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FORMALLY SELF-DUAL CODES OVER F2[u]/〈u4〉

Z. Ö. ÖZGER1∗, B. YILDIZ2, §

Abstract. In this work, Gray images of formally self-dual codes over the ring S4 =
F2[u]/〈u4〉 and some of their construction methods are considered. As a result, a consid-
erable number of good formally self-dual binary codes with large automorphism groups
have been obtained from the Gray images of formally self-dual codes over S4. Some have
better minimum distances than the best known binary self-dual codes of the same lengths.
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1. Introduction

Formally self-dual codes and their construction methods have generated a considerable
amount of interest among researchers in recent years since these codes can have better
parameters than extremal self-dual codes of the same lengths. Another motivation is that
the Assmus-Mattson Theorem, which works well with self-dual codes of high minimum
distance works equally well with formally self-dual codes. The first construction methods
for binary formally self-dual codes came from [7], which then were generalized to other
rings and alphabets in [5, 6, 8, 9]. Some of the constructions for binary codes from [7] are
proven to be valid for every ring of characteristic 2 as shown in [8].

In [11], cyclic and constacyclic codes over the ring

S4 = F2[u]/〈u4〉 = F2 + uF2 + u2F2 + u3F2

were studied based on a newly defined Gray map and Lee weight. Unlike the Gray map
defined in [8], the Gray map introduced here is not orthogonality-preserving. This means
that the Gray image of a self-dual code over S4 is not necessarily a self-dual code over the
binary field. However, in [11] again, the MacWilliams identities were proven for the Lee
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weight enumerators, which implies that the binary images of formally self-dual codes over
S4 are also formally self-dual.

In this work, we consider formally self-dual codes over S4 using several constructions
similar to the ones found in [8] and [7]. Applying the Gray map to the formally self-dual
codes over S4, we are able to construct many good binary formally self-dual codes of length
40, 48, 56, 64, and 72. The codes we have obtained have large automorphism groups and in
some cases have better minimum distances than the extremal self-dual codes of the same
lengths.

The rest of the paper is organized as follows: In section 2, we give the preliminaries
about codes over the ring S4 as well as some of the definitions associated with formally
self-dual codes. Also in the same section, we give the necessary results about MacWilliams
identities with the Lee weight enumerator over S4. In section 3, we give the theoretical
basis of the construction methods. In section 4, we obtain formally self-dual binary codes
with large automorphism groups from the Gray images of formally self-dual codes over S4.
In our constructions, we use computer algorithms such as the Magma Algebra System [1],
which is a large, well-supported software package designed for computations in algebra,
coding theory, number theory, algebraic geometry, and algebraic combinatorics. We have
constructed a search algorithm for large matrix groups in Magma that allows us to find
formally self-dual codes, their Gray images and some other relevant information.

2. Preliminaries

2.1. The Ring S4 and Its Properties. In this section, we will be focusing on the
algebraic properties of S4 = F2 + uF2 + u2F2 + u3F2 with u4 = 0, and codes over S4. For
more details, we refer the reader to [11].
The ring S4 is a commutative finite chain ring of 16 elements. The group of units of S4 is
given by

U(S4) = {1, 1 + u, 1 + u2, 1 + u3, 1 + u+ u2, 1 + u+ u3, 1 + u2 + u3, 1 + u+ u2 + u3}
= 〈1 + u, 1 + u2 + u3〉.

The non-units are

{0, u, u2, u3, u+ u2, u+ u3, u2 + u3, u+ u2 + u3} = 〈u〉.
The ideals of S4 are 〈0〉, 〈1〉, 〈u〉, 〈u2〉 and 〈u3〉. We have

S4 ⊃ uS4 ⊃ u2S4 ⊃ u3S4 ⊃ u4S4 = {0}.
The ring S4 is also a local ring with the unique maximal ideal uS4, with S4/uS4

∼= F2 as
its residue field.

To define the Lee weights and Gray maps for codes over S4, we will extend the corre-
sponding definitions from the ring F2 + uF2, in [2].

