tλφ}λ∈Λ is a Riesz basis for V0.

The subspaces Vj in the above definition are called the multiresolution subspaces and
the function φ is called the scaling function.

Now all the conditions, which need to be imposed on the scaling function φ to generate
a Riesz MRA for the space L2(G), have been summed up in the theorem below. We have
thoroughly inverstigated all these conditions in our paper [16].

Theorem 3.1. Let G be an LCA group with the dual group Ĝ and let (Λ, α) be a scaling
system defined on G. Further, if the following conditions are satisfied:
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(i) The family {Tλφ}λ∈Λ is a Riesz sequence.
(ii) The subspaces Vj are defined by

Vj = Dj(span{Tkφ}k∈Λ) = span{DjTkφ}k∈Λ, j ∈ Z. (12)

(iii) The function φ̂ is nonzero on a neighbourhood of 0 ∈ Ĝ.

(iv) There exists a function m0 ∈ L∞(Ĝ/Λ⊥) such that

φ̂(α̂(γ)) = m0(γ)φ̂(γ) ∀ γ ∈ Ĝ; (13)

then the function φ generates a frame multiresolution analysis.

Equation (13) is called the refinement equation and if a given function φ satisfies this
equation, then it is called refinable. Further, the function m0 appearing in (13) is called
the refinement mask or the two-scale symbol or the low pass filter. Also note that this
function m0 is unique.

Throughout this section, we will assume that we are given a function φ which generates
a Riesz MRA, i.e. all the conditions of Theorem 3.1 are satisfied. Here, using Lemma 2.8,
we also get existence of positive numbers A,B > 0 such that

0 < A ≤ Φ(γ) ≤ B; ∀ γ ∈ Ĝ.
Further, using this given Riesz MRA, we will try to find a function ψ such that the family

{DjTλψ : λ ∈ Λ, j ∈ Z} (14)

is a Riesz basis for L2(G).

Remark 3.1. Since we are delaing with only dyadic dilations (δα = 2) in this paper, so
it is evident from some previous works on wavelets (see [17, 9]) that only one function
ψ ∈ L2(G) is enough to generate a Riesz basis for L2(G). Such a function ψ is called a
wavelet function.

We now begin this process of construction of a wavelet function ψ ∈ L2(G) by writing
the orthogonal decomposition of the space L2(G). For each j ∈ Z, let Wj denote the
orthogonal complement of Vj in Vj+1. Then it is easy to see that

Vj+1 = Vj ⊕Wj

and hence

L2(G) =
⊕
j∈Z

Wj .

Next, we show that the spaces Wj are related to each other by the same dilation property
as the subspaces Vj . This property of the subspaces W ′js reduces our work and now we
only need to find some functions whose family of Λ-translates form a Riesz basis for W0.
All this information is presented in the following lemma.

Lemma 3.1. Assume that φ ∈ L2(G) generates a Riesz MRA. Then the following hold:

(i) Wj = DjW0, ∀j ∈ Z.
(ii) If a function ψ ∈ W0 is such that the family {Tλψ : λ ∈ Λ} is a Riesz basis for W0,

then for all j ∈ Z, the family {DjTλψ : λ ∈ Λ, } is a Riesz basis for Wj, and the
family (14) is a Riesz basis for L2(G). Moreover, all these Riesz bases have exactly
the same Riesz bounds.

Proof. The proof follows from [6, Lemma 5.3.3], once we note that the operators Tλ and
D are unitary. �
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From the above lemma, we see that the space W0 is of great importance to us and thus
it becomes imperative for us to give its characterization. So, in the following lemma, we
present an equivalent condition for a function f ∈ V1 to be a member of W0.

