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ROMAN AND INVERSE ROMAN DOMINATION IN NETWORK OF

TRIANGLES

M. K. KUMAR1∗, N. DHANASEKAR1, G. M. A. PRASATH1, R. GIRI1, §

Abstract. In graph G (V, E), a function f : V → {0, 1 2} is said to be a Roman
Dominating Function (RDF). If ∀u ∈ V, f(u) = 0 is adjacent to at least one vertex v ∈ V
such that f(v) = 2. The weight of f is given by w(f) =

∑
v∈V

f(v). The Roman Domina-

tion Number (RDN) denoted by γR(G) is the minimum weight among all RDF in G. If
V −D contains a RDF f1 : V → {0, 1, 2}, where D is the set of vertices v, f(v) > 0, then
f1 is called Inverse Roman Dominating Function (IRDF) on a graph G with respect to
the RDF f . The Inverse Roman Domination Number (IRDN) denoted by γ1

R(G) is the
minimum weight among all IRDF in G. In this paper we find RDN and IRDN of few
triangulations graphs.

Keywords: Domination Number, Roman Domination Number, Inverse Domination Num-
ber.
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1. Introduction

The concept of domination was introduced by Claude Berge [1] and Ore [2]. The
inspiration of domination theory was from the famous problem of covering chessboard with
minimum number of chess pieces. Due to its various applications, the idea of domination
theory in graphs had received much attention among researchers. It is evident that in a
short period of time, there are more than hundred different types of domination defined
with thousands of papers published in this concept [3].

Roman domination is one among these hundred different types of domination. Emperor
Constantine the great ruled the Roman Empire between 306 CE and 337 CE. During this
period Roman Empire was under severe attack due to various conflicts. Due to these
conflicts the resources of the empire were severely declined. In order to protect his empire
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the challenge faced by the emperor was to place the limited available legions in the specific
location so that the entire empire is secured from the enemy’s attack. Hence the emperor
came up with an idea that every region was either secured by its own legion or was securable
by the neighbor with two legions so that one of which can be sent to the undefended region
in case of conflict.

A British mathematician, Ian Stewart in his article titled “Defend the Roman Em-
pire” [4] analyzed Constantine’s strategy to defend the empire. C. S. ReVelle and K. E.
Rosing studied the deployment of the legions through a form of zero-one integer program-
ming [5]. Inspired by the article written by Ian Stewart, Michael A Henning and Stephen
T Hedetniemi formally introduced the concept of Roman domination theory in graphs and
also analyzed Constantine’s strategy. They believed that the emperor had better chances
to protect the empire [6]. The assigning of legions location is not the only problem related
with roman domination but also this concept is applicable to many similar problems in
the modern world like finding the optimal location of setting up of hospitals, restaurants,
fire stations, mobile towers, police stations etc.

In this paper we discuss an important topic of triangulation or triangular tiling. G. K.
Francis and J. R. Weeks in 1999 proved that every surface has a triangulation [7]. R.E.
Tarjan and C. J. Van Wyk explored the algorithm approach of triangulation [8]. The
properties of such triangulation graphs play an important role in the design of cellular
network, telecommunication, study heat flux density, surveying and molecular biology.
The concept of triangulation and its properties are very important in local area network
where the processor or station is considered as nodes and the link or connections are
considered as edges [9, 10, 11, 12]. There are various modern networks like World Wide
Web, biological network, language network, semantic network, software network, contact
network, social network, metabolic network, citations network, human brain network. The
availabilities of triangles in these networks and study of these triangular networks plays
an important role in understanding its dynamics. Real world networks are massive and
complex but identifying sub structures within these networks can provide insight into how
the network function and topology affects each other.

Let G (V,E) be a graph, a subset S ⊆ V is a domination set of G, if for any vertex
u ∈ V − S, then there exist a vertex v ∈ S such that uv ∈ E. The domination number of
G, denoted by γ(G) equals the minimum cardinality among all the domination set.