As wH denoting the Hamming weight for binary codes, we define wL, the Lee weight
for S4, with the following identity:

wL(a+ ub+ u2c+ u3d) = wH(a+ b+ c+ d, c+ d, b+ d, d), ∀a, b, c, d ∈ F2.

The definition of the weight immediately leads to a Gray map φL from S4 to F4
2 which

can naturally be extended to (S4)n as follows:

φL : (Sn4 , Lee weight)→ (F4n
2 , Hamming weight)

(a+ ub+ u2c+ u3d) 7→ (a+ b+ c+ d, c+ d, b+ d, d),

where a, b, c, d ∈ Fn
2 . It is clear that φL is a linear distance preserving isometry, leading to

the following theorem:
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Theorem 2.1. If C is a linear code over S4 of length n, size 2k, and minimum Lee weight
d, then φL(C) is a binary linear code with parameters [4n, k, d].

The subgroup Ub = 〈1+u〉 of the unit group is called the subgroup of basic units. Basic
units can also be characterized as the elements in S4 of Lee weight 1. Other units are of
weight 3 and non-units have weight 2 except u3 and 0. Basic units have the additional
properties, which are characterized in the following lemma:

Lemma 2.1. Let γ, β be elements of the ring S4 such that γ = α.β for some α ∈ Ub.
Then wL(γ) = wL(β). Thus, for any x, y ∈ Sn4 with x = α · y, where α ∈ Ub, we have
wL(x) = wL(y).

Proof. We prove the lemma by a case-by-case analysis:
Case 1. Let β ∈ U(S4). Then we have two subcases. First we assume that β ∈ Ub. In

this case γ = α.β ∈ Ub and wL(γ) = wL(β) = 1.
The other subcase is when β ∈ U(S4)− Ub. Then wL(β) = 3 and α.β = γ /∈ Ub is also

a unit. Therefore wL(γ) = wL(β) = 3.
Case 2. Let β ∈ S4 − U(S4). There are three subcases. First letting β = 0 gives us

γ = 0, which leads to wL(γ) = wL(β) = 0.
In the second subcase assume that β = u3. Since α is a unit, it is in the form of

α = 1 + au + bu2 + cu3. So for any such α, we have γ = (1 + au + bu2 + cu3)u3 = u3,
which means wL(γ) = wL(β) = 4.

In the last subcase assume β 6= 0 and β 6= u3. Then we have wL(β) = 2 for all such βs.
Any α is of the form α = 1 + au+ bu2 + cu3 and every β which is neither 0 nor u3 should
start with a u and/or a u2 component in lexicographic order. Hence α.β should start with
a u and/or a u2 component in lexicographic order, since α starts with 1. Therefore α.β is
a non-unit which is neither 0 nor u3 and hence wL(γ) = wL(β) = 2. �

2.2. MacWilliams Identities For Codes Over S4. We first start by defining the dual
of a code C over S4. Let 〈·, ·〉 denote the usual Euclidean inner product defined on S4.
Then the dual C⊥ of a linear code C of length n over S4 is defined as

C⊥ = {x ∈ (S4)n|〈c, x〉 = 0,∀c ∈ C}.

The dual C⊥ is also a linear code of length n and since S4, being a finite chain ring, is
Frobenius we have by [13]:

|C|.|C⊥| = 16n.

Definition 2.1. A code C is called self-dual if C = C⊥, it is called isodual if C and C⊥

are equivalent and it is called formally self-dual (f.s.d.) if C and C⊥ have the same
weight enumerator. A self-dual code is called Type II if the weight of every codeword in
C is a multiple of 4, and is called Type I otherwise.

Clearly any self-dual code is both isodual and formally self-dual and isodual codes are
formally self-dual but the reverse implications are not true in general.

A formally self-dual code is said to be even (E) if all its codewords have even weight,
otherwise it is said to be odd (O).

