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SOME ALGEBRAIC STRUCTURE OF SPHERICAL NEUTROSOPHIC
MATRICES

I. SSLAMBARASAN!, §

ABSTRACT. In this paper, we introduce spherical neutrosophic matrices (SNMs) as gen-
eralization of intuitionistic fuzzy matrices, Pythagorean fuzzy matrices, picture fuzzy
matrices and spherical fuzzy matrices. Some algebraic operations such as max-min,
min-max, complement, algebraic sum and algebraic product are defined in SNMs and
investigated. Further, scalar multiplication (nA) and exponentiation (A™) operations of
a spherical neutrosophic matrix A using algebraic operations are constructed, and their
desirable properties are proved. Finally, define a new operation(@) on spherical neutro-
sophic matrices and discuss distributive law in the case where the operations of ®, ®, A
and V are combined each other.
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1. INTRODUCTION

The concept of an intuitionistic fuzzy matrix (IFM) was introduced by Khan et al. [1]
and simultaneously Im et al. [2] to generalize the concept of Thomason’s [3] fuzzy matrix.
Each element in an IFM is expressed by an ordered pair <Ca¢j,5aij> with (o, 0a,; € [0,1]
and 0 < (g;; +0q,; < 1. Since the presence of IFM, a few analysts have significantly added
to the improvement of IFM hypothesis and its applications [4, 5, 6, 7, 8, 9, 10, 11]. In
such a circumstance, to accomplish a sensible result IFM falls flat. In this way, managing
such circumstance, [12] established the concept of Pythagorean fuzzy matrices (PyFM)
by assigning membership degree say (,,; along with non-membership degree say d,,; with
condition that 0 < Cgij + 562%, < 1. For further study on Pythagorean fuzzy matrix, one
may refer to [13, 14, 15].

Dogra and Pal [16] construction of picture fuzzy matrices (PFM) is of exceptional
reputation but decision makers are some how restricted in assigning values due to the
condition on 7, Cq,; and dg,;. In [17], some algebraic operations of Picture fuzzy matrices

! Department of Mathematics, Vel Tech Multi Tech Dr. Rangarajan, Dr. Sagunthala Engineering
College, Avadi, Chennai-600062, Tamilnadu, India.
e-mail: sksimbuking@gmail.com; https://orcid.org/0000-0002-7437-4043.

§ Manuscript received: June 20, 2021; accepted: October 02, 2021.
TWMS Journal of Applied and Engineering Mathematics, Vol.13, No.3 (© Isik University, Department
of Mathematics, 2023; all rights reserved.

1177



1178 TWMS J. APP. AND ENG. MATH. V.13, N.3, 2023

are defined and their desirable properties are proved. Spherical fuzzy matrices have its
own importance in a circumstance where opinion is not only constrained to yes or no but
there is some sort of abstinence or refusal. A good example of spherical fuzzy matrix
could be decision making such as when four decision makers have four different categories
of opinion about a candidate. Another example could be of voting where four types of
voters occurs who vote in favor or vote against or refuse to vote or abstain. Spherical fuzzy
matrix is a direct generalization of fuzzy matrix, intuitionistic fuzzy matrix and picture
fuzzy matrix. A question arises that why we need spherical fuzzy matrix or what are the
boundaries of PFMs that leads us to spherical fuzzy matrices? The main downside of
PFMs is the restriction on it, i.e., 0 < (o;; + 7a;; + da;; < 1. As this condition does not
allows the decision makers to assign membership values of their own consent. The decision
makers are somehow limitations in a specific domain. We consider an example (q,;; = 0.8,
Na;; = 0.5 and d4,; = 0.3 which interrupts the condition that 0 < (4,; + 74;; + da;; < 1 but
if we take the square of these values such as, Cgij = 0.64, ngij = 0.25 and (52”, = 0.09 where
the condition 0 < Cgij + ngij + (52” <1 is satisfies [18].

