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ON THE COEFFICIENT BOUNDS FOR A SUBCLASS OF

BI-UNIVALENT FUNCTIONS BY USING SǍLǍGEAN DIFFERENTIAL

OPERATORS

A. MOTAMEDNEZHAD1, §

Abstract. Making use of Sǎlǎgean differential operator, in this paper, we introduce
and investigate an interesting subclass Sh,p

Σ (k, λ) of bi-univalent functions in the open
unit disk U. Furthermore, we find estimates on the |a2| and |a3| coefficients for functions
in this subclass. The results presented in this paper would generalize and improve some
recent works.
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1. Introduction

Let A be a class of functions of the form

f(z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Also we let S to denote
the class of functions f ∈ A which are univalent in U.
Some of the important and well-investigated subclasses of the univalent function class S
include (for example) the class S∗[α] of starlike functions of order α in U and the class
K[α] of convex functions of order α in U. By definition, we have

S∗[α] =

{
f : f ∈ S, R

(
zf ′(z)

f(z)

)
> α, z ∈ U, 0 ≤ α < 1

}
and

K[α] =

{
f : f ∈ S, R

(
1 +

zf ′′(z)

f ′(z)

)
> α, z ∈ U, 0 ≤ α < 1

}
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The Koebe one-quarter Theorem [6] ensures that the image of U under every univalent
function f ∈ S contains a disk of radius 1

4 . So every function f ∈ S has an inverse f−1,
which is defined by

f−1(f(z)) = z (z ∈ U)

and

f(f−1(w)) = w

(
|w| < r0(f), r0(f) ≥ 1

4

)
.

where

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + ·. (2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U
(see[13]).
Let Σ denote the class of bi-univalent functions defined in U given by (1).
Examples of functions in the class Σ are

z

1− z
, − log(1− z), 1

2
log(

1 + z

1− z
),

and so on. However, the familiar Koebe function ( z
(1−z)2 ) is not a member of Σ. Other

common examples of functions in S such as

z − z2

2
and

z

1− z2

are also not members of Σ.
Lewin [8] investigated the class Σ of bi-univalent functions and showed that |a2| < 1.51
for the functions belonging to Σ. Subsequently, Brannan and Clunie [2] conjectured that
|a2| ≤

√
2. Netanyahu [10], on the other hand, showed that maxf∈Σ |a2| = 4

3 .
Various subclasses of the bi-univalent functions class Σ were introduced and non-sharp
estimates on the first two coefficient |a2| and |a3| in the Taylor-Maclaurin series expansion
(1) were found in several recent investigations (see, for example, [1, 3, 12, 13, 17, 19]).
In 1983, Sǎlǎgean [11] introduced differential operator Dk : A → A defined by

D0f(z) = f(z),

D1f(z) = Df(z) = zf ′(z),

Dkf(z) = D(Dk−1)f(z) = z(Dk−1f(z))′, k = 1, 2, 3, ....

We note that

Dkf(z) = z +

∞∑
n=2

nkanz
n, k ∈ N0 = N ∪ {0}.

Jothibasu [7] introduced the following two subclasses of the bi-univalent function class Σ
and obtained non-sharp estimates on the first two Taylor-Maclaurin coefficients |a2| and
|a3| of functions in each of these subclasses.

Definition 1.1. (see [7]) Let 0 ≤ α < 1, 0 ≤ λ < 1 and k ∈ N0. A function f(z) given by

(1) is said to be in the class Sk,λΣ (α) if the following conditions are satisfied:

f ∈ Σ and

∣∣∣∣arg( Dk+1f(z)

(1− λ)Dkf(z) + λDk+1f(z)

)∣∣∣∣ < απ

2
(z ∈ U),
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and ∣∣∣∣arg( Dk+1g(w)

(1− λ)Dkg(w) + λDk+1g(w)

)∣∣∣∣ < απ

2
(w ∈ U),

where the function g is given by (2).

Remark 1.1. Taking λ = 0 in the class Sk,λΣ (α), we have Sk,0Σ (α) = SkΣ(α) and f ∈ SkΣ(α)
if the following conditions are satisfied:

f ∈ Σ and

∣∣∣∣arg(Dk+1f(z)

Dkf(z)

)∣∣∣∣ < απ

2
(0 ≤ α < 1, z ∈ U),

and ∣∣∣∣arg(Dk+1g(w)

Dkg(w)

)∣∣∣∣ < απ

2
(0 ≤ α < 1, w ∈ U),

where the function g is given by (2).

We note that for k = 0 and λ = 0 the class S0,0
Σ (α) = S∗Σ[α] is class of strongly bi-starlike

functions of order α(0 ≤ α < 1) which defined as following.