Definition 2.2. Let C be a linear code over S4 of length n. The Lee weight enumerator
of C is given by

LeeC(W,X) =
∑
c∈C

W 4n−wL(c)XwL(c). (1)
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Theorem 2.2. Let C be a linear code over S4 of length n and C⊥ be its dual. With
LeeC(W,X) denoting its Lee weight enumerator as was given in (1), we have

LeeC⊥(W,X) =
1

|C|
LeeC(W +X,W −X).

During our computations we simply let W = 1. For proof of Theorem 2.2, we refer
to [11]. Note that the identity in Theorem 2.2 is precisely the identity that the Hamming
weight enumerators of binary codes satisfy. Hence, as a consequence, we have the following
corollary:

Corollary 2.1. If C is a linear formally self-dual code over S4 of length n, then φL(C)
is a binary formally self-dual code of length 4n.

3. Constructing formally self-dual codes over S4

In [7, p. 378], an exercise asking to prove the following for binary codes is given:

Theorem 3.1. Let A be a square binary matrix and let Ik be the k × k identity matrix,
then the following hold:

(i) A code of length 2k with generator matrix [Ik|A] where A = A⊥ is isodual.
(ii) A code with a double-circulant construction, i.e., a code with the generating matrix

[Ik|A], where A is a circulant matrix, is isodual.
(iii) A code with a bordered double-circulant construction, i.e., a code with generating

matrix

G =


Ik

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α
γ
γ
·
·
·
γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β β · · · β

A


where A is a (k − 1) × (k − 1) circulant matrix, is isodual provided β = γ = 0 or
both β and γ are non-zero.

In [8], with the help of this idea the following results were shown for codes over any
ring R of characteristic 2:

Theorem 3.2 (Construction A). Let A be an n × n matrix over R such that A = A⊥.
Then the code generated by the matrix [In|A] is an isodual code and hence a formally
self-dual code of length 2n.

Theorem 3.3 (Construction B). Let M be a circulant matrix over R of order n. Then
the matrix [In|M ] generates an isodual code and hence a formally self-dual code over R.

We can apply Theorem 3.2 and Theorem 3.3 to S4, since S4 is of characteristic 2.

Corollary 3.1 (Construction I). Let A be an n × n matrix over S4 such that A = A⊥.
Then the code generated by the matrix [In|A] is an isodual code and hence a formally
self-dual code of length 2n.

Corollary 3.2 (Double-circulant construction). Let M be a circulant matrix over S4 of
order n. Then the matrix [In|M ] generates an isodual code and hence a formally self-dual
code over S4.
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Note that constructions given in Corollary 3.1 and Corollary 3.2 match the ones given
in (i) and (ii) of Theorem 3.1, respectively. The bordered double-circulant construction
for S4, which matches (iii) of Theorem 3.1, is given as follows:

Theorem 3.4 (Bordered double-circulant construction). LetM be a circulant matrix over
S4 of order n− 1. Then the matrix

G =


In

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α
γ
γ
·
·
·
γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β β · · · β

M



generates a formally self-dual code over S4, where α ∈ S4, γ = r.β for some r ∈ Ub.

Proof. The proof is very similar to the proof of the same construction given in [8] for
Rk, since the characteristic of S4 is also 2 and Lemma 2.1 holds. Hence we will omit the
proof. �

4. Computational results

We use Magma [1] computer algebra to construct binary formally self-dual codes of
length 40, 48, 56, 64, and 72 with double-circulant construction by Corollary 3.2 and
bordered double-circulant construction by Theorem 3.4. We use circulant matrices of order
5, 6, 7, 8, and 9, respectively for the double-circulant constructions, and circulant matrices
of order 4, 5, 6, 7, and 8, respectively for the bordered double-circulant constructions. We
then look at the Gray images of these codes to get good binary formally self-dual codes
with large automorphism groups. In what follows, we will be giving these numerical
results.