Lemma 3.2. Assume that φ ∈ L2(G) generates a Riesz MRA of dyadic dilation with

two-scale symbol H0 ∈ L∞(Ĝ/Λ⊥). Let F ∈ L2(Ĝ/Λ⊥) and define f ∈ V1 by:

f̂(α̂(γ)) = F (γ)φ̂(γ). (15)

Then the following hold:

(i) If we write S ′ = α̂−1(S), then

〈f, Tλφ〉 = δα

∫
S′

(
(FΦH0)(γ) + Tγ1(FΦH0)(γ)

)
(α̂(γ), λ)dγ (16)

(ii) f ∈W0 if and only if
FH0Φ + Tγ1(FH0Φ) = 0 (17)

a.e. on S.

Proof. The proof of (i) uses a generalized periodization trick (see [6, Theorem 21.2.2]) and

relation between the measures of the sets Ĝ/Λ⊥ and S (see [5, Lemma 2.10]). Part (ii)
follows from (i) when we take [1, Theorem 1.3 (5)] or [15, Remark 2.1] or into consideration.

�

Remark 3.2. Since the term FH0Φ + Tγ1(FH0Φ) is γ1 + Λ⊥-periodic and S ⊂ Ĝ is a

fundamental domain associated with Λ⊥, therefore if FH0Φ + Tγ1(FH0Φ) is zero on S,

then it is zero on Ĝ. Thus, by Lemma 3.2, we can also conclude that a function f ∈ V1,
defined via (15), is in W0 if and only if FH0Φ + Tγ1(FH0Φ) = 0 a.e. on Ĝ.

We mention that, if in particular, the LCA group G is taken to be the Euclidean group
R, then the above Lemma reduces to one known result whose proof may be found in [2].

As mentioned earlier, we now only need to find a functions in ψ ∈ W0 such that the
family of its Λ-translates forms a Riesz basis for W0. We intend to achieve this in two
steps:

• We find a function ψ ∈W0 such that the family of its Λ-transalates generates the
space W0, i.e.

W0 = span{Tλψi : λ ∈ Λ, 1 ≤ i ≤ δα − 1}. (18)

• We will then show that the family (14) forms a Riesz basis for the space W0.

In the lemma below, we give a sufficient condition, in terms of solvability of a system
of linear equation, for the family {Tλψ : λ ∈ Λ} to generate the space W0. This alternate
characterization will be of much use to us.

Lemma 3.3. Let G be an LCA group and let φ ∈ L2(G) generates a Riesz MRA of dyadic

dilations and with two scale symbol H0 ∈ L∞(Ĝ/Λ⊥). Suppose there exist a function

F1 ∈ L∞(Ĝ/Λ⊥) and the function ψ is defined via

ψ̂(α̂(γ)) = F (γ)φ̂(γ). (19)

If there exist functions G0, G1 ∈ L∞(Ĝ/Λ⊥) such that the following equations

H0(γ)Φ(γ)F (γ) +H0(γ − γ1)Φ(γ − γ1)F (γ − γ1) =0, (20)

H0(γ)G0(γ) + F (γ)G1(γ) =1 (21)

H0(γ − γ1)G0(γ) + F (γ − γ1)G1(γ) =0 (22)
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are satisfied for a.e. γ ∈ Ĝ, then

W0 = span{Tλψ : λ ∈ Λ}.

Proof. Note that, for {cλ}λ∈Λ, {dλ}λ∈Λ ∈ l2(Λ), any f ∈ V1 has an expression of the form:

f(x) =
∑
λ∈Λ

cλφ(x− λ) +
∑
λ∈Λ

dλψ(x− λ) (23)

The proof is just a simple manipulation of the above equation. Proof follows when we take
inverse Fourier transformation of equations (20),(21) and (22). We skip the straighforward
manipulations and calculations involved. �

Making use of the above lemma, we now explicitly construct a function ψ such that
it generates W0 in the sense of (18). We will not give a detailed proof of the following
theorem, but will briefly give the directions for the same.

Theorem 3.2. Let G be an LCA group and let φ ∈ L2(G) generate a Riesz MRA of dyadic

dilations and two scale symbol H0 ∈ L∞(Ĝ/Λ⊥). Then there always exist a function ψ in
W0 generating W0.