We know the important role of matrices in science and technology. However, the classical
matrix theory sometimes fails to solve the problems involving uncertainties, occurring in
an imprecise environment. Kandasamy and Smarandache [19] introduced fuzzy relational
maps and neutrosophic relational maps. Dhar et al.[20] define Square Neutrosophic Fuzzy
Matrices whose entries are of the form a + Ib, where a and b are fuzzy number from [0, 1]
gives the definition of Neutrosophic Fuzzy Matrices multiplication.

In this paper develop the concept of spherical fuzzy matrices to spherical neutrosophic
Matrices by assigning neutral membership degree say 7,,; along with positive and negative

membership degrees say (4,; and d,,; with condition that 0 < Cgij + ngij + 52“_ <3.

This paper is organized as follows. In section 2, we recall some preliminary definitions
regarding the topic. In section 3, we define spherical neutrosophic matrices and inves-
tigates their algebraic properties. In section 4, define a new operation(@) on spherical
neutrosophic matrices and investigates their desirable properties. We write the conclusion
of the paper in section 5.

2. PRELIMINARY DEFINITIONS
Here we recall some preliminary definitions regarding the topic.

Definition 2.1. [1] An intuitionistic fuzzy matriz (IFM) of order m x n is defined as A =
(<Caij7(saij>) where Cq;; € [0,1] and dq,; € [0,1] are the membership and non-membership
values of the ijt" element in A satisfying the condition

O S Caij + 50,2‘]' S 1
for alli,j.
Definition 2.2. [12] A Pythagorean fuzzy matriz (PyFM) of order m xn is defined as A =
(<Caij,6aij>) where Cq;; € [0,1] and d4,; € [0,1] are the membership and non-membership
values of the ijt" element in A satisfying the condition

0<¢, +d7, <1
for all i, ;.
Definition 2.3. [17] A Picture fuzzy matriz (PFM) A of the form, A = (<C@ij7naij76aij>)
of a non negative real numbers Ca,;,Na,;>0a;; € [0, 1] satisfying the condition

0 S Caij + 77aij + 5aij S 1
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for alli,j. Where (o,; € [0,1] is called the degree of membership, na,; € [0,1] is called the
degree of neutral membership and dq,; € [0,1] is called the degree of non-membership.

Definition 2.4. [18] A Spherical fuzzy matriz (SFM) A of the form, A = (<Caij’77aij’5aij>)
of a non negative real numbers (4, MNa;;»0a;; € [0, 1] satisfying the condition

0< ¢ +m2, +62, <1
for all i, j. Where (q,; € [0,1] is called the degree of membership, 1a,; € [0,1] is called the
degree of neutral membership and d,,; € [0,1] is called the degree of non-membership.

Definition 2.5. [19] Let A be a neutrosophic fuzzy matriz, whose entries is of the form
a+Ib (neutrosophic number), where a, b are the elements of [0,1] and I is an indeterminate
such that I™ = I, n being a positive integer.

3. SPHERICAL NEUTROSOPHIC MATRICES AND THEIR BASIC OPERATIONS

This section, define spherical neutrosophic matrices and investigates some algebraic
properties such as idempotency, commutativity, associativity, absorption distributivity,
and De Morgan’s laws over complement.

Now, we are going to define algebraic operations of Spherical Neutrosophic Matrices
by restricting the measure of positive, neutral and negative membership but keeping their
sum in the interval [0, v/3].

Definition 3.1. A Spherical neutrosophic matriz (SNM) A of the form, A = <Caij,naij, 5a¢j>
of a non negative real numbers Ca,;,Na,; > da;; € [0, 1] satisfying the condition

0<C +m, +02, <3
for alli,j. Where (o,; € [0,1] is called the degree of membership, na,; € [0,1] is called the
degree of neutral membership and 6,,; € [0,1] is called the degree of non-membership.

Let Ny« denote the set of all the Spherical Neutrosophic Matrices.

