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INVARIANCES OF STRONGLY CONTINUOUS QUASI SEMIGROUPS

AND DISTURBANCE DECOUPLING PROBLEMS

S. SUTRIMA1∗, M. MARDIYANA2, T. S. MARTINI1, §

Abstract. In this paper, invariances of a subspace of a Hilbert space under strongly
continuous quasi semigroup (C0-quasi semigroup) are characterized. The invariance-
relationship between the C0-quasi semigroups and its infinitesimal generator are also
investigated including for the generator of Riesz-spectral operators. The invariant con-
cepts for a non-autonomous system can also be characterized in the C0-quasi semigroup
term. Some relationships of the invariances are also identified. The system-invariance
is applicable to solve a disturbance decoupling problem of the non-autonomous linear
control systems. The sufficiency for the solvability is identified by the largest controlled
invariant subspace of kernel of output operator. An example is simulated to confirm the
disturbance decoupling problem of the non-autonomous linear control systems.

Keywords: invariant subspace, C0-quasi semigroup, system-invariance, disturbance de-
coupling problem, solvable.

AMS Subject Classification: 47D03, 93B52.

1. Introduction

First, we consider an autonomous uncontrolled system

ẋ(t) = Ax(t), t ≥ 0, x(0) = x0, x0 ∈ X, (1)

where A is the infinitesimal generator of a C0-semigroup on a Hilbert space X. Invariant
subspaces have an important role in investigating dynamical properties of the system
(1). For the system (1), there are two concepts of invariances, invariant semigroup and
invariant generator. If the state space X is finite dimensional, then these invariances
are equivalent. In general, if X is infinite dimensional, then they are not equivalent for
unbounded generator [1, 2]. For a closed subspace V of X there are sufficient and necessary
conditions for the invariances of semigroups and its generators [1, 3].
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Next, we consider the controlled version of system (1):

ẋ(t) = Ax(t) +Bu(t), t ≥ 0, x(0) = x0, x0 ∈ X, u ∈ U, (2)

where X and U are Hilbert spaces, u ∈ U is the control variable, A is the generator of a
C0-semigroup T (t), and B is an injective bounded linear operator with finite dimensional
ranB, where ranF denotes the range of F . For the system (2), there are many types
of system-invariance that have been characterized [1, 3, 4, 5, 6]. If X is finite dimen-
sional, a subspace V , (A,B)-invariance is equivalent to the existence of a bounded linear
feedback control law which achieves holdability in V . This equivalence also holds for in-
finite dimensions when A is bounded and subspace V , BU , and V + BU are closed [3].
The system-invariance are applicable to solve a disturbance decoupling problem (DDP)
[7, 5, 8]. In case, the largest open-loop invariant subspace is equal to the largest closed-
loop invariant subspace, then the solvability of the DDP is equivalent to the solvability of
a meromorphic matrix equation [6].

As a generalization of C0-semigroup, C0-quasi semigroup is a sophisticate tool for some
non-autonomous problems. Initially, Leiva and Barcenas [9] introduced C0-quasi semi-
group and then Sutrima et al.[10, 11, 12] developed advanced properties and some theory
stabilities. The continuity of the adjoint of a quasi semigroup was proved [13]. Moreover,
relationships between spectrum of quasi semigroups and its generators were also character-
ized [14]. The applications of the C0-quasi semigroups in various areas were also developed
[15, 16, 17, 18]. These facts provide opportunities to investigate the invariant subspaces
of the state space of the non-autonomous control systems using the C0-quasi semigroups.

In this paper we are concern on the invariant subspaces of the Hilbert spaces under
the non-autonomous version of linear control systems (1) and (2). The organization of
this paper is as follows. In Section 2, we provide the sufficient and necessary conditions
for the invariance under the C0-quasi semigroups and its generators. Investigations of the
invariance under the non-autonomous linear control systems are considered in Section 3.
In Section 4, we apply the invariance to solve the disturbance decoupling problem of the
non-autonomous linear control systems. The application is completed by an example.

2. Invariant concepts under C0-quasi semigroups

The concepts of invariance for the C0-quasi semigroups is split into two parts, respect
to the quasi semigroup with its infinitesimal generator and respect to the related non-
autonomous systems. These concepts have important applications in the non-autonomous
control systems. We recall the definition of the C0-quasi semigroup following [9] and [15].