Definition 1.2. ( see [13]) Let 0 ≤ α < 1. A function f(z) given by (1) is said to be in
the class S∗Σ[α] if the following conditions are satisfied:

f ∈ Σ and

∣∣∣∣arg(zf ′(z)f(z)

)∣∣∣∣ < απ

2
(z ∈ U),

and ∣∣∣∣arg(wg′(w)

g(w)

)∣∣∣∣ < απ

2
(w ∈ U),

where the function g is given by (2).

When k = 1 and λ = 0 the class S1,0
Σ (α) = KΣ[α] is class of strongly bi-convex functions

of order α(0 ≤ α < 1) which defined as following.

Definition 1.3. ( see [13]) Let 0 ≤ α < 1. A function f(z) given by (1) is said to be in
the class KΣ[α] if the following conditions are satisfied:

f ∈ Σ and

∣∣∣∣arg(1 +
zf ′′(z)

f ′(z)

)∣∣∣∣ < απ

2
(z ∈ U),

and ∣∣∣∣arg(1 +
wg′′(w)

g′(w)

)∣∣∣∣ < απ

2
(w ∈ U),

where the function g is given by (2).

Theorem 1.1. ( see [7]) Let f(z) given by (1) be in the class Sk,λΣ (α). Then

|a2| ≤
2α√

4α(1− λ)3k + [2α(λ2 − 1)− (α− 1)(1− λ)2]22k
,

and

|a3| ≤
α

3k(1− λ)
+

4α2

22k(1− λ)2
.
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Definition 1.4. ( see [7]) Let 0 ≤ β < 1, 0 ≤ λ < 1 and k ∈ N0. A function f(z) given

by (1) is said to be in the class Mk,λ
Σ (α) if the following conditions are satisfied:

f ∈ Σ and R

(
Dk+1f(z)

(1− λ)Dkf(z) + λDk+1f(z)

)
> β (z ∈ U),

and

R

(
Dk+1g(w)

(1− λ)Dkg(w) + λDk+1g(w)

)
> β (w ∈ U),

where the function g is given by (2).

Remark 1.2. Taking λ = 0 in the class Mk,λ
Σ (β), we have Mk,0

Σ (β) = Mk
Σ(β) and

f ∈Mk
Σ(β) if the following conditions are satisfied:

f ∈ Σ and R

(
Dk+1f(z)

Dkf(z)

)
> β (z ∈ U),

and

R

(
Dk+1g(w)

Dkg(w)

)
> β (w ∈ U),

where the function g is given by (2).

We note that for k = 0 and λ = 0 the class M0,0
Σ (β) = S∗Σ(β) is class of strongly bi-

starlike functions of order β(0 ≤ β < 1). When k = 1 and λ = 0 the classM1,0
Σ (β) = KΣ(β)

is class of strongly bi-convex functions of order β(0 ≤ β < 1).

Theorem 1.2. ( see [7]) Let f(z) given by (1) be in the class Mk,λ
Σ (β). Then

|a2| ≤

√
2(1− β)

22k(λ2 − 1) + 2(1− λ)3k
,

and

|a3| ≤
(1− β)

3k(1− λ)
+

4(1− β)2

22k(1− λ)2
.

The purpose of this paper is to investigate the bi-univalent function class Sh,pΣ (k, λ) in-
troduced in Definition 2.1 and derive coefficient estimates on the first two Taylor-Maclaurin

coefficient |a2| and |a3|. Our results for the bi-univalent function class f ∈ Sh,pΣ (k, λ) would
generalize and improve some recent works of Jothibasu [7] and Brannan and Taha[3].

2. Coefficient bounds for the function class Sh,pΣ (k, λ)

In this section, we introduce and investigate the general subclass Sh,pΣ (k, λ).

Definition 2.1. Let the analytic functions h, p : U→ C be so constrained that

min{R(h(z)),R(p(z))} > 0 (z ∈ U) and h(0) = p(0) = 1.

Let 0 ≤ λ < 1 and k ∈ N0. A function f ∈ A given by (1) is said to be in the class

Sh,pΣ (k, λ) if the following conditions are satisfied:

f ∈ Σ and
Dk+1f(z)

(1− λ)Dkf(z) + λDk+1f(z)
∈ h(U) (z ∈ U), (3)
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and

Dk+1g(w)

(1− λ)Dkg(w) + λDk+1g(w)
∈ p(U) (w ∈ U), (4)

where the function g is defined by (2).