4.1. Results From The Double-Circulant Construction. We give Gray images of
some good formally self-dual codes over S4 constructed by the help of Corollary 3.2 with
large automorphism groups in the following tables classified according to the lengths.
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φL(C) |aut(φL(C))| First row of M E/O
[40, 20, 8] 3686400 (u3 + u, u2 + 1, u3 + 1, u3 + 1, u2 + 1) O
[40, 20, 8] 2880 (u3, u2 + 1, u2 + 1, u2 + 1, u2 + 1) O
[40, 20, 8] 240 (u3, u3 + u2 + 1, u2 + 1, u2 + 1, u3 + u2 + 1) O
[40, 20, 8] 160 (u3, u3 + u2 + u+ 1, u+ 1, u+ 1, u3 + u2 + u+ 1) O
[40, 20, 8] 120 (0, 1, u3 + 1, u3 + 1, u3 + 1) O
[40, 20, 8] 80 (u3, 1, 1, u2 + 1, u2 + 1) O
[40, 20, 8] 40 (0, u2 + u+ 1, u3 + u+ 1, u+ 1, u2 + u+ 1) O
[40, 20, 8] 5760 (u2, u3 + u2 + u+ 1, u3 + u2 + u+ 1, u3 + u2 + u+ 1, u2) E
[40, 20, 8] 480 (u3, u3 + u2 + u+ 1, u3 + u2 + u+ 1, u3 + u2 + u+ 1, u3) E
[40, 20, 8] 240 (0, u3 + 1, 1, u3 + 1, 0) E
[40, 20, 8] 160 (u2, u3 + 1, u3 + 1, u3 + 1, u2) E
[40, 20, 8] 120 (u3, u3 + u2 + 1, u3 + u2 + 1, u3 + u2 + 1, 0) E
[40, 20, 8] 80 (u3 + u2, 1, u3 + 1, 1, u3 + u2) E
[40, 20, 8] 40 (u3, u3 + u2 + 1, u3 + 1, u3 + 1, u2) E
[40, 20, 9] 20 (u3, u3 + u2 + 1, u3 + u2 + u, u2 + 1, u3 + u) O

Table 1. Good f.s.d. codes of length 40 with large automorphism groups
formed by double circulant construction

φL(C) |aut(φL(C))| First row of M E/O
[48, 24, 10] 24 (u3 + u2, u+ 1, u3 + 1, u2 + u+ 1, u3 + u+ 1, u2 + u+ 1) E

Table 2. Good f.s.d. codes of length 48 with large automorphism groups
formed by double circulant construction

φL(C) |aut(φL(C))| First row of M E/O
[56, 28, 11] 56 (u, u3 + u+ 1, u3 + 1, u3 + u+ 1, u3 + u+ 1, u3 + 1, u3 + u+ 1) O
[56, 28, 11] 28 (0, u3 + 1, u3 + 1, u+ 1, u3 + u2 + 1, u+ 1, u+ 1) O
[56, 28, 12] 56 (u3, u+ 1, u+ 1, u3, 1, u+ 1, u2 + 1) E
[56, 28, 12] 28 (u3 + u, u3 + u+ 1, u3 + u+ 1, u3 + u, u3 + u2 + 1, u2 + u+ 1, 1) E

Table 3. Good f.s.d. codes of length 56 with large automorphism groups
formed by double circulant construction

φL(C) |aut(φL(C))| First row of M E/O
[64, 32, 12] 128 (u3, u3 + u+ 1, u2 + 1, u2 + 1, u3 + u+ 1, u3 + u2 + 1, u3 + u2 + 1, u3 + u2 + u+ 1) E
[64, 32, 12] 64 (u3, u3 + 1, u2 + u+ 1, u3 + 1, u+ 1, u2 + u+ 1, u3 + u+ 1, u3 + u+ 1) E
[64, 32, 12] 32 (u3 + u2 + u, 1, u+ 1, u3 + u2 + u+ 1, u3 + u2 + u+ 1, 1, u3 + u2 + 1, u+ 1) E
[64, 32, 12] 64 (u3 + u2 + 1, u2 + u+ 1, u3 + u2, u3 + u2 + u, u3 + u2, u+ 1, u3 + u, u3 + 1) O
[64, 32, 12] 32 (u+ 1, u3 + u2 + u+ 1, 0, u3 + u2 + u, u2 + u, u3 + u2 + u+ 1, u3, 1) O