Definition 2.1. Let L(X) be the set of all bounded linear operators on a Hilbert space X.
A two-parameter commutative family {R(t, s)}s,t≥0 in L(X) is called a strongly continuous
quasi semigroup (C0-quasi semigroup) on X if for each r, s, t ≥ 0 and x ∈ X:

(a) R(t, 0) = I, the identity operator on X,
(b) R(t, s+ r) = R(t+ r, s)R(t, r),
(c) lims→0+ ‖R(t, s)x− x‖ = 0,
(d) there exists a continuous increasing function M : [0,∞)→ [0,∞) such that

‖R(t, s)‖ ≤M(t+ s). (3)

We denote D as the set of all x ∈ X such that the following limits exist

lim
s→0+

R(t, s)x− x
s

= lim
s→0+

R(t− s, s)x− x
s

, t ≥ 0.
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The infinitesimal generator of the C0-quasi semigroup {R(t, s)}s,t≥0 is defined as the family
{A(t)}t≥0 on D where

A(t)x = lim
s→0+

R(t, s)x− x
s

.

For the simplicity we denote the quasi semigroup {R(t, s)}s,t≥0 and family {A(t)}t≥0 by
R(t, s) and A(t), respectively. Not like in the C0-semigroups theory, the operators of the
infinitesimal generator of the C0-quasi semigroups must not be closed [10].

For a linear operator T : D(T ) ⊆ X → Y , D(T ), kerT , ρ(T ), σ(T ), and R(λ, T ) denote
the domain, kernel, resolvent set, spectrum, and resolvent of T , respectively. First of all,
we focus on developing the invariances of subspaces under the C0-quasi semigroups and
its infinitesimal generators.

Definition 2.2. Let V be a subspace of a Hilbert space X, and let R(t, s) be a C0-quasi
semigroup on X. The subspace V is said to be R(t, s)-invariant if for all t, s ≥ 0 it satisfies

R(t, s)V ⊆ V.

In case A(t) is the infinitesimal generator of C0-quasi semigroup R(t, s), the related
invariance is defined as follows.

Definition 2.3. Let V be a subspace of a Hilbert space X and let A(t) be an infinitesimal
generator of a C0-quasi semigroup R(t, s) on X with domain D. The subspace V is said
to be A(t)-invariant if for all t ≥ 0 it satisfies

A(t)(V ∩ D) ⊆ V.

The following lemma explains that the R(t, s)-invariance implies the A(t)-invariance.

Lemma 2.1. Let V be a closed subspace of the Hilbert space X and let A(t) be an infin-
itesimal generator of a C0-quasi semigroup R(t, s) on X with domain D. If V is R(t, s)-
invariant, then:

(a) V is A(t)-invariant;
(b) R(t, s)|V is a C0-quasi semigroup on V with the infinitesimal generator AV (t),

where AV (t)v = A(t)v for v ∈ D(AV (t)) = D ∩ V .

Proof. Proof follows the proof of Lemma 2.5.3 of [2]. �

Let A(t) be the infinitesimal generator of the C0-quasi semigroup R(t, s) on X. For
every λ ∈ C and t, s ≥ 0, we define a bounded linear operator

Dλ(t, s)x :=

∫ s

0
eλ(s−v)R(t, v)xdv, x ∈ X.

By this operator, Theorem 2.1 of [14] gives

(λ−A(t))Dλ(t, s)x = [eλs −R(t, s)]x, x ∈ X, (4)

and

Dλ(t, s)(λ−A(t))x = [eλs −R(t, s)]x, x ∈ D. (5)

If eλs ∈ ρ(R(t, s)), (4) and (5) imply that eλs − R(t, s) is invertible and λ ∈ ρ(A(t)).
Therefore, if Fλ(t, s) := [eλs −R(t, s)]−1, we have Dλ(t, s)Fλ(t, s) = Fλ(t, s)Dλ(t, s) and

R(λ,A(t))x = Dλ(t, s)Fλ(t, s)x, x ∈ X. (6)

We recall that a component of subset Z in X is the largest connected subset of Z. Let
ρ∞(A) denote the component of the resolvent set ρ(A) containing an interval [r,∞).
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Theorem 2.1. Let A(t) be the infinitesimal generator of C0-quasi semigroup R(t, s) on
the Hilbert space X. For a closed subspace V the following statements are equivalent:

(a) V is R(t, s)-invariant.
(b) V is R(λ,A(t))-invariant for some λ ∈ ρ∞(A(t)).
(c) V is R(λ,A(t))-invariant for all λ ∈ ρ∞(A(t)).