A Roman Dominating Function (RDF) on a graph G (V,E) is defined as a function
f : V → {0, 1, 2} satisfying the condition that for every vertex u, f(u) = 0 is adjacent to
at least one vertex v, such that f(v) = 2. For a real valued function f : V → R the weight
of f is w(f) =

∑
v∈V

f(v). The Roman Domination Number (RDN) denoted by γR(G) is

the minimum weight among all RDF in G.
The positions of legions are kept very secret in order to take advantage over their enemy’s

strategies. But if the enemies come to know the positions of the legions, then the best
chances of attack will be in the places where legions are not placed. So that the time-lag
in moving the legions from the adjacent regions could be taken as an advantage. Hence
if the emperor comes to know that the enemies know their legions positions. In order
to surprise the enemies and create great damage, the question of optimal reorganizing of
the legions still defending the Roman Empire need to be answered. Hence inverse roman
dominating function was defined.

An Inverse Roman Dominating Function (IRDF) is also a roman dominating function.
If V − D contains a roman dominating function f1 : V → {0, 1 2}, where D is the set
of vertices v for which f(v) > 0, then f1 is called Inverse Roman Dominating Function
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(IRDF) on a graph G, with respect to roman dominating function f . The inverse roman
domination number (IRDN) denoted by γ1

R(G) is the minimum weight among all IRDF
in G.

For any undefined terms or notation in this paper, we refer Harary to [13].

2. Preliminary results [14, 15, 16, 17]

Proposition 2.1. For any given graph G(n,m),
γ(G) ≤ γR(G) ≤ 2γ(G), γR(G) ≤ γ1

R(G) and γR(G) ≤ γ1
R(G) ≤ n.

Proposition 2.2. For any Complete graph Kn, with n vertices,
γR(Kn) = γ1

R(Kn) = 2.

Proposition 2.3. For the classes of cycle Cn with n vertices, γR(G) = γ1
R(G) =

⌈
2n
3

⌉
.

Proposition 2.4. For the classes of paths Pn with n > 2 vertices,

γR(Pn) =
⌈

2n
3

⌉
and γ1

R(G) =

{⌈
2n
3

⌉
+ 1, if n ≡ 0 (mod3)⌈

2n
3

⌉
, Otherwise

.

Proposition 2.5. For the classes of Wheel Wn with n ≥ 4 vertices,

γR(G) = 2 and γ1
R(G) =

⌈
2(n−1)

3

⌉
.

Proposition 2.6. For the classes of Star K1,n−1 with n vertices,
γR(G) = 2 and γ1

R(G) = n.

Proposition 2.7. For the classes of ladder G2,n,
γR(G2,n) = γ1

R(G2,n) = n+ 1.

Proposition 2.8. For any Graph G of order n with maximum degree ∆ and minimum

degree δ,
⌈

2n
∆+1

⌉
≤ γR(G) ≤ n−∆ + 1,

⌈
2n

∆+1

⌉
≤ γ1

R(G) ≤ n− δ + 1.

Definition 2.1 (Nested Triangle Graph [18]). A graph with n vertices is a planar graph
formed from a sequence of n/3 triangles, by connecting pairs of corresponding vertices on
consecutive triangles in the sequence. It is denoted as Nn.

Definition 2.2 (TiT Graph [19]). Triangle inside Triangle (TiT) graph or midpoint se-
quence triangle is obtained by recursively inscribing an equilateral triangle by joining the
mid points of the sides of the larger triangle. Inside the smaller equilateral triangle an-
other inscribed equilateral triangle is constructed by joining the midpoints of the sides. It
is denoted as Gn.

Definition 2.3 (Generalized Sierpinski Triangle [20]). Generalized Sierpinski Triangle or
Sierpinski gasket is a graph that is constructed from an equilateral triangle by recursively
subdividing it into four smaller congruent equilateral triangles and removing the central
triangle. It is denoted as SG(n).

Definition 2.4 (Apollonian Network Graph [21]). A graph formed by a process of recur-
sively subdividing a triangle into three small triangles, i.e., a graph obtained embedding G
in the plane by repeatedly selecting a triangular face of the embedding, adding a new vertex
‘v’ inside the face and connecting the new vertex to each vertex of the face containing it.
It is denoted as A(n).

Definition 2.5 (Triangular Grid Graph [22]). A triangular grid graph is the lattice graph
obtained by interpreting the order (n+ 1) triangular grid as a graph, with the intersection
of grid lines being the vertices and the line segments between vertices being the edges.



KUMAR, DHANASEKAR, PRASATH, GIRI: ROMAN AND INVERSE DOMINATION IN . . . 549

Triangular grid graph is also the hexagonal king graph of order n, i.e., the connectivity
graph of possible moves of a king chess piece on a hexagonal chess board. It is denoted as
T (n).

