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SOLUTION OF THE VOLTERRA-FREDHOLM INTEGRAL

EQUATIONS VIA THE BERNSTEIN POLYNOMIALS AND LEAST

SQUARES APPROACH

N. NEGARCHI1, K. NOURI2∗, §

Abstract. We develop a numerical scheme to solve a general category of Volterra-
Fredholm integral equations. For this purpose, the Bernstein polynomials and their
features have been used. We convert the main equation into a set of algebraic equations
in which the coefficient matrix is obtained by the least squares approximation approach.
The error analysis is given to corroborate the precision of the proposed method. Numer-
ical results are presented to demonstrate the success of the scheme for solving integral
equations.
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1. Introduction

Despite the applications of integral equations in various scientific fields, many of them
do not have analytical solution and to find their solutions, it is necessary to provide
numerical methods [2, 5, 7–10, 13–18, 20, 21, 24]. Recently, spectral schemes such as the
Taylor, Lagrange and Müntz–Legendre collocation methods have been proposed for solving
integral and integro-differential equations [15,17,19,20,23].

We propose a scheme based on the Bernstein polynomials to solve a class of Volterra-
Fredholm integral equations (VFIEs). Many researchers applied the Bernstein polynomials
to solve different equations [3, 4]. For example, these polynomials are used to find an
approximate solution of Fredholm integro-differential equation and integral equation of
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the second kind [1]. Our study relates to VFIE

A(x)y(x) +B(x)y(h(x)) =f(x) + γ1

∫ h(x)

0
k1(x, ρ)y(ρ)dρ

+ γ2

∫ b

a
k2(x, ρ)y(h(ρ))dρ, (1)

where k1(x, ρ), k2(x, ρ), A(x), B(x), h(x) and f(x) are known functions, a, b, γ1, γ2 are con-
stants, and y(x) is the unknown function.

In Section 2 some properties of the Bernstein polynomials are provided. In Section 3,
these polynomials are applied to solve Eq. (1). In Section 4, we give an error estimation.
In Section 5, two numerical examples presented to clarify the scheme.

2. Some properties of the Bernstein polynomials

The Bernstein polynomials are of great importance practically in the field of computer
to aid geometric design as well as numerous other fields of mathematics because of their
many useful properties. These polynomials have been frequently used in the solution of
integral equations, differential equations and approximation theory [3, 4].

The Bernstein polynomial of degree n defined on [α, β] as:

Bi,n(x) =

(
n
i

)
(x− α)i(β − x)n−i

(β − α)n
, i = 0, 1, ..., n. (2)

For convenience, it sets α = 0 and β = 1, so

Bi,n(x) =

(
n
i

)
xi(1− x)n−i =

n−i∑
k=0

(−1)k
(
n
i

)(
n− i
k

)
xi+k. (3)

Then, it defined φ(x) = [B0,n(x), B1,n(x), ..., Bn,n(x)]T , and can be

φ(x) = STn(x), (4)

where S is an upper triangular matrix as

S =



(−1)0
(
n
0

)
(−1)1

(
n
0

)(
n− 0
1

)
. . . (−1)n−0

(
n
0

)(
n− 0
n

)
. . .

...
...

(−1)0
(
n
i

)
· · · (−1)n−i

(
n
i

)(
n− i
n− i

)
. . .

...

0 (−1)0
(
n
n

)


,

and Tn(x) =


1
x
...
xn

 .
For Bernstein polynomials we have Bi,n(x) = −xBi,n−1(x) + xBi−1,n−1, and these poly-
nomials satisfy symmetric property Bi,n(x) = Bn−i,n(1− x).
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3. Solution method

We approximate the solution of Eq. (1) using the Bernstein polynomials on [a, b] as
follows. Assume that y(x) to be the unique solution of Eq. (1) and yn(x) be its approxi-
mation such that

yn(x) =

n∑
i=0

aiBi,n(x), (5)

the coefficients ais are unknown constants. It is approximately the same as Eq. (5) for
y(h(x)),

yn(h(x)) =

n∑
i=0

aiBi,n(h(x)). (6)

Thus, Eq. (1) is written as follows:

A(x)yn(x) +B(x)yn(h(x)) = f(x) + γ1W (x) + γ2H(x),

W (x) :=

∫ h(x)

a
k1(x, ρ)yn(ρ)dρ, (7)

H(x) :=

∫ b

a
k2(x, ρ)yn(h(ρ))dρ.