Proof. (a)⇒(b). From definitions of Dλ(t, s), Fλ(t, s), and (6), the hypothesis implies that
R(λ,A(t))V ⊆ V for all t ≥ 0.

(b)⇒(c). It follows from Lemma 2.5.5 of [2].
(c)⇒(a). From the hypothesis, for any λ ∈ ρ∞(A(t)) we have

R(λ,A(t))v = Dλ(t, s)Fλ(t, s)v ∈ V,

for all v ∈ V . Definitions of Dλ(t, s) and Fλ(t, s) give R(t, s)v ∈ V for all v ∈ V and
t, s ≥ 0. Thus, V is R(t, s)-invariant. �

In general, Theorem 2.1 is not true if ρ∞(A(t)) is replaced by ρ(A(t)), see Example I.5
of [1]. As well, The converse of Lemma 2.1 is not always true for unbounded infinitesimal
generator, as shown by the following example.

Example 2.1. Let X be the Hilbert space L2[0, 1] and A(t)x(ξ) = 1
t+1

d2x
dξ2

, t ≥ 0, on

D = {x ∈ X : x, dxdξ are absolutely continuous, x(0) = x(1) = 0, d2x
dξ2
∈ X}.

If it is defined a subspace

V = {x ∈ X : x(ξ) = 0 almost everywhere on [0, 1
2 ]},

then V is A(t)-invariant, but not R(t, s)-invariant.

It is clear that V is A(t)-invariant and ρ∞(A(t)) = ρ(A(t)). Since 0 is not the eigenvalue
of A(t), so A(t) is invertible, and

(A(t)−1x)(ξ) = (t+ 1)

∫ ξ

0
(ξ − 1)ηx(η)dη + (t+ 1)

∫ 1

ξ
ξ(η − 1)x(η)dη.

If we set x0(ξ) = π2χ
[
1
2 ,1]

(ξ) sinπξ, then x0 ∈ V , but

(A(t)−1x0)(ξ) =

{
−ξ, 0 ≤ ξ < 1/2
1− ξ − sinπξ, 1/2 ≤ ξ ≤ 1,

is not in V , where χE denotes the indicator function of the set E. Theorem 2.1 implies
that V is not R(t, s)-invariant.

The converse of Lemma 2.1 remains true if each A(t) is a non-autonomous Riesz-spectral
operator i.e. A(t) = a(t)A where A is a Riesz-spectral operator [2] and a is a positively
continuous function for all t ≥ 0. We see that for each t ≥ 0, A(t) and A have common
eigenvectors [16].

Lemma 2.2. Let A(t) is a non-autonomous Riesz-spectral operator where A has the Riesz
basis of the set of eigenvectors {φn : n ∈ N} corresponding to the set of eigenvalues
{λn : n ∈ N} satisfies supn∈N Re(λn) < ∞. If A(t) is the infinitesimal generator of a
C0-quasi semigroup R(t, s) on the Hilbert space X, V is a closed subspace of D, and V is
A(t)-invariant, then V is R(t, s)-invariant.

Proof. It follows from Lemma 2.5.4 of [2] and Theorem 3 of [16]. �
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Theorem 2.2. Let A(t) be the infinitesimal generator of a C0-quasi semigroup R(t, s) on
a Hilbert space X. If for each t ≥ 0, A(t) is a non-autonomous Riesz-spectral operator
with the basis Riesz of the set of the eigenvectors {φn : n ∈ N}, then ρ∞(A(t)) = ρ(A(t)).
Moreover, if V is a closed subspace of X, then V is R(t, s)-invariant if and only if

V = span
n∈J
{φn}, for some J ⊂ N.

Proof. The definition of the Riesz-spectral operator [2] and Theorem 3 of [16] imply that
ρ∞(A(t)) = ρ(A(t)) for every t ≥ 0.

Sufficiency. By the representation R(t, s) in Theorem 3 of [16], we have that V is
R(t, s)-invariant.

Necessity. It follows from the proof of Lemma 2.5.8 of [2] and Theorem 3 of [16] with

PΓ(t)x :=
1

2πi

∫
Γ
(λI −A(t))−1xdλ =

1

a(t)

∑
λn∈Γ

〈x, ϕn〉φn,

where Γ is a simple, closed, positively oriented curve that encloses some eigenvalues. �

3. System-Invariance Concepts

We consider the non-autonomous linear control system

ẋ(t) = A(t)x(t) +B(t)u(t), t ≥ 0,

x(0) = x0, x(t) ∈ X, u(t) ∈ U,
(7)

where X and U are Hilbert spaces, A(t) is the infinitesimal generator of a C0-quasi semi-
group, and each B(t) ∈ Ls(U,X) with finite-dimensional ranB(t), and u is the control,
where Ls(V,W ) denotes the space of linear bounded operators from V to W equipped
with strong operator topology. We also assume that U = Cm and B(t) injective.