Remark 2.1. There are many choices of h and p which would provide interesting sub-

classes of class Sh,pΣ (k, λ). For example, If we take

h(z) = p(z) =

(
1 + z

1− z

)α
(0 ≤ α < 1, 0 ≤ λ < 1, z ∈ U),

it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition 2.1.

If f ∈ Sh,pΣ (k, λ), then

f ∈ Σ and

∣∣∣∣arg( Dk+1f(z)

(1− λ)Dkf(z) + λDk+1f(z)

)∣∣∣∣ < απ

2
(z ∈ U),

and ∣∣∣∣arg( Dk+1g(w)

(1− λ)Dkg(w) + λDk+1g(w)

)∣∣∣∣ < απ

2
(w ∈ U),

where the function g is given by (2).
If we take

h(z) = p(z) =
1 + (1− 2β)z

1− z
(0 ≤ β < 1, 0 ≤ λ < 1, z ∈ U),

then the functions h(z) and p(z) satisfy the hypotheses of Definition 2.1. If f ∈ Sh,pΣ (k, λ),
then

f ∈ Σ and R

(
Dk+1f(z)

(1− λ)Dkf(z) + λDk+1f(z)

)
> β (z ∈ U),

and

R

(
Dk+1g(w)

(1− λ)Dkg(w) + λDk+1g(w)

)
> β (w ∈ U),

where the function g is given by (2).

3. Coefficient Estimates

Now, we obtain by finding the estimates on the coefficients |a2| and |a3| for class

Sh,pΣ (k, λ).

Theorem 3.1. Let f(z) given by (1) be in the class Sh,pΣ (k, λ). Then

|a2| ≤ min


√
|h′(0)|2 + |p′(0)|2

22k+1(1− λ)2
,

√
|h′′(0)|+ |p′′(0)|

2|4.3k(1− λ) + 22k+1(λ2 − 1)|

 , (5)

and

|a3| ≤ min{|h
′′(0)|+ |p′′(0)|
8.3k(1− λ)

+
|h′(0)|2 + |p′(0)|2

2k+1(1− λ)2
,

|h′′(0)|+ |p′′(0)|
8.3k(1− λ)

+
|h′′(0)|+ |p′′(0)|

2|4.3k(1− λ) + 2k+1(λ2 − 1)|
}.

(6)
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Proof. First of all, we write the argument inequalities in (3) and (4) in their equivalent
forms as follows:

Dk+1f(z)

(1− λ)Dkf(z) + λDk+1f(z)
= h(z) (z ∈ U), (7)

and

Dk+1g(w)

(1− λ)Dkg(w) + λDk+1g(w)
= p(w) (w ∈ U), (8)

respectively, where functions h and p satisfy the conditions of Definition 2.1. Also, the
functions h and p have the following Taylor-Maclaurin series expensions:

h(z) = 1 + h1z + h2z
2 + h3z

3 + ·, (9)

and

p(w) = 1 + p1w + p2w
2 + p3w

3 + ·. (10)

Now, upon substituting from (9) and (10) into (7) and (8), respectively, and equating the
coefficients, we get

2k(1− λ)a2 = h1, (11)

22k(λ2 − 1)a2
2 + 3k(2− 2λ)a3 = h2, (12)

−2k(1− λ)a2 = p1, (13)

and

2(1− λ)(2a2
2 − a3)3k + 22k(λ2 − 1)a2

2 = p2. (14)

From (11) and (13), we get

h1 = −p1, (15)

and

22k+1(1− λ)2a2
2 = h2

1 + p2
1. (16)

Adding (12) and (14), we get

[4.3k(1− λ) + 2k+1(λ2 − 1)]a2
2 = p2 + h2. (17)

Therefore, from (16) and (17), we have

a2
2 =

h2
1 + p2

1

2k+1(1− λ)2
, (18)

and

a2
2 =

p2 + h2

4.3k(1− λ) + 2k+1(λ2 − 1)
, (19)

respectively. Therefore, we find from the equations (18) and (19), that

|a2|2 ≤
|h′(0)|2 + |p′(0)|2

22k+1(1− λ)2
,

and

|a2|2 ≤
|h′′(0)|+ |p′′(0)|

2|4.3k(1− λ) + 2k+1(λ2 − 1)|
,
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respectively. So we get the desired estimate on the coefficient |a2| as asserted in (5).
Next, in order to find the bound on the coefficient |a3|, by subtracting (14) from (12), we
get

4.3k(1− λ)a3 − 4.3k(1− λ)a2
2 = h2 − p2. (20)

Upon substituting the value of a2
2 from (18) into (20), it follows that

a3 =
h2

1 + p2
1

22k+1(1− λ)2
+

h2 − p2

4.3k(1− λ)
,

Therefore, we get

|a3| ≤
|h′(0)|2 + |p′(0)|2

22k+1(1− λ)2
+
|h′′(0)|+ |p′′(0)|

8.3k(1− λ)
, (21)