3. Main results

Theorem 3.1. For any nested triangle graph G = Nn, n ≥ 1,
γR(Nn) = γ1

R(Nn) and

γR(Nn) =

{
2
⌈
n
2

⌉
+
(
n−

⌈
n
2

⌉)
, n is Odd

2
(⌈

n
2

⌉
+ 1
)

+
(
n−

(⌈
n
2

⌉
+ 1
))
, n is Even

Proof. The nested triangle graph G(V,E) has 3n vertices say {ui, vi, wi} for i = 1, 2, . . . , n
with |E| = 6n − 3. Vertices {ui, vi, wi} form a triangle for i = 1, 2, . . . , n. We also have
path v1, v2, v3, . . . , vn, u1, u2, u3, . . . , un, w1, w2, w3, . . . , wn with the graph G being a three
connected graph. Let f(V0, V1, V2) be a γR function, by definition for each u ∈ V0, f(u) = 0
there exist at least one vertex v ∈ V2, f(v) = 2 such that uv ∈ E, v ∈ V1, f(v) = 1. The
graph G = Nn, n ≥ 1, has n complete graphs K3, denoted by Ti, 1 ≤ i ≤ n, every K3 can
be dominated by single vertex v ∈ Ti, 1 ≤ i ≤ n, f(v) = 2, this gives γR(Nn) ≤ 2n, but
v ∈ Ti also dominate a vertex in Ti+1, 1 ≤ i ≤ n−1. Therefore alternate triangle will have
the single vertex v ∈ Ti such that f(v) = 2 and u ∈ Ti+1, f(u) = 1, 1 ≤ i ≤ n− 1. No two
vertices in Ti, 1 ≤ i ≤ n will have v ∈ Ti, f(v) > 0. Hence if n is odd, then

∣∣⌈n
2

⌉∣∣ vertices

will have f(v) = 2 and remaining vertices
∣∣(n− ⌈n2 ⌉)∣∣ will have f(u) = 1 and if n is

even, then
∣∣⌈n

2

⌉
+ 1
∣∣ vertices will have f(v) = 2 and remaining vertices

∣∣(n− (⌈n2 ⌉+ 1
))∣∣

will have f(u) = 1. For γ1
R function it has been found that ui, vi, wi, in f , v ∈ V ,

f(v) > 0 are rotated to vi, wi, ui, 1 ≤ i ≤ n respectively, therefore the roman dominating
set D = {ui ∨ vj ∨ wk/i, j, k = 1, 2, . . . , n} and inverse roman dominating set is given as
D1 = {vi ∨ wj ∨ uk/i, j, k = 1, 2, . . . , n}.

Hence γ1
R(Nn) =

∣∣D1
∣∣ = |D| = γR(Nn). �

Figure 1. Nested triangle graph G = Nn.

Theorem 3.2. For any TiT graph G = Gn, n ≥ 1,⌈
2n

∆+1

⌉
≤ γR(Gn) ≤ 2

⌈
3n
4

⌉
, γR(Gn) = γ1

R(Gn).
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Proof. The TiT graph or midpoint sequence triangle Gn(V,E) has |V | = 3n, |E| =
6n − 3,label the vertices of Gn as given in Fig. 2. G1 is a complete graph K3, V (G1) =
{v1, v2, v3}. We have subdivided the three edges of G1. The new vertices are denoted as
{v4, v5, v6} also they are connected to form K3. V (G2) = V (G1) ∪ {v4, v5, v6}.
E (G2) = {v1v4, v2v4, v2v6, v6v3, v3v5, v1v5, v5v4, v4v6, v6v5}, for n ≥ 2, the vertex set
V (Gn) = V (Gn−1) ∪ {v3n−2, v3n−1, v3n} and the edge set of the TiT graph is given
by

E (Gn) =
n∑

k=2

[
(v3k−5, v3k−2), (v3k−2, v3k−4), (v3k−4, v3k), (v3k, v3k−3),

(v3k−3, v3k−1), (v3k−1, v3k−5)
]
∪
[
(v3n−2, v3n−1), (v3n−1, v3n), (v3n, v3n−2)

]
.

Since ∆ is the maximum degree of G, V2 ⊆ V , we must have |V0| ≤ ∆ |V2|, (∆ + 1) γR(G) =
(∆ + 1) (|V1|+ 2 |V2|) ≥ 2 |V1|+ 2 |V2|+ 2 |V0|. Therefore (∆ + 1) γR(G) = 2n. Hence the
lower bound.