There are many concepts of the system invariance that can be developed from the
autonomous systems. We begin with the strongest. We denote RA+BF (t, s) as the C0-
quasi semigroup generated by the family A(t) + B(t)F (t). The existence of the quasi
semigroup is guaranteed by Theorem 3 of [16]. Moreover, we see that A(t) +B(t)F (t) and
A(t) have common domain.

Definition 3.1. A subspace V of X is said to be closed-loop invariant if there exists a
bounded feedback control F (t) such that

RA+BF (t, s)V ⊆ V, t, s ≥ 0. (8)

The definition says that V is closed-loop invariant if it is RA+BF (t, s)-invariant for the
system ẋ(t) = [A(t) +B(t)F (t)]x(t) for some F with F (t) ∈ Ls(X,U), t ≥ 0.

Lemma 3.1. Let V be a closed subspace of X and RA+BF1(t, s)-invariant for some F1

with F1(t) ∈ Ls(X,U), t ≥ 0. The subspace V is RA+BF2(t, s)-invariant for some F2 if
and only if ranB(t)(F1(t)− F2(t))|V ∩D ⊆ V .

Proof. Necessity. By the hypothesis we have

RA+BF1(t, s)V ⊆ V and RA+BF2(t, s)V ⊆ V,
for all t, s ≥ 0. By differentiating both with respect to s and setting s = 0, we obtain

[A(t) +B(t)F1(t)](V ∩ D) ⊆ V and [A(t) +B(t)F2(t)](V ∩ D) ⊆ V.
These imply that ranB(t)(F1(t)− F2(t))|V ∩D ⊆ V .

Sufficiency. Let V be RA+BF1(t, s)-invariant and ranB(t)(F1(t) − F2(t))|V ∩D ⊆ V .
The generator A(t) + B(t)F1(t) is densely defined on V and V ∩ D ⊆ V . From the
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perturbation theory for the quasi semigroups, Theorem 3 of [17], we have a C0-quasi
semigroup RA+BF2(r, t) which is the uniform limit of the series

∑∞
n=0Rn(r, t), where

R0(r, t) = RA+BF1(r, t)

Rn(r, t) =

∫ t

0
RA+BF1(r + s, t− s)B(r + s)(F1 − F2)(r + s)Rn−1(r, s)ds,

for all t, r, s ≥ 0 with t ≥ s and n ∈ N. By an induction argument and the hypothesis, we
have Rn(r, t)V ⊆ V for all n. Since V is closed, it follows that RA+BF2(r, t)V ⊆ V . �

Definition 3.2. Let λ be an element of ρ(A(t)). An operator F (t) from X to U is said
to be A(t)-bounded if D ⊆ D(F (t)) and F (t)(λI −A(t))−1 ∈ L(X,U).

We can show that if the operator F (t) is bounded, then it is A(t)-bounded. Therefore,
the family of A(t)-bounded operators is larger than the family of bounded operators. In
case A(t) is bounded, these families are equal.

Corollary 3.1. Let V be a closed subspace of X and B be a subspace of ranB(t) such that
B + (ranB(t) ∩ V ) = ranB(t). If V is closed-loop invariant, then there exists an A(t)-
bounded feedback F (t) such that V is RA+BF (t, s)-invariant and ranB(t)F (t)|V ∩D ⊆ B.

Proof. Assume that V is RA+BF̃ (t, s)-invariant for some F̃ with F̃ (t) ∈ Ls(X,U), t ≥ 0.

Since the range of F̃ (t) is finite dimensional, (BF̃ )(t) can be represented as

(BF̃ )(t)x =

q∑
i=1

bi〈(A(t)− λI)x, fi〉+

p∑
i=q+1

bi〈(A(t)− λI)x, fi〉,

where λ ∈ ρ(A(t)), spani=1,2,...,q{bi} = B, spani=q+1,...,p{bi} ⊆ ranB(t) ∩ V , x ∈ D, and
bi, fi ∈ X. Setting F with

F (t)x =

q∑
i=1

〈(A(t)− λI)x, fi〉, x ∈ D,

we have ranB(t)(F (t)− F̃ (t))|V ∩D ⊆ V and B(t)F (t)|V ∩D ⊆ B. Lemma 3.1 gives that V
is RA+BF (t, s)-invariant with F (t) is A(t)-bounded. �

Next we define the generator invariance corresponding to the closed-loop invariance.
We use the class of A(t)-bounded operators.