(0.8,0.8,0.8) (0.2,0.4,0.2)
(0.3,0.4,0.2) (0.4,0.4,0.2)
The order structure of the circular fuzzy matriz is appeared in Fig. 1.

Example 3.1. A = is not a SFM, but it A is a SNM.

FIGURE.1 The structure between FM, IFM, PyFM, PFM, SFM and SNM.

Each element in an PFM is expressed by an ordered pair <Caij,77aij,6aij> with Ca;;, Nay;
and dq,; € [0,1] and 0 < Coy; + May; + 00y < 1. It was clearly seen that 0.8+ 0.8 +0.8 > 1,
and thus it could not be described by PFM and SFM. To describe such evaluation in this
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paper we have proposed spherical neutrosophic matriz (SNM)and its algebraic operations.
FEach element in an SNM is expressed by an ordered pair <Caija77aija5aij> with Ca,;, Nay; and
da;; € 10,1] and 0 < Cgij + ngi], + (%j < 3. Also, we can get (0.8)% + (0.8)2 + (0.8)? =
0.64 4+ 0.64 + 0.64 = 1.92 < 3, which is good enough to apply the SNM to control it.

Definition 3.2. If A and B are two spherical neutrosophic matrices, then
o A< B iff Vi, j, Caij < Cbijvnaij < Moy OT Nag; > nbij76az] = (5b
= (<5aija77ai]~>Ca¢j>)
AV B = (<max (Caij ) Cbij) , min (naij ) nbij) , min (5%3‘ J 5bij) >)
ANB = (<min (C% ) Cbu) min (77% ) nbw) max (5%‘ ; 5%‘) ))
Ae B = ((\fG, + =G, My duss, ) )

A8 B = ((Gay oo 1, + 18, — 1[92, + 08— 2,08,)).

Definition 3.3. The scalar multiplication operation over SNM A and is defined by
nd = (< 1—[1=¢2 1" [Ma;,]" [6aij]">)

Definition 3.4. The exponentiation operation over SNM A and is defined by

S N = ey O e i)

Let N, xn denote the set of all the Spherical Neutrosophic Matrices.
The following theorem relation between algebraic sum, and algebraic product of SNMs.

Theorem 3.1. If A, B € Npxpn, then AQ B< A® B.

_ 2 2 2 2
= a;; . 35 db; 0 Qa5 10459 FQi5 Y045
Proof. Let A® B (<\/C ; + Cb” Ca Jcb” Na;; b, 0a;; 0p y >> and

A®B = (<Cai]'<-bij7 \/773” + 77[?” - 773”7722.].; \/5 + 52 - 6621”522]>>
Assume that,
Couyoy < \JC3, + G, — 2,
(i€)  Cayoy =[G, + G, GG 20
() G-+ (1-C)>0
which is true as 0 < Cgi]. <land0< Cl?ij <1
And
77aij77bij < \/77317 + 77[?” - 77(%”77[3”

(ie)  mp,(L—mp )+, (L—m5)>0
Whichistrueasogng <1and0<77b <1

And

Oa;;0b,; < 1/0a,; + 05 — 0, 07
; 2 2
(i€)  ayh, —\/52 + 67 53”52 >0

(i.e) 52 (1—62 )+52 (1—52 )=
which is true as0§62” < 1 and0§52ij <1
Hence A B< A9 B. O
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Theorem 3.2. For any spherical neutrosophic matriz A,
(i) Ap A> A,
(1) A A< A.

Proof. (i) Let Ad A= (<Caij,77aij,5aij>) S (<<aij7naij75aij>)
A@A=(<2@f%@J2wMﬂ@%V»

V2 = (€)= Gy + oy (1= o)) = Cayy for all i,
and  (1a;,)? < 1q,, for all i, j

and (6%) < dg,; for all i, j

Hence A® A > A.

Similarly, we can prove that (ii) A® A < A.

Theorem 3.3. If A, B,C € Ny,xn, then
(i) A B=B® A,

(i) A® B=B® B,

(1it) (A B)dC=Ad (Ba O),

(iv) (A B)@C=A® (B ().