For the TiT graph ∆ = 4, deg (vi) = 4, i 6= 1, 2, 3,deg (vi) = 2, i = 1, 2, 3. for v ∈ V,
such that f(v) = 2 then f(u) = 0, u ∈ N(v), since ∆ = 4, |u| = 4, since |V | = 3n. Hence
the upper bound. The upper bound is very sharp.

Consider G4, label the vertices as shown in the Fig. 2. By symmetry in the graph, for ev-
ery a ∈ V , f(a) > 0 there exit b ∈ V −D, such that f1(b) > 0, where D is the set of vertices
a ∈ V , f(a) > 0. D = {ui ∨ vj/i, j = 1, 2, . . . , n} then D1 = {vi ∨ uj/i, j = 1, 2, . . . , n}
and wi ∈ V , f(wi) > 0 is rotated to the adjacent vertex ui, vi, f

1(ui) > 0 or f1(vi) > 0,
1 ≤ i ≤ n. This can generalized for Gn.

Hence γ1
R(Gn) =

∣∣D1
∣∣ = |D| = γR(Gn). �

Figure 2. TiT Graph G4 for γR and γ1
R function.

Theorem 3.3. For a Generalized Sierpinski Triangle G = SG(n), n ≥ 3, γR(SG(n)) =
γ1
R(SG((n)) = 6 · 3n−2 + 1.

Proof. The Generalized Sierpinski Triangle SG(n), n ≥ 0, has |V | = 3
2 (3n + 1), |E| =

3n+1, SG(0) = K3. Therefore γR (SG(0)) = 2, γR (SG(1)) = 3, for SG(2), γR function
has |V1| = 1, |V2| = 3 hence γR (SG(2)) = 2(3) + 1 = 7. For n ≥ 3, γR (SG(3)) =
3γR (SG(2)) = 31γR (SG(2)), γR (SG(4)) = 9γR (SG(2)) = 32γR (SG(2)), γR (SG(5)) =
27γR (SG(2)) = 33γR (SG(2)). Therefore, γR (SG(n)) = 3n−2γR (SG(2)).

Let f(V0, V1, V2) be a γR function, since for all SG(n), n ≥ 3, |V1| = 1, hence γR (SG(n)) =
3n−2SG(2) + 1 = 6 · 3n−2 + 1. Consider SG(2), label the graph as given in Fig. 3. By
symmetry in the graph, for every u ∈ V, f(u) > 0 there exit a v ∈ V − D, such that
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f1(v) > 0 where D is the set of vertices u, f(u) > 0. If D = {ui/i = 2, 4, 6 . . .} then
D1 = {vi/i = 1, 3, 5 . . .} with w1 ∈ V , f(w1) = 1 and w2 ∈ V , f1(w2) = 1. The same can
be generalized to SG(n).

Hence γ1
R(Gn) =

∣∣D1
∣∣ = |D| = γR(Gn). �

Figure 3. First three stages of Generalized Sierpinski Triangle.

Theorem 3.4. For a Apollonian Network Graph G = A(n), n ≥ 4,
γR(A(n)) = 3n−3 + 5 and γ1

R(A((n)) = 5 · 3n−3.

Proof. The apollonian network graph A(n) has |V | = 1
2 (3n + 5), |E| = 3

2 (3n + 1), A(0) =
K3, γR (A(0)) = 2, γR (A(1)) = γR (A(2)) = 2, γR (A(3)) = 5. For A(4), γR function has
|V1| = 0, |V2| = 4, hence γR (A(4)) = 2(3 + 1) = 8. A(4) can be embedded in G = A(n),
n ≥ 4, as follows: A(5) = 3A(4), A(6) = 9A(4), A(7) = 27A(4). We get the following
relation γR (A(5)) = 2(3+1+3) = 14, γR (A(6)) = 2 (3 + 1 + 3 + 9) = 32, generalizing the

result we get γR (A(n)) = 2
(

3 + 3n−3−1
2

)
= 2

(
6+3n−3−1

2

)
, γR (A(n)) = 2

(
6+3n−3−1

2

)
=

3n−3 + 5.
Hence for n ≥ 4, γR (A(n)) = 3n−3 + 5.
Inverse roman domination number is given as γ1

R (A(0)) = γ1
R (A(1)) = 2, γ1

R (A(2)) = 3,
γ1
R (A(3)) = 6, γ1

R (A(4)) = (2 + 3)3 = 15, where |V1| = 9 and |V2| = 3. A(4) can be
embedded in A(n), n ≥ 4, we have the following γ1

R (A(5)) = 31γ1
R (A(4)) = (2 + 3)3 · 3,

γ1
R (A(6)) = 32γ1

R (A(4)) = (2 + 3)3 · 3 · 3, γ1
R (A(n)) = 3n−3 · 5.