Definition 3.3. A subspace V of X is said feedback invariant if there exists a A(t)-bounded
feedback law F (t) such that

[A(t) +B(t)F (t)](V ∩ D) ⊆ V. (9)

Lemma 3.2. If V1 ⊆ D is a linear subspace, closed with respect to the graph norm of A
and V2 ⊆ X is a closed linear subspace with

A(t)V1 ⊆ V2 + ranB(t),

then there exists an A(t)-bounded feedback law F (t) such that

[A(t) +B(t)F (t)]V1 ⊆ V2.

Proof. Proof follows the proof of Theorem 4.1 of [6]. �

Definition 3.4. A subspace V of X is said to be (A(t), B(t))-invariant if

A(t)(V ∩ D) ⊆ V + ranB(t). (10)
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For u : [0,∞)→ U , the mild solution of the non-autonomous system (7) [16] defined by

x(t) = R(0, t)x0 +

∫ t

0
R(s, t− s)B(s)u(s)ds, t, s ≥ 0. (11)

We consider the operator GtR,B : L2([0, t], U)→ X defined by

GtR,B(u) :=

∫ t

0
R(s, t− s)B(s)u(s)ds.

We see that GtR,B is a continuous linear operator.

Definition 3.5. The reachability subspace corresponding to the quasi semigroup R(t, s)
and operator B(t) is defined by

R(R|ranB(t)) :=
⋃
t≥0

ranGtR,B. (12)

We see that if the closure of R(R|ranB(t)) equals X i.e. R(R|ranB(t)) = X, then

system (7) is approximately controllable [16]. In general, R(R|ranB(t)) is not in D [5],
but we have the following results.

Theorem 3.1. The reachability subspaces satisfy the followings.

(a) R(R|ranB(t)) is the smallest closed, R(t, s)-invariant subspace containing ranB(t).

(b) R(R|ranB(t)) is feedback invariant i.e. R(RA+BF |ranB(t)) = R(R|ranB(t)).

(c) R(R|ranB(t)) is an (A(t), B(t))-invariant subspace.

(d) If ranB(t) is R(t, s)-invariant, then R(R|ranB(t)) = ranB(t).

Proof. (a) If x ∈ R(R|ranB(t)), there exists u ∈ L2([0, t], U) such that

x =

∫ t

0
R(r, t− r)B(r)u(r)dr.

We have that R(t, s)x is also in R(R|ranB(t)), since it has the form

R(t, s)x =

∫ t

0
R(t, s)R(r, t− r)B(r)u(r)dr =

∫ t+s

0
R(r, t+ s− r)B(r)u0(r)dr,

where

u0(r) =

{
u(r), 0 ≤ r ≤ t
0, r > t.

This gives that R(t, s)R(R|ranB(t)) ⊆ R(R|ranB(t)). Since R(t, s) is a linear bounded

operator, it follows that R(t, s)R(R|ranB(t)) ⊆ R(R|ranB(t)).

Since R(R|ranB(t)) is closed, for u ∈ L2([0, t], U) we have

B(t)u(t) = lim
h→0

1

h

∫ t+h

t
R(s, t− s)B(s)u(s)ds ∈ R(R|ranB(t)).

This shows that ranB(t) ⊆ R(R|ranB(t)).

Finally, we show that R(R|ranB(t)) is the smallest closed, R(t, s)-invariant subspace
which contains ranB(t). Suppose that V is another closed, R(t, s)-invariant subspace and

ranB(t) ⊆ V ⊆ R(R|ranB(t)). If z ∈ R(R|ranB(t)), there exists a sequence tn ∈ R+,
un ∈ L2([0, tn], U) such that

z = lim
n→∞

∫ tn

0
R(s, tn − s)B(s)un(s)ds.
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By the hypothesis we have R(s, tn − s)B(s)un(s) ∈ V . Moreover, by closedness of V it

follows that z ∈ V . It completes that V = R(R|ranB(t)).
(b) The quasi semigroup generated by A(t) +B(t)F (t) is given by [16]

RA+BF (r, t) = R(r, t) +

∫ t

0
R(r + s, t− s)B(r + s)F (r + s)RA+BF (r, s)ds. (13)

By transforming variables and changing the order of the integrals, (13) gives∫ t

0
RA+BF (s, t− s)B(s)u(s)ds =

∫ t

0
R(s, t− s)B(s)u(s)ds+∫ t

0
R(ξ, t− ξ)B(ξ)

(∫ ξ

0
F (ξ)RA+BF (s, ξ − s)B(s)u(s)ds

)
dξ ∈ R(R|ranB(t)).