The Chebyshev-Gauss-Lobatto points are employed to compute coefficient index as

xk =
b− a

2
− b− a

2
cos(

πk

n
), k = 0, 1, ..., n. (8)

By relations (5), (6) and the collocation points (8), Eq. (7) is given,

f(xk) + γ1W (xk) + γ2H(xk) = A(xk)
n∑
i=0

aiBi,n(xk) +B(xk)
n∑
i=0

aiBi,n(h(xk)). (9)

With

W (xk) =
n∑
i=0

ai
∫ h(x)
a k1(x, ρ)Bi,n(ρ)dρ,

H(xk) =
n∑
i=0

ai
∫ b
a k2(x, ρ)Bi,n(h(ρ))dρ,

(10)

and

Y (xk) =

n∑
i=0

ai[A(xk)Bi,n(xk) +B(xk)Bi,n(h(xk))], (11)

we have
Y (xk)− γ1W (xk)− γ2H(xk) = f(xk), (12)

hence
n∑
i=0

ai[A(xk)Bi,n(xk) +B(xk)Bi,n(h(xk))− γ1
∫ h(xk)
a k1(xk, ρ)Bi,n(ρ)dρ−

γ2
∫ b
a k2(xk, ρ)Bi,n(h(ρ))dρ] = f(xk).

(13)

Accordingly for k = 0, 1, ..., n,
n∑
i=0

aiZi(xk) = f(xk), (14)
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which has the following matrix form:

ZTA = F, (15)

where F = [f(x0), f(x1), ..., f(xn)] and Z = Zi(xk).
Finally, we apply the least squares approximation to find unknown Bernstein coefficients

of Eq. (15) and substituting in Eq. (5). Thus, the Bernstein polynomial solution of Eq.
(1) is obtained. In the following, let

L(x, yn(x)) = −f(xk)− γ1W (xk)− γ2H(xk)

+A(xk)
n∑
i=0

aiBi,n(xk) +B(xk)
n∑
i=0

aiBi,n(h(xk)).
(16)

To minimize I, as the square of the approximation error, we find the real coefficients
a0, a1, . . . , an as ∂I

∂ai
= 0, i = 0, 1, ..., n, i.e.

∂I
∂ai

= 2
∫ b
a L(x, yn(x)) ∂L(x,yn(x))

∂ai
dx = 0.

For i, j = 0, 1, ..., nwe have

n∑
i=0

ai
∫ b
a zj(x)zi(x)dx =

∫ b
a f(x)zi(x)dx.

So,

zi(x) = A(x)Bi,n(x) +B(x)Bi,n(h(x))− γ1
∫ h(x)
a k1(x, ρ)Bi,n(ρ)dρ

−γ2
∫ b
a k2(x, ρ)Bi,n(h(ρ))dρ,

and in the matrix form

KA = G, (17)

where

K =


(z0, z0) (z0, z1) . . . (z0, zn)
(z1, z0) (z1, z1) . . . (z1, zn)

...
... . . .

...
(zn, z0) (zn, z1) . . . (zn, zn)

 ,

A =
[
a0, a1, . . . , an

]T
and G = [ (z0, f), (z1, f), . . . , (zn, f) ]T .

If matrix K be a nonsingular matrix, then A = K−1G will be a unique solution of Eq.
(17).

4. Convergence analysis

We give an error estimation for solution of Eq. (1) based on the Bernstein polynomials.
Degree of polynomial approximation for function f described in term of its modulus of
continuity that defined in the below form:
For each δ > 0, ω(δ) = sup |f(x1)− f(x2)| for all x1, x2 ∈ [a, b] such that |x1 − x2| ≤ δ.