Proof. First note that it is enough to prove that the three equations (20), (21) and (22)

are satisfied a.e. on S, the fundamental domain associated to the lattice Λ⊥ in Ĝ. We
further devide this set S into two disjoint parts:

S1 ={γ ∈ S : 0 6= |H0(γ)| ≥ |H0(γ − γ1)|}
S2 ={γ ∈ S : 0 6= |H0(γ − γ1)| ≥ |H0(γ)|}

We skip the easy calculations involved and we directly move to the table below which gives
us one set of solution functions F,G0 and G1 satisfying (20), (21) and (22).

S1 S2

F −H0(γ−γ1)Φ(γ−γ1)

H0(γ)Φ(γ)
1

G0
H0(γ)Φ(γ)

Φ(α̂(γ))
H0(γ)Φ(γ)

Φ(α̂(γ))

G1 −H0(γ−γ1)H0(γ)Φ(γ)
Φ(α̂(γ))

|H0(γ−γ1)|2Φ(γ−γ1)
Φ(α̂(γ))

Table 1. Table for variables F , G0 and G1

Clearly all the three functions F , G0 and G1 are in L∞(Ĝ/Λ⊥). This completes the
proof. �

This completes our quest of a function ψ which generate the space W0. We now show
that the family of the type (14), constructed using the function obtained in above theorem,
is indeed a Riesz basis for W0.
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Theorem 3.3. Assume that φ ∈ L2(G) generates a Riesz MRA of dyadic dilations and

two scale symbol H0 ∈ L∞(Ĝ/Λ⊥). Further assume that the functions ψ is defined by (19)
and the functions F is assumed to be as it appears in Theorem 3.2. Then the family (14)
generates a Riesz basis for the space L2(G).

Proof. Analogous to the function Φ as defined in Definition 2.2, we define the function Ψ
by

Ψ(γ) =
∑
ω∈Λ⊥

|ψ̂(γ + ω)|2.

It is easy to see that

Ψ(α̂(γ)) = |F (γ)|2Φ(γ) + |F (γ − γ1)|2Φ(γ − γ1).

We now make use of Lemma 2.8 to show that the family {Tλψ}λ∈Λ is a Riesz basis for
W0, i.e. we wish to find constants C,D > 0 such that

C ≤ Ψ(γ) ≤ D, ∀ γ ∈ S.

But as it is more convinient for us to deal with the expression Ψ(α̂(γ)), so we need to
ensure that the bounds C,D > 0 which exist are such that

C ≤ Ψ(α̂(γ)) ≤ D, ∀ γ ∈ α̂−1(S).

Analogous to the previous theorem, we devide the set α̂−1(S) into two disjoint parts:

S̃1 = {γ ∈ α̂−1(S) : 0 6= |H0(γ)| ≥ |H0(γ − γ1)|}

S̃2 = {γ ∈ α̂−1(S) : 0 6= |H0(γ − γ1)| ≥ |H0(γ)|}.

Clearly, S̃1 ⊂ S1 and S̃2 ⊂ S2. First if we let γ ∈ S̃1, then

Ψ(α̂(γ)) =
|H0(γ − γ1)|2Φ(γ − γ1)2

|H0(γ)|2Φ(γ)
+ Φ(γ).

It is then easy to see that

A ≤ Ψ(α̂(γ)) ≤ B

A
(A+B).

The above inequality also holds when γ ∈ S̃2.
Thus, we conclude that the family {Tλψ : λ ∈ Λ} generates a Riesz basis for W0 and hence
the family (14) generates a Riesz basis for L2(G). �

4. Conclusions (mandatory)

We developed a theory for the construction of a Riesz wavelet from a given Riesz MRA
on an LCA group. For simplicity, we assumed that the given Riesz MRA was constructed
using dyadic dilations. It has been shown that, in the case of dyadic dilations, there always
exist a functions ψ such that the family

{DjTλψ : λ ∈ Λ, j ∈ Z} (14)

generates a Riesz basis for L2(G).
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