This gives R(RA+BF |ranB(t)) ⊆ R(R|ranB(t)). For the reverse inclusion, the quasi
semigroup R(r, t) can be consider as the perturbation RA+BF (r, t) with the feedback −BF ,

it follows that R(R|ranB(t)) ⊆ R(RA+BF |ranB(t)).

(c) Since R(R|ranB(t)) is RA+BF (t, s)-invariant, it follows that

RA+BF (t, s)R(R|ranB(t)) ⊆ R(R|ranB(t)), t, s ≥ 0. (14)

Differentiating (14) with respect to s yields

[A(t) +B(t)F (t)]RA+BF (t, s)(R(R|ranB(t)) ∩ D) ⊆ R(R|ranB(t)).

Letting s = 0 we obtain

(A(t) +B(t)F (t))(R(R|ranB(t)) ∩ D) ⊆ R(R|ranB(t)).

For F = 0 this implies (10).

(d) From (a) we have ranB(t) ⊆ R(R|ranB(t)). On other hand, if y ∈ R(R|ranB(t))
there exists a sequence rn ∈ R+, un ∈ L2([0, rn], U) such that

y = lim
n→∞

∫ rn

0
R(s, rn − s)B(s)un(s)ds.

By the hypothesis we have R(s, rn − s)B(s)un(s) ∈ B(t). This implies that y ∈ ranB(t).

Thus R(R|ranB(t)) ⊆ ranB(t). �

Definition 3.6. A subspace V of X is said to be open-loop invariant if for each x0 ∈ V
there exists a u ∈ C(R+, U) such that the mild solution (11) remains in V .

We note that if the state space is finite-dimensional, then the function u in Definition 3.6
is measurable enough [1]. However, this condition no longer holds if the state space is
infinite dimensional [6]. In the autonomous systems, a closed subspace V is closed-loop
invariant if and only if it is open-loop invariant [1, 6]. In case the non-autonomous systems,
this condition is only fulfilled when V is a subspace of D.

Theorem 3.2. Let V be a closed subspace of X and for each t ≥ 0, A(t) is a closed
operator. The subspace V is (A(t), B(t))-invariant if and only if it is feedback invariant.

Proof. Let V be (A(t), B(t))-invariant i.e.

A(t)(V ∩ D) ⊆ V + ranB(t). (15)

Lemma 3.2 implies that there exists an A(t)-bounded feedback law F (t) such that

[A(t) +B(t)F (t)](V ∩ D) ⊆ V, (16)

i.e. V is feedback invariant.
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Conversely, let V be feedback invariant and (16) holds. Since V is closed and each
A(t) is a closed operator, V ∩ D is a closed subspace with respect to the graph norm
‖(x,A(t)x)‖ = ‖x‖+ ‖A(t)x‖. By (16) for any x ∈ V ∩ D there exists v ∈ V such that

A(t)x = v −B(t)F (t)x = v +B(t)w, w = F (t)(−x).

This gives (15) i.e. V is (A(t), B(t))-invariant. �

Theorem 3.3. Let V be a closed subspace of X. The subspace V is closed-loop invariant
if and only if there exists an λ0 ∈ R such that for for all λ > λ0

[λI −A(t)](V ∩ D) + B0 = V + B0. (17)

Proof. Let V be RA+BF (t, s)-invariant for an A(t)-bounded feedback law F (t). By Corol-
lary 3.1 we may assume that ranB(t)F (t)|V ∩D ⊆ B0. Since V is closed-loop invariant, by
Theorem 2.1 (c) there exists a real number λ0 such that

[λI −A(t)−B(t)F (t)](V ∩ D(A(t) +B(t)F (t))) = V, λ ≥ λ0. (18)

Since D(A(t) +B(t)F (t)) = D and ranB(t)F (t)|V ∩D ⊆ B0, (18) implies (17).
Conversely, assume that (17) holds. This implies that

A(t)(V ∩ D) ⊆ V + B0 = V + ranB(t). (19)