Table 4. Good f.s.d. codes of length 64 with large automorphism groups
formed by double circulant construction

φL(C) |aut(φL(C))| First row of M E/O
[72, 36, 13] 36 (0, u3 + u2 + u+ 1, 1, u+ 1, u3 + u2 + u+ 1, u+ 1, u3 + u2 + 1, u3 + u+ 1, u3 + u+ 1) O
[72, 36, 14] 36 (u3, u+ 1, u3 + u2 + 1, u3 + 1, u2, u2 + u+ 1, u2 + u, 1, u3 + u2 + u+ 1, u+ 1) E

Table 5. Good f.s.d. codes of length 72 with large automorphism groups
formed by double circulant construction
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4.2. Results From The Bordered Double-Circulant Construction. We give Gray
images of some good formally self-dual codes over S4 constructed from bordered double
circulant (b.d.c.c.) matrices, by the help of Corollary 3.4 with large automorphism groups
in the following tables classified according to the lengths.

φL(C) |aut(φL(C))| α, r, β First row of M E/O
[40, 20, 8] 82575360 u2 + u+ 1, 1, u (u3 + u, u3 + u, u2 + u+ 1, u3 + u) E
[40, 20, 8] 11796480 u2 + 1, 1, u (1, u2 + u+ 1, u, u+ 1) E
[40, 20, 8] 3686400 u+ 1, 1, u3 + u2 + 1 (u3 + u, u3 + u2 + u, u2 + u, 1) O
[40, 20, 8] 786432 u3 + 1, 1, u (u3 + u2 + u, u, u3 + u2 + u, u3 + 1) E
[40, 20, 8] 262144 u+ 1, 1, u (u, u3 + u2 + u+ 1, u, u2 + u) E
[40, 20, 8] 196608 1, 1, u (u3 + u, u, u3 + u, u3 + 1) E
[40, 20, 8] 131072 u3 + u2 + u+ 1, 1, u (1, u3 + u, u3 + u2 + 1, u3 + u2 + u+ 1) E
[40, 20, 8] 65536 u3 + u2 + u+ 1, 1, u (u3 + u, u2 + u+ 1, u3 + u, u3 + u2 + u) E
[40, 20, 8] 49152 u3 + u+ 1, 1, u (u, u2 + 1, u, u) E
[40, 20, 8] 32768 u3 + 1, 1, u (u3 + u2 + u, u2 + u, u2 + u, 1) E
[40, 20, 8] 24576 u2 + u+ 1, 1, u (u, u2 + u, u3 + u, u+ 1) E
[40, 20, 8] 16384 1, 1, u (u3 + u2 + 1, u+ 1, 1, u2 + u) E
[40, 20, 8] 12288 u2 + 1, 1, u (u3, u2, u2 + u+ 1, 0) E
[40, 20, 8] 8192 1, 1, u (u2 + 1, u3 + u2 + u, u3 + 1, u3 + u2 + 1) E
[40, 20, 8] 8192 u+ 1, 1, u3 + 1 (u2 + 1, u3 + u2 + u, u3 + u, u) O
[40, 20, 8] 4608 u3 + u2 + 1, 1, u (u3 + u2 + 1, u2 + 1, u3 + u2 + 1, u) E
[40, 20, 8] 4096 u3 + u2 + 1, 1, 1 (u3 + u2 + u+ 1, u, u3 + u, u2 + u) O
[40, 20, 8] 4096 u2 + 1, 1, u (u2 + u, u3 + u2, 1, u3 + u2) E
[40, 20, 8] 2880 u3, 1, 1 (u2 + 1, u3 + u, u2, u2 + u) O
[40, 20, 8] 2048 u3 + u+ 1, 1, u (0, u3 + u, u3 + u2, u2 + u+ 1) E
[40, 20, 8] 2048 u3, 1, 1 (u3 + u2 + u+ 1, 1, u3 + u2 + u+ 1, u3 + u2) O
[40, 20, 8] 1536 u3, 1, 1 (u2 + 1, 1, u3 + u2 + 1, u3 + u2) O
[40, 20, 8] 1536 u3 + 1, 1, u (u3 + u2 + 1, u2 + 1, u2 + 1, u2 + u) E
[40, 20, 8] 1024 u3 + u+ 1, 1, u (u, u3, u3 + u2 + 1, 0) E
[40, 20, 8] 1024 u2 + u+ 1, 1, 1 (u3 + u, u, u3, u2 + 1) O
[40, 20, 8] 768 u3 + u2 + u+ 1, 1, u (u2 + 1, 1, u2 + 1, u3 + u2) E
[40, 20, 8] 512 u3 + u2 + 1, 1, u (u+ 1, u3 + u2 + 1, u+ 1, u3 + u) E
[40, 20, 8] 512 u3, 1, 1 (u3 + u2 + u+ 1, u3 + u+ 1, u2 + u+ 1, 0) O
[40, 20, 8] 256 u2 + u+ 1, 1, u (u3 + u2 + 1, u3 + u+ 1, u2 + 1, u3 + u2 + u) E
[40, 20, 8] 256 u3, 1, 1 (u3, u3 + u, u2 + 1, u2 + u) O
[40, 20, 8] 192 u3, 1, 1 (u2 + u+ 1, u3 + u+ 1, u2 + u+ 1, u3 + u2) O
[40, 20, 8] 192 u3 + u2 + u+ 1, 1, u (u2, u3 + u2 + 1, u2 + 1, u3 + 1) E
[40, 20, 8] 128 u3 + u2 + u+ 1, 1, u (u2, u2 + 1, 0, u) E
[40, 20, 8] 128 u3 + 1, 1, 1 (u3 + u, u3 + u2 + 1, u3 + u+ 1, u3 + 1) O
[40, 20, 8] 96 u3 + u2 + 1, 1, 1 (u3 + 1, u3 + u+ 1, u3, u) E
[40, 20, 8] 96 u3, 1, 1 (u3, u2 + u+ 1, u3 + u2, u3 + u2 + u) O
[40, 20, 8] 64 u3, 1, 1 (u3 + u, u2, u2 + u, 1) O
[40, 20, 8] 64 u3 + u2 + 1, 1, 1 (u3 + 1, u2, u3 + u2, u3 + u2 + 1) E
[40, 20, 8] 32 u3 + u2 + 1, 1, 1 (u3 + u2 + u+ 1, u3 + u2, u3 + u2, u2 + u) O
[40, 20, 8] 32 u3 + u+ 1, 1, 1 (u2 + u+ 1, 1, u3, u3 + u) E