Proof. (i) Let A® B
<\/C% +<b” Ca” Cb vnazjnb”,éa” 5b1]>)
<<\/Cbz‘j + Gy Cbl-j C2ys Mois Masy s Ob 5aij>)

—=B® A
(ii) Let A® B

- <<Ca“ Cbyj s \/Ugij + 772 77% 77b ) \/5% + 52 5?”9 621] >>

:(<@Ugw,v%;j+naj—n%n%fvwaj+az - 0,32,))
= A.
mwmﬁf@m@c

_ (<(¢<2 TG, GG ey g iy ) © (Cong sy O >>
2

VW%+%—%@)+% (V& +@ -aa) e,
Mai; Moi; Meis s Oai; Oby; 5%-_
=@ +E 3 -G -8 - Ga 18,88,
ai; Mo Meis » Oai; Obi; Ocy; |
VGG G -GG, -3 -G 8,8,

77041] 77172] 7701] ) (Saz] 51)7,] (5613
Let A® (B@® C)

\/ e+ (@, +a,-¢, c%) -2, (@, +a,-¢, @%,)27

naz‘j 77b1-]- 7701-]- 9 5“1‘]‘ 6bij 5Ciji|
= [\/ng] + Cl?w + <C2” - Cgij C}i] - C(%ij Cc” Cb Cc” + Ca” Cb CCZJ
naij 77b1-]- ncij 9 5“1‘]‘ 6bij 5Ciji|

1181
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Hence (A®B)aC=Aa (B CO)
Similarly, we can prove that (iv)(A® B)@ C = A® (B® C).

Theorem 3.4. If A, B € Ny,xn, then
(i) A@ (A® B) > A,
(ii) A (A B) < A.

Proof. (i) Let A& (A® B)
= (g g8 )) @ ((Gong oo 02, + 1R, — 1B 02, 07, — 2,87,
=[G, + @R, — Gl e [y, + 2, — 2,2,
bai [\ /92, + 02, = 2,02,
= [\/CUQLJ + G2, G, 1= 621 May (\/1 = [L=ng, )il - Thi.j]) :

su (1= =32, 00-22,1)
> A

Hence A& (A® B) > A.
Similarly, we can prove that (ii)A ® (A® B) < A.

The following theorem is obvious.

Theorem 3.5. If A, B € Np,xn, then
(1)) AVB=BVA,
(1) ANB=BAA,

Theorem 3.6. If A, B,C € N;,xn, then
(i) A (BvVC)=(AeB)V(AaC),
(i) Aw (BVC)=(A® B)V (A (),
(7it) A (BANC)= (A B)AN(Ad C),
(iv) AQ(BANC)=(A®B)A(A® ().

Proof. In the following, we shall prove (i), and (ii) — (iv) can be proved analogously.
(i) Let A® (BVC)

= [ e, s (6, 2,) - 6 omax (2.2,
Na,; - MaX (nbij ) 77(;1-]-) ) 5%-- max (6bij7 5%‘) }
= |:\/maX <<g” + Cli'j ) Cafj + CCQZ]) — Inax (ng] Clij ’ Cgm CC2’LJ> ?
min (naijnbij,naijncij) , min (6aij 5bij ) 5%]‘ 502-]') }
= {\/max <<3ij + Qi'j - Cgij C[?U ) Cgi]- + CC2” - Cgij Cczij)a
min (nllij nbij 5 77(11']' Ucij) ’ min (6aij 5bij ’ 6‘11']' 6017') :|
=(A®@B)V(Aa ().