By Theorem 3.2, there exists an A(t)-bounded feedback law F (t) such that

[A(t) +B(t)F (t)](V ∩ D) ⊆ V. (20)

Similar to the proof of Corollary 3.1, we may assume that V satisfies ranB(t)F (t)|V ∩D ⊆
B0 or ranB(t)F (t)|V ∩D ∩ V = {0}. Let λ ∈ R with λ > λ0 such that [λ,∞) ⊆ ρ(A(t) +
B(t)F (t)). In virtue (17), every x ∈ V can be written as

x = (λI −A(t))v +B(t)u (21)

for some v ∈ V ∩ D and B(t)u ∈ B0. From (21), we have

B(t)u+B(t)F (t)v = x− (λI −A(t)−B(t)F (t))v.

From (20), we have that B(t)u + B(t)F (t)v ∈ V , but this is only possible if B(t)u +
B(t)F (t)v = 0. Since ranB(t)F (t)|V ∩D ⊆ B0 and B(t)u ∈ B0, we have

x = (λI −A(t)−B(t)F (t))v. (22)

Multiplying two sides of (22) by (λI−A(t)−B(t)F (t))−1 gives (λI−A(t)−B(t)F (t))−1V ⊆
V . Theorem 3.2 concludes that V is RA+BF (t, s)-invariant. �

Definition 3.7. A closed subspace V of a Hilbert space X is said to be controlled invariant
if V satisfies condition (17).

The controlled invariance is a property of the system operator A(t) and the input
operator B(t). The dual concept is called conditioned invariance i.e. a property of the
system operator A(t) and the output operator C(t).

Definition 3.8. A closed subspace V of a Hilbert space X is said to be conditioned in-
variant if there exists a G(·) where G(t) ∈ Ls(Y,X) such that for all t, s ≥ 0 satisfies
RA+GC(t, s)V ⊆ V .

The following theorem shows the precise meaning of the duality of the controlled and
conditioned invariance.

Theorem 3.4. A closed subspace V of a Hilbert space X is controlled invariant for the
system (A(t), B(t)) if and only if V ⊥ is conditioned invariant for the system (B∗(t), A∗(t)),
where T ∗ denotes the adjoint operator of T .
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Proof. We have that RA+BF (t, s)V ⊆ V if and only if R∗A+BF (t, s)(V ⊥) ⊆ V ⊥ and
R∗A+BF (t, s) = RA∗+F ∗B∗(t, s) for all t, s ≥ 0. This provides the assertion. �

4. An Application in Disturbance Decoupling Problem

In this section we give an application of the invariant theory in disturbance decoupling
problem (DDP) of the non-autonomous linear control systems. We consider

ẋ(t) = A(t)x(t) +B(t)u(t) +D(t)q(t),

y(t) = C(t)x(t),
(23)

where A(t), B(t), u(t) are as before, q is a disturbance, q(.) ∈ L2([0, t], Q), y(t) ∈ Y
is the output to be decoupled, D(t) and C(t) are bounded operators such that D(t) ∈
Ls(Q,X), and C(t) ∈ Ls(X,Y ), respectively. The DDP is depicted by Figure 1. The
DDP is to find, if possible, for the non-autonomous system (23) a feedback system of
form u(t) = F (t)x(t) such that in the closed-loop system y does not depend on the
disturbance input q. In this case we call that the DDP (23) is solvable. Thus, the DDP
is to design a feedback law u(t) = F (t)x(t) such that the transfer from q to y is zero, i.e.
C(t)[λI − (A(t) +B(t)F (t))]−1D(t) = 0. By (11) the later is equivalent to

C(t)

∫ t

0
RA+BF (s, t− s)D(s)q(s)ds = 0, q ∈ L2([0, t], Q), t ≥ 0. (24)

From Definition 3.5, it is clear that (24) holds if and only if

R(RA+BF |ranD(t)) ⊆ kerC(t). (25)

Figure 1. Disturbance Decoupling Problem

Lemma 4.1. The DDP (23) is solvable if and only if there exists a controlled invariant
subspace V such that ranD(t) ⊆ V ⊆ kerC(t) for all t ≥ 0.

Proof. The DDP is solvable if and only if the equation (25) holds. By choosing V =

R(RA+BF |ranD(t)), this subspace satisfies the assertions. �

For the closed subspace V of X, V∗(V ) denotes the largest controlled invariant subspace
contained in V . Existence of this subspace guarantees the solvability of DDP (23).