Hence for n ≥ 4, γ1
R (A(n)) = 5 · 3n−3. �
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Figure 4. First four stages of Apollonian Network Graph.

Theorem 3.5. For a Triangular Grid Graph G = T (n), n ≥ 1, if |V | = 15k, then
γR(T (n)) ≤ 6k, n k ∈ N .

Proof. A triangular grid graph T (n), |V | = (n+1)(n+2)
2 , |E| = 3

2

(
n2 + n

)
, for T (4), |V | =

15, |E| = 30. It can also be seen that T (4) can be embedded in T (n) with minimum

number of common vertex being dominated. If γR (T (4)) = 6, then |V | = (n+1)(n+2)
2 = 15k,(

n+ 3
2

)2 − 1
4 = 30k, n =

√
30k + 1

4 −
3
2 . For n, k ∈ N , we have k = 1, n = 4, |V | =

15, T (4) = 6, k = 3, n = 8, |V | = 45, T (8) = 18. Hence if |V | = 15k, then γR(T (n)) ≤ 6k.
Similar inequalities can also be obtained for |V | = 3k, |V | = 6k, |V | = 10k etc. But the
bounds are not close because more number of common vertices with a ∈ V , f(a) = 0 is
dominated by b ∈ V , f(b) = 2. �

Theorem 3.6. For a Triangular Grid Graph G = T (n), n ≥ 1, γR(G) = γ1
R(G).

Proof. A triangular grid graph T (n)(V,E) has |V | = (n+1)(n+2)
2 , |E| = 3

2

(
n2 + n

)
, Con-

sider T (4), label the vertices as shown in the Fig. 5, {ui,j , vi,j , wi,j}, 0 ≤ i, j, w ≤ 4
(i is the level and j being the ascending order of the vertices) are the vertices and Li,
0 ≤ i ≤ 4 are levels of T (4). Only for Li, i being even will have a central vertex la-
beled as wi,j , i = 0, 2, 4, . . ., 0 ≤ j ≤ n − 1. By symmetry in the graph, for every
a ∈ V, f(a) > 0 there exit b ∈ V − D, such that f1(b) > 0, where D is the set of ver-
tices a ∈ V , f(a) > 0. If roman dominating set is given by D = {ui,j ∨ vi,j/0 ≤ i, j ≤ n}
then the inverse roman dominating set D1 = {vi,j ∨ ui,j/0 ≤ i, j ≤ n} or the other case
is that, if D = {ui,j ∨ vi,j/0 ≤ i, j ≤ n} then D1 = {ui±1,j±1 ∨ vi±1,j±1/1 ≤ i, j ≤ n− 1}
and also wi ∈ V , f(wi,j) > 0 is rotated to the adjacent vertex ui,j or vi,j , f

1(ui,j) > 0 or
f1(vi,j) > 0, 0 ≤ i, j ≤ n. This can generalized for T (n).

Hence γ1
R(Gn) =

∣∣D1
∣∣ = |D| = γR(Gn). �

Figure 5. Triangular Grid Graph T (4).

There are two kinds of γR function one being triangular (semi hexagonal) and other
being hexagonal. We show that both the bounds are close but triangular γR function
has closer bounds when compared to the hexagonal γR function. In triangular function
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there is no pattern but whereas in hexagonal function we get a pattern for labeling the
vertex hence easy to find the RDF in hexagonal function. The difference between the
triangular and hexagonal γR function is that for triangular γR function most of the time
∆ = 4 is considered for f(v) = 2, v ∈ V . Whereas for the hexagonal γR function ∆ = 6 is
considered for f(v) = 2, v ∈ V . In Theorems 3.7 and 3.8, γR (Tn) is proved with equality
sign with respect to triangular and hexagonal γR function, but in general γR (Tn), n ≥ 1,
the symbol will be less than or equal to.