Theorem 3.7. If A, B € Ny,xn, then
(1)) (ANB)® (AV B)=A® B,

(ii) (ANB)® (AV B)=A® B,

(7i1) (A B)A(A® B) = A® B,
(iv) (A®@B)V(A® B)=A®B.
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Proof. In the following, we shall prove (i), and (ii) — (iv) can be proved analogously.
(i) Let (ANB)® (AV B)

= [\/min ((ij,{ij) + max (Cgij,(ij) — min (C&M,Cfij) .max (C&U,C@j),

max (Ma,;, Moy, ) - M0 (a5 My, ) »  max (8, 8, ) - min (8a,;, 5, ]

= <<\/ Gy T ng‘j -G, ng‘j s Nai; Moz » Oas; Oby; >)
=A®B. O

In the following theorems, the operator complement obey th De Morgan’s laws for the
operation &, ®, V, A.

Theorem 3.8. If A, B € Ny,xn, then
(i) (A® B)® = A° ® BC,

(i1) (A® B)® = A° @ BC,

(4ii) (A® B)® < A® @ BY,

(iv) (A® B)Y > A® @ BC.

Proof. We shall prove (iii), (iv), and (7), (i7) are straightfforward.

(i) Let (A @ B = (a0 \ /12, + 1, = 2,802, + G, = CGE,))-
AC @ BE = ((\/2, + 02, = 02,02 Muwy o Cary oy ) )

Since d,;0p,; < \/52”' + 611-]' — 62 52

Aij 045

\/772“ + ng” - ngij ngz] Z naij nbij

\/Cgij + ng] - Cgij wa > Caij Cbij
Hence (A @ B)¢ < A @ BC.
('“}) Let (A (024 B)C = <<\/5g” + 531] — (52”55” 5 /r/ai]' nbij ) <aij Cbij >) .
A%®BC = (<5aij Obi; \/ngij + nlij B ngij ”gij’ \/C‘%ij + Cli‘j B Cgij C‘id >)
Since \/53”. + 52”, - 5,%1..55” > 0q,;0b;;

J

Tass iy < \/ Moy + 7oy, = Ny,

Hence (A ® B)® > A @ BC. O
Theorem 3.9. If A, B € Nyyxn, then
(i) (A9)° = A

(ii) (AV B)¢ = A® A BY,
(4ii) (AN B)Y = A® v BC.

Proof. We shall prove (i) only, (i) is obvious.
AV B = ((max (Ca,; Gy ) - 0in (a5 M,,)  min (a5 3, ) )
(Av B)¢ = ((min (0as; Ob,, ) » 1000 (Da;s ;) s max (Cayys Gy )
= A = ({9asy> May> Caiy )
B = ({8, 1,5 Gy, )
= A9 A B¢ = ((min (0ay» b, ) s min (a5 M0, ) » m@x (Cayy iy ) ))



1184 TWMS J. APP. AND ENG. MATH. V.13, N.3, 2023
Hence (AV B)¢ = A A BY,
Similarly, we can prove that (iii)(A A B)® = A® v BC. O

Based on the Definition 3.2, 3.3 and 3.4., we shall next prove the algebraic proper-
ties of spherical neutrosophic matrices under the operations of scalar multiplication and
exponentiation.

Theorem 3.10. For A, B € Np,xn and n,ni,ne > 0, we have
(i) n(A® B) =nA @ nB,

(1i) n1A® n2A = (n1 +ng)A,

(7i1) (A® B)" = A" ® B",

(iv) A} ® Af = Alm+n2),

Proof. For the two SNMs A and B, and n,ny,ns > 0, according to definition,
we can obtain
(i) Let n(A @ B)

= ((fG2, + @, = QG Mows oy 0y ) )
<<\/1 — 1 =G, 1ML = G0 [Masy i, )" [Oay; 06, ]" >>

<< 1-[1-¢, +Cb *Caljgb 17 [0asy 011" [0ai 051" >>
AP nB

< ij ij
-[J(-n-grer-n- <3ij]n) ~(-n-g ) (1-n-a ).
sy s 1" B, B, ) ]

(1= =G 1L = G 1" ey o 1" 6,00, )" ) )

(Y1 2, @, = QG T a1 Baiy 80,1 )