Theorem 4.1. If V∗(kerC(t)) exists, then DDP (23) is solvable if and only if

ranD(t) ⊆ V∗(kerC(t)). (26)

Proof. Necessity. Suppose that for every t ≥ 0, F (t) ∈ Ls(X,U) satisfies (25). Notice that
RA+BF is RA+BF (t, s)-invariant and is contained in kerC(t). Therefore

ranD(t) ⊆ R(RA+BF |ranD(t)) ⊆ V∗(kerC(t)).
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Sufficiency. Since V∗(kerC(t)) exists, there exists an F (t) ∈ Ls(X,U) such that

[A(t) +B(t)F (t)](V∗(kerC(t)) ∩ D) ⊆ V∗(kerC(t)).

Part (d) of Theorem 3.1 and (26) provide

R(RA+BF |ranD(t)) ⊆ R(RA+BF |V∗(kerC(t)) = V∗(kerC(t)) ⊆ kerC(t).

This proves (25). �

In general, the subspace V∗(V ) need not always exist, see Example E.9 of [1]. Moreover,
since RA+BF (t, s)V ⊆ V implies RA+BF (t, s)V ⊆ V , V∗(V ) must be closed when it exists.
We end this section with an example about the solvability of DDP of the non-autonomous
heat system which is modified from Example 8 of [5].

Example 4.1. Consider a non-autonomous heated rod which is heated around one point
and due to some experimental setup is subject to disturbances in another region with the
temperature at a certain measurement point be independent of the disturbances. The con-
figuration is schematized in Figure 2 and the mathematical model is given by

∂x

∂t
= a(t)

∂2x

∂ξ2
+ b(ξ, t)u(t) + d(ξ, t)q(t), 0 < ξ < 1, t ≥ 0

y(t) =

∫ 1

0
c(ξ, t)x(ξ, t)dξ, x(0, t) = x(1, t) = 0,

(27)

where for each t there are various shape-functions b, d, and c to approximate the sensor
and control actuators.

Figure 2. Configuration of Disturbance

The problem (27) can be formulated as a system of the form (23) on the Hilbert space
X = L2(0, 1), where

A(t) = a(t)
d2

dx2
, B(t) = b(·, t), D(t) = d(·, t), C(t) = 〈·, c(·, t)〉,

with A(t) is self-adjoint on D = {x ∈ X : x, dxdξ absolutely continuous d2x
dξ2
∈ X,x(0) =

x(1) = 0} and eigenvectors φn(ξ) =
√

2 sinnπξ, n ∈ N. For each t ≥ 0, set b = b(·, t),
d = d(·, t), and c = c(·, t) are elements of X. From Corollary 6.6 of [5], V∗(kerC(t)) will
exist if either of the following conditions hold

〈R(t, s)b, c〉 = 0, t, s ≥ 0, (28)

R(R|ranC(t)) = R(A(t)|ranC(t)), 〈B(t), A(t)kc〉 = 0, k ≥ 0 (29)

〈B(t), A(t)kc〉 = 0, k = 0, . . . , p− 1 〈B(t), A(t)pc〉 6= 0. (30)

In case the system (A(t), B(t)) is approximately controllable, (28) implies that d = 0.
Thus, (28) is not true in general. The condition (29) is not fulfilled in general, since

R(R|ranC(t)) = R(A(t)|ranC(t)) holds only if d is an eigenvector of A(t). This provides
that (30) with p = 0 is the possibility satisfying the situation. Moreover, in virtue of
Theorem 4.1, the sufficiency for disturbance decoupling are

〈b, c〉 6= 0, 〈d, c〉 = 0, c ∈ D. (31)
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The appropriate feedback law is given by u(t) = F (t)x(t),

F (t) = 〈·, f(t)〉, f(t) = (αc−A(t)c)/〈d, c〉, α constant.

The physical interpretation of the conditions (31) is that for each time t the shape
function c is smooth and bounded on the interior of [0, 1], the shape functions d and c do
not overlap, and b and c must overlap.

5. Conclusions

The sufficient and necessary conditions for the invariance under the C0-quasi semi-
groups and its generator can be identified. The relation-invariance of both can also be
investigated. Closed loop invariant, open-loop invariant, feedback invariant, (A(t), B(t))-
invariant, conditioned invariant, and controlled invariant are the types of the invariance
of non-autonomous control systems with respect to the C0-quasi semigroups. The system-
invariance is applicable to solve the DPP of the non-autonomous control systems. The
sufficiency for the solvability of the DPP is identified by the largest controlled invariant
subspace of kernel of output operator.
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