Table 6. Good f.s.d. codes of length 40 with large automorphism groups
formed by b.d.c.c.
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φL(C) |aut(φL(C))| α, r, β First row of M E/O
[48, 24, 9] 20 u3, 1, 1 (u3 + u+ 1, u+ 1, 0, u3 + u2 + u+ 1, u3 + u) O
[48, 24, 9] 40 u3 + u2 + 1, 1, 1 (u, u3 + u2 + u, u2 + u+ 1, u3, u3 + u+ 1) O
[48, 24, 10] 20 u3, 1, 1 + u (u2 + 1, u3 + u, u3 + u2 + u+ 1, 0, u3) E
[48, 24, 10] 20 u3, 1, u+ 1 (u+ 1, u, u3 + u, u2, u2) O
[48, 24, 10] 40 u3, 1, 1 (u3 + u2 + u+ 1, u+ 1, u3 + u2 + 1, u3 + u2 + 1, u2) E
[48, 24, 10] 80 u2, 1, u3 + u2 + 1 (u, u3 + u2, u, u3 + u2 + u+ 1, u3 + u2 + u+ 1) E
[48, 24, 10] 2640 u3 + u2 + u, 1, u3 + 1 (u2 + 1, 1, u3 + u+ 1, u, u+ 1) E

Table 7. Good f.s.d. codes of length 48 with large automorphism groups
formed by b.d.c.c.