(

\/1 LG === (=) (1= =@ m),
[Uam] [naw] ’ [5‘“]']”1 [6(1”]”2]

_ <<\/ 711-&-7127 [naij]n1+n2’ [5(lij]nl+n2>)

= (m —i—ng)
(iii) Let (A® B)"

— (galjgbij , \/1 —[1—n2, + ngi]_ — ng”ngﬁ]n, \/1 —[1—d2, + 52 — 52 (52]]71}

a;; b,
= [ (Cary G, \/1 R L N IS s Ry T 5gij]n]
A" @ B"

(@) - - - (1 ) (1 1)),
L[ -0 ]r+1-[1-62 ]"— (1 - 52_]n) (1 Q- 55,,]%)}

(< Cas; Coiy) " \/1— 1—n2,] K \/1_ 162 "1 &2 ]n>>
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= (A® B)".
(iv) Let A™ @ A"

(Caij ) ni+ng ’

Sl =g - (- ) (1 g ),
\/1 0 L W I S (1 - 5gij]m) (1 - 53;“]@) ]
= ()™ ™™ =T =2 Jrvbme, T [ = 87 June )

— Alnitnz)
Hence proved. O

Theorem 3.11. For A, B € Ny,xn and n > 0, we have
(1) nA < nB,
(1i) A™ < B".

Proof. (i) Let A< B
= Ca;; < Cb;; and 1q,; > mp,; and dq,; > 0p,; for all i, j.

= \/1 N [1 a Ccz”ij]n S \/1 o [1 - Cli‘j]na
[Mai; 1™ = [m,;]™ and

[0a;,]" > [0p,,;]™ for all 4, 5.

(i1) Also, [Cay,]™ = [Cb,,]"

Ji--m < i ),
\/1_[1—52”]” < \/1_[1_651-3-]”’ for all 4, j. 0

Theorem 3.12. For A,B € Ny« and n > 0, we have
(1) n(ANB) =nAAnB,
(13) n(AV B) =nAVnB.

Proof. (i) Let n(A A B)

= [ i (62,62, Y (g 1, 7)o (1 o, 1)

= [ e (1= 2, 1= G Y (i 1 7)o (1 1)

= \/1 - (max ([1 -2 - Cij]”))max ([a;,]" [, 1)  max ([da,,]", [05,,]") }
= | max <\/1 —[-¢ ) 1= =@ 1) s max (na )" e, )")

max ([5ai]-]na [5bij]n)

=nAAnB.
Hence n(A A B) =nAAnB,
Similarly, we can prove that (ii)n(AV B) = nAV nB. O

Theorem 3.13. For A,B € Ny« and n > 0, we have
(1) (ANB)" = A" A B™,
(13) (Av B)" = A"V B".
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Proof. (i) Let (AN B)"™
= [mln ([Caij]na [Cb”]n) 5

\/1 — [max (1 - ngi]‘7 1— 771%)]”) \/1 — [max (1 - 621‘3" 1= 613“)]”]
i (G 160,17) 1 (s (11— 22, . 1=, 7))

\/1 — (min ([1 — 52 I [ — 5;_,]"))}
= [min ([Caij]", [Cbij]”) max (\/l —[1- na \/1 —[1- 771,” ) )
o (A i T )]

A™ A B"

(1ol 1= =2 I ST == a2 ]") A

(16,1 1=l = == 1) ]

=[min([<au] (Goy1") e (/1= (1 =2 I, 1= (1= ]").
e ]

= (AN B)".
Hence (AN B)" = A" A B™,
Similarly, we can prove that (ii)(AV B)" = A™ vV B™. O

Theorem 3.14. For A, B € Ny,xn and n > 0, we have
(A® B)" # A" @ B".