Assume pn(x) is an approximation polynomial of continuous function f(x), then we
have

|f(x)− pn(x)| ≤ 5

4
ω(

1√
n

). (18)
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Let ỹ(x) and y(x) are the approximate and exact solutions of the integral equation (1),
respectively, so

A(x)ỹ(x) +B(x)ỹ(h(x))− γ1
∫ h(x)
a k1(x, ρ)ỹ(ρ)dρ

−γ2
∫ b
a k2(x, ρ)ỹ(h(ρ))dρ = f(x) + rn(x),

(19)

where rn(x) is the perturbation function.
ConsiderM1 = supa<x,ρ<b |k1(x, ρ)| <∞, M2 = supa<x,ρ<b |k2(x, ρ)| <∞, M3 = supa<x<b |A(x)| <
∞ and M4 = supa<x<b |B(x)| < ∞. Also, we suppose e1(x) = y(x) − ỹ(x) and e2(x) =
y(h(x))− ỹ(h(x)) to be the error functions of this method then leads to

e(x) = max{e1(x), e2(x)}. (20)

By subtracting Eq. (19) from Eq. (1) and using Eq. (20), we have

|r(x)| ≤M3 |e(x)|+M4 |e(x)|+ |γ1| M1 e(x) + |γ2| M2 e(x)

= (M3 +M4 + |γ1| M1 + |γ2| M2) e(x), (21)

where by substituting Eq. (18) into Eq. (21), an error bound is obtained for r(x) as:

|r(x)| ≤ (M3 +M4 + |γ1| M1 + |γ2| M2)
5

4
ω(

1√
n

). (22)

It explained the error bound to another form as follows: It supposes that {B0,n, B1,n, . . . , Bn,n} ⊂
L2[0, 1], n ∈ N∪{0} to be the set of Bernstein polynomials, and S = span {B0,n, B1,n, . . . , Bn,n} .
SinceS is a finite dimensional vector space, f has the unique best approximation p∗ ∈ S
as [11,12]:

∀p ∈ S, ∃ p∗ ∈ S; ‖f − p∗‖2 ≤ ‖f − p‖2,
where ‖f‖2 =

√
(f, f). Since p∗ ∈ S, there exist coefficients ai, i = 0, 1, ..., n such that

f ≈ p∗ =
n∑
i=0

aiBi,n(x) = ATφ.

Remark 4.1. It supposes that p∗ is the best approximation f ∈ L2[0, 1] out of S =

span {B0,n, B1,n, . . . , Bn,n} , and p∗ =
n∑
i=0

aiBi,n(x) = ATφ, then limn→∞‖f − p∗‖2 = 0.

Let ỹ(x) = ATφ be the best approximation of f [6], then

‖y − ỹ‖22 ≤ ‖y − yTP ‖
2
2 =

∫ l

0
(y(x)− yTP (x))2dx =

∫ l

0
(
∣∣∣y(n+1)(ε)

∣∣∣ (x− x0)n+1

(n+ 1)!
)2dx

≤ M2

((n+ 1)!)2

∫ l

0
(x− x0)2n+2dx ≤ 2M2S2n+3

((n+ 1)!)2(2n+ 3)
,

where yTP is Taylor’s expansion of order n, M = max
∣∣y(n+1)(x)

∣∣ , x ∈ [0, l], and S =
max{l − x0, x0}.
Finally, we obtain [22]

‖y(x)− ỹ(x)‖2
‖y(h(x))− ỹ(h(x))‖2

≤ q + β

p− γ
,

where

γ = sup
a≤x≤b

|γ1|
∫ h(x)

a
|k1(x, ρ)|dρ, β = sup

a≤x≤b
|γ2|

∫ b

a
|k2(x, ρ)|dρ,

p = min
a≤x≤b

|A(x)| , q = max
a≤x≤b

|B(x)| ,

and p− γ > 0.
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Table 1. Numerical results of Example 5.1