Theorem 3.7. In a Triangular Grid Graph G = T (n), n ≥ 1. If γR is a triangular

function, then γR(T (n)) = 6 +
k∑

m=1
2
⌈

2m+5
3

⌉
, n = 2k + 4, k ∈ N and

γR(T (n)) = 6 +

[
k∑

m=1

2

⌈
2m+ 5

3

⌉]
+ 2

⌈
2k + 6− 2

⌈
2k+5

3

⌉
3

⌉
,

n > 5, n = 2k + 5, k ∈ N

Proof. Case 1: For n is even, n = 2k + 4.
Let G = T (n) has n + 1 levels Lp, 0 ≤ p ≤ n given in Fig. 6. At each level m there
are m + 1 vertices, 0 ≤ m ≤ n. Vertices are labeled as vi,j , i is the level and j being
the ascending order of the vertices. f (v1,1) = f (v3,4) = f (v4,2) = 2. For each vertex
v ∈ L2m+4, 1 ≤ m ≤ n−4

2 , there are 2m + 5 vertices, for v ∈ L2m+4 such that f(v) = 2

then f(u) = 0, u ∈ N [v], |N [v]| = 3. Hence
⌈

2m+5
3

⌉
vertices will have f(v) = 2 and hence

the result.
Case 2: For n is odd, n = 2k + 5.
Vertices v ∈ L2k+3, 1 ≤ k ≤ n−3

2 , are dominated by vertices in level v ∈ L2k+4, 1 ≤ k ≤
n−4

2 . f (v1,1) = f (v3,4) = f (v4,2) = f (v5,5) = 2, f (v5,1) = 1, hence γR (T5) = 9. n > 5,
for n is odd, we already have the case for n is even, only one more level of vertices needs
to be covered by γR function. If there are 2k+5 vertices, for v ∈ L2k+4, then 2k+6 vertex
will be in the next level. For each vertex v ∈ L2k+4, 1 ≤ k ≤ n−4

2 , 2
⌈

2k+5
3

⌉
vertices are

dominated in level v ∈ L2k+5. Therefore remaining vertices need to dominated in level
v ∈ L2k+5.

Hence the proof. �

Theorem 3.8. In a Triangular Grid Graph G = T (n), n ≥ 1. If γR is a Hexagonal
function, then

γR (Tn) = 1 +
n∑

i=2
Li, Ln =


2k, n = 3k − 1

k + 1, n = 3k

k, n = 3k + 1

, k ∈ N .

Proof. Let G = T (n) has n+ 1 levels Lp, 0 ≤ p ≤ n given in Fig. 6. At each level m there
are m + 1 vertices, 0 ≤ m ≤ n. Vertices are labeled as vi,j , i is the level and j being the
ascending order of the vertices.

In hexagonal γR function f (v2,2) = 2 then f (v0,1) = 1, f (v1,1) = f (v1,2) = 0. Weight
of the function f is given by w(f) =

∑
v∈V

f(v). For each vertex, v ∈ L3x−1, 1 ≤ x ≤ n,
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w(f) =
∑

v∈L3x−1

f(v) = 2x, v ∈ L3y, 1 ≤ y ≤ n, w(f) =
∑

v∈L3y

f(v) = 1(y + 1) = y + 1,

v ∈ L3z+1, 1 ≤ z ≤ n, w(f) =
∑

v∈L3z+1

f(v) = 1, (z) = z.

Hence the proof. �

Figure 6. Triangular Grid Graph T (n).

Theorem 3.9. For any Triangular Grid Graph G = T (n), n > 3,

2
⌈
|V |
6

⌉
≤ γR(T (n)) ≤ 2

⌈
|V |
5

⌉
.

Proof. Let G = T (n), |V | = (n+1)(n+2)
2 , |E| = 3

2

(
n2 + n

)
, for any level Lp, 0 ≤ p ≤ n,

∆ = 6, for v ∈ V such that f(v) = 2. Then f(u) = 0, u ∈ N(v), |N(v)| = 6, hence the
lower bound. Given f(v) > 0, v ∈ Lp, 0 ≤ p ≤ n then at any level Lp+2, v ∈ Lp+2 in the
next level such that f(v) = 2. Then f(u) = 0, u ∈ N(v), |N(v)| = 5, hence the upper
bound. �
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