Proof. Let (A® B)"
=[(Ja,+ @, -a.q,) Ji-i-wm i i- -5
Am = (G 1= =2 I 1= 1= 32,]))
= ({16 1= = I 1= =8 ]"))
are B = [\ fic Pl P -G Pl P (V- -m ) (Jr--w )

1—[1—53”,]) ( 1—[1—53”]) }
Hence (A® B)" # A" & B". O

B

4. NEW OPERATION (@) ON SPHERICAL NEUTROSOPHIC MATRICES

In this section, we define a new operation(@) on spherical neutrosophic matrices and
prove their desirable properties.

Definition 4.1. If A and B are two Spherical Neutrosophic Matrices, then



I. SILAMBARASAN: SOME ALGEBRAIC STRUCTURE OF SPHERICAL ... 1187

2 2 2 5 2 2
AQB = Caij T Cbij Naz; + Mo 5a” + (5
2 ’ 9 ) 5

Remark 4.1. Obuiously, for every two spherical neutrosophic matrices A and B, then
AQB is a spherical neutrosophic matrix.

Simple illustration given: For AQB,

0 S Cai]- ;Cbij + Naj +77le + 604‘3‘ ;5bij
< Cas; + May; 1 Oayy n Coij = Mbi; + Oby; < 1 + 1 -1
2 2 2 2

Theorem 4.1. For any spherical neutrosophic matriz A, AQA = A.

+¢2 mE o 4mE, [0+ 02
P L A A — Aij ij ij ij ij ij
roof. Let AQ <\/ 5 , \/ 5 , 5
2 2 2 2 2
Ca” Ca” naij + T]aij 5 5“11'
2 ’ 2 ’ 2

B 2Ci~j zngij 253”
- 27 27 9

= %Caij»naij»éau» . Since ng < Caij7ngij < naijaégij < 5111']' -

b b
Remark 4.2. Ifa,b € [0,1], then ab < a—2i— 7a—2+- <a+b— ab.

Theorem 4.2. If A, B € Ny,xn, then
(i) (A® B)V (A@QB) = A® B,
(1i) (A® B) A (AQB) = A® B,
(1i1) (A® B) A (AQB) = AQB,
(iv) (A® B) vV (AQB) = AQB.

Proof. we shall prove (i) and (iii), (ii) and (iv) can be proved analogously.
(1) Let (A® B) vV (AQB)

(o, TG . Ne,, + M,
max \/Ca” + Cbu - Ca” Cb ) d 9 — , 1111 77aij nbi]’) % )

52 +52 ]

. a;
min | 64,6 &l

i3 2

Q5

= ((\f2, + G, = G, iy oy By, ) )
=A@ B.
(ii))(A @ B) A (AQB)

G, TG Maws + 115,
min \/Cllz] + Cb” o Calj Cb ’ : 9 — » INAX | Ta;; My 5 % )
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2
+07,
2

J

2 ’ 2 ’ 2

= AQB,
Hence proved. O

Remark 4.3. The spherical neutrosophic matriz forms a semilattice, associativity, com-
mutativity, idempotency under the spherical neutrosophic matriz operation of algebraic
sum and algebraic product. The distributive law also holds for ®,® and A,V,Q are com-
bined each other.

5. CONCLUSION

In this paper, constructed spherical neutrosophic matrix and algebraic operations are de-
fined. Spherical neutrosophic matrix is the direct extension of Pythagorean fuzzy matrix,
we seen that how we put neutral membership, 7,,; = 0 in SNMs to reduce in Pythagorean
fuzzy matrices. Also seen that how SNMs is extension of picture fuzzy matrix by taking
squares of the membership degrees we obtain the spherical neutrosophic matrices. In this
paper, the order structure of the circular fuzzy matrix is appeared in Fig.1. We devel-
oped some properties such as, idempotency, commutativity, associativity, absorption law,
distributivity and De Morgan’s laws over complement are proved. Finally, defined a new
operation(@) on spherical neutrosophic matrices and discussed distributive laws. In the
future, the application of the proposed aggregating operators of SNMs needs to be explored
in the decision making, risk analysis and many other uncertain and fuzzy environment.
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