x n = 3 n = 5 n = 6 n = 7 n = 8 Exact solutions

0.0 0.001124 0.000040 0.000009 0.000004 0.000014 0.000000
0.1 0.095193 0.095302 0.095309 0.095310 0.095309 0.095310
0.2 0.182056 0.182322 0.182322 0.182322 0.182322 0.182322
0.3 0.262350 0.262368 0.262364 0.262364 0.262364 0.262364
0.4 0.336711 0.336471 0.336472 0.336472 0.336472 0.336472
0.5 0.405776 0.405462 0.405465 0.405465 0.405466 0.405465
0.6 0.470181 0.470004 0.470004 0.470004 0.470004 0.470004
0.7 0.530562 0.530633 0.530628 0.530628 0.530628 0.530628
0.8 0.587557 0.587788 0.587787 0.587787 0.587788 0.587787
0.9 0.641802 0.641849 0.641855 0.641854 0.641853 0.641854
1.0 0.693933 0.693174 0.693142 0.693148 0.693159 0.693147

5. Numerical examples

We show the efficiency of our method for approximating the solution of VFIEs through
two examples.

Example 5.1. Consider the VFIE

y(x) = f(x) +

∫ x
3

0
xρ y(ρ) dρ+

∫ 1

0
(x− ρ) y(

ρ

3
)dρ, (23)

with exact solution y(x) = ln(x+ 1), where

f(x) = ln(x+ 1)− (
x2

6
+
x

2
ln 3− x3

36
(1 + ln 9) +

x

18
(x2 − 9) ln(3 + x))

+ (
5

4
+ x− (4 ln

4

3
)(x+ 1)).

Table 1 gives the numerical results of our scheme with n = 3, 5, 6, 7, 8 and Fig. 1 shows
errors of the proposed method with n = 8.

Figure 1. The absolute errors of numerical solution for Eq. (23) with n = 8
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Table 2. Numerical results of Example 5.2

x n = 3 n = 5 n = 6 n = 7 n = 8 Exact solutions

0.0 -0.036036 0.005435 0.000000 0.000000 0.000000 0.000000
0.1 0.012630 -0.001975 0.000020 0.000020 0.000020 0.000020
0.2 0.013424 0.001182 0.000640 0.000640 0.000640 0.000640
0.3 -0.003397 0.007749 0.004860 0.004860 0.004860 0.004860
0.4 -0.007574 0.022205 0.020480 0.020480 0.020480 0.020480
0.5 0.031150 0.060666 0.062500 0.062500 0.062500 0.062500
0.6 0.143032 0.150888 0.155520 0.155520 0.155520 0.155520
0.7 0.358330 0.332261 0.336140 0.336140 0.336140 0.336140
0.8 0.707301 0.655813 0.655360 0.655360 0.655360 0.655360
0.9 1.220202 1.184212 1.180980 1.180980 1.180980 1.180980
1.0 1.927291 1.991761 2.000000 2.000000 2.000000 2.000000

Example 5.2. Consider the VFIE

y(x) + y(h(x)) = f(x) + γ1

∫ h(x)

0
(x− ρ

2
) y(ρ)dρ+ γ2

∫ 1

0
xρ y(h(ρ))dρ, (24)

with the exact solution y(x) = 2x5, where
h(x) = x

2 , γ1 = 1, γ2 = 1, f(x) = − 1
112x+ 33

16x
5 − 11

2688x
7.

Table 2 gives the exact and approximate solutions with n = 3, 5, 6, 7, 8 and Fig. 2 shows
the absolute errors of our scheme with n = 7.

Figure 2. The absolute errors of numerical solution for Eq. (24) with n = 7

6. Conclusion

We established an efficient scheme based on the Bernstein polynomials and least squares
approach to study VFIEs. The performance of our scheme is illustrated through the
several experiments. Considering these examples, the method has stable properties, and
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when the number of the Bernstein bases functions used for approximation increases, the
errors reduce. The obtained rapid convergence shows the ability of our method to solve
VFIEs.
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[23] Yüzbaşi, Ş., (2016), A collocation method based on Bernstein polynomials to solve nonlinear Fredholm-
Volterra integro differential equations, Appl. Math. Comput., 273, pp. 142-154.
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