On the other hand, upon substituting the value of a2
2 from (19) into (20), it follows that

a3 =
(p2 + h2)

4.3k(1− λ) + 22k+1(λ2 − 1)
+

(h2 − p2)

4.3k(1− λ)
,

Therefore, we get

|a3| ≤
|h′′(0)|+ |p′′(0)|

8.3k(1− λ)
+

|h′′(0)|+ |p′′(0)|
2|4.3k(1− λ) + 22k+1(λ2 − 1)|

. (22)

So we obtain from (21) and (22) the desired estimate on the coefficient |a3| as asserted in
(6). This completes the proof. �

4. Conclusions

By choosing

h(z) = p(z) =

(
1 + z

1− z

)α
(0 ≤ α < 1, z ∈ U),

in Theorem 3.1, we conclude the following corollary.

Corollary 4.1. Let the function f given by (1) be in the class Sh,pΣ (k, λ). Then

|a2| ≤ min

{
α

2k−1(1− λ)
,

α√
|3k(1− λ) + 22k−1(λ2 − 1)|

}
,

and

|a3| ≤ min

{
α2

3k(1− λ)
+

4α2

22k(1− λ)2
,

α2

3k(1− λ)
+

α2

|3k(1− λ) + 22k−1(λ2 − 1)|

}
.

Remark 4.1. It is easy to see, for the coefficient |a3|, that

α2

3k(1− λ)
+

4α2

22k(1− λ)2
≤ α

3k(1− λ)
+

4α2

22k(1− λ)2
.

Thus, clearly, Corollary 4.1 is an improvement of Theorem 1.1.

Taking λ = 0 and k = 0 in Corollary 4.1, we obtain the following corollary.

Corollary 4.2. Let the function f given by (1) be in the class Sh,pΣ (k, λ). Then

|a2| ≤
√

2α (0 ≤ α < 1),

and

|a3| ≤ 3α2 (0 ≤ α < 1).
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Remark 4.2. Corollary 4.2 provides an improvement of estimates which obtained by
Brannan [3].

Taking λ = 0 and k = 1 in Corollary 4.1, we have

Corollary 4.3. Let the function f given by (1) be in the class Sh,pΣ (k, λ). Then

|a2| ≤ α (0 ≤ α < 1),

and

|a3| ≤
4α2

3
(0 ≤ α < 1).

Remark 4.3. Corollary 4.3 provides an refinement of estimates which obtained by Bran-
nan [3].

By letting

h(z) = p(z) =
1 + (1− 2β)z

1− z
(0 ≤ β < 1, z ∈ U),

in Theorem 3.1, we deduce the following corollary.

Corollary 4.4. Let the function f given by (1) be in the class Sh,pΣ (k, λ). Then

|a2| ≤ min

{
(1− β)

2k−1(1− λ)
,

√
2(1− β)

|2.3k(1− λ) + 22k(λ2 − 1)|

}
,

and

|a3| ≤ min

{
(1− β)

3k(1− λ)
+

4(1− β)2

22k(1− λ)2
,

(1− β)

3k(1− λ)
+

(1− β)

|3k(1− λ) + 22k−1(λ2 − 1)|

}
.

Taking λ = 0 and k = 0 in Corollary 4.4, we get

Corollary 4.5. Let the function f given by (1) be in the class Sh,pΣ (k, λ). Then

|a2 − ρa2
m+1| ≤


√

2(1− β), 0 ≤ β ≤ 1
2

2(1− β); 1
2 ≤ β < 1.

and

|a3 − ρa2
m+1| ≤

 3(1− β); 0 ≤ β ≤ 1
2

(1− β) + 4(1− β)2; 1
2 ≤ β < 1.

Remark 4.4. Corollary 4.5 provides an improvement of estimates which obtained by
Brannan [3].

Taking λ = 0 and k = 1 in Corollary 4.4, we have

Corollary 4.6. Let the function f given by (1) be in the class Sh,pΣ (k, λ). Then

|a2| ≤ (1− β) (0 ≤ β < 1).

and

|a3| ≤
(1− β)

3
+ (1− β)2 (0 ≤ β < 1).

Remark 4.5. Corollary 4.6 provides an refinement of estimates which obtained by Bran-
nan [3].
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Suggestions for future study: The subordination property is interesting and recently
studied by authors. I think the class which defined by subordination will be considered
for research.

Acknowledgement. The author wishes to thank the referee for a careful reading of the
paper and for helpful suggestions.
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