φL(C) |aut(φL(C))| α, r, β First row of M E/O
[56, 28, 10] 24 u3 + u2 + 1, 1, 1 (u3 + u, u3 + u, 0, u2, u, u2 + u+ 1) O
[56, 28, 10] 24 u2 + u+ 1, 1, 1 (u3 + u2 + u, u3 + u2 + u, u2 + u+ 1, u, u3 + u+ 1, 0) E
[56, 28, 10] 48 u3 + u2 + 1, 1, 1 (1, u2 + 1, u3 + u2, u2, u+ 1, u3 + u, u3 + 1) O
[56, 28, 10] 48 u+ 1, 1, u3 + u2 + 1 (1, u3 + u2 + u+ 1, u, u3 + u2, u2 + 1, u3 + u2 + u+ 1) E
[56, 28, 11] 24 u3 + u2 + u, 1, u3 + u2 + 1 (u3 + u2, u3 + u+ 1, u3 + u+ 1, u3 + u2 + 1, 1, u2 + 1) O
[56, 28, 11] 48 1, 1, u3 + u2 + 1 (u3 + u2 + u, u3 + u2, u3 + 1, u2 + u+ 1, u, u3 + u2 + u+ 1) O

Table 8. Good f.s.d. codes of length 56 with large automorphism groups
formed by b.d.c.c.

φL(C) |aut(φL(C))| α, r, β First row of M E/O
[64, 32, 12] 28 u3, 1, 1 (u3 + u2, u3, 1, u2 + u, u3 + u2 + u, u3 + u+ 1, u3 + u+ 1) O
[64, 32, 12] 28 u3, 1, 1 (1, u, u2 + 1, u2 + u+ 1, u3 + u2 + u, u3 + 1, u3 + u2 + u) E
[64, 32, 12] 56 u3, 1, 1 (u3 + u+ 1, u3 + 1, u3 + u2 + 1, u3 + u2 + u, u+ 1, u3 + u+ 1, 1) E

Table 9. Good f.s.d. codes of length 64 with large automorphism groups
formed by b.d.c.c.

5. Conclusion

Permutation decoding was introduced by Prange [12] and MacWilliams [10], and in-
volves finding a set of automorphisms of a code, which is called a PD-set. In that sense,
using codes with large automorphism groups might be convenient for decoding purposes.
We have found some formally self-dual binary codes of length 40, 48, 56, 64, and 72 with
large automorphism groups as Gray images of formally self-dual codes over S4. Sizes of
automorphism groups of these codes are given in Tables 1-9. Compared to the minimum
distances of Type I (http://www.unilim.fr/pages_perso/philippe.gaborit/SD/GF2/
GF2I.htm) and Type II (http://www.unilim.fr/pages_perso/philippe.gaborit/SD/
GF2/GF2II.htm) self-dual codes of the same lengths, we also see that codes given in Tables
1-9 can be considered as good codes. For codes of length 40, given in Table 1 and Table 6,
we see that the largest minimum distance for Type I and Type II self-dual codes, which is
8, is attained. Also the code with parameters [40, 20, 9] given in Table 1 has higher mini-
mum distance than the extremal self-dual code of the same length. For codes of length 48,
56, 64, and 72, the upper bounds of minimum distances for Type I and Type II self-dual
codes are also attained by the codes that we have constructed. In the case of length 72, the
best known self-dual codes have not attained the theoretical upper bound, which means
the formally self-dual codes we have constructed have outdone the best known self-dual
codes.

http://www.unilim.fr/pages_perso/philippe.gaborit/SD/GF2/GF2I.htm
http://www.unilim.fr/pages_perso/philippe.gaborit/SD/GF2/GF2I.htm
http://www.unilim.fr/pages_perso/philippe.gaborit/SD/GF2/GF2II.htm
http://www.unilim.fr/pages_perso/philippe.gaborit/SD/GF2/GF2II.htm
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