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DIVISOR GRAPHS WITH FOUR TRIANGLES

KM. KATHIRESAN1∗, R. MUTHUKAMATCHI1, §

Abstract. In this paper, we investigate divisor graphs with four triangles and estab-
lish a forbidden subgraph characterization for all divisor graphs containing four triangles.
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1. Introduction

In 2000, [11] defined the divisor graphs for a finite nonempty set of integers. A divisor
graph G is an ordered pair (V,E) where V ⊂ Z and for all u, v ∈ V, u 6= v, uv ∈ E(G) if
and only if u|v or v|u.

In 2001, Chartrand et al. [2] defined the divisor graphs for a finite nonempty set S of
positive integers. The divisor graph G(S) of S has S as its vertex set and two distinct
vertices i and j of G(S) are adjacent if either i divides j or j divides i. A graph G is
a divisor graph if G is isomorphic to G(S) for some finite, nonempty set S of positive
integers. Hence if G is a divisor graph, then there exists a function f : V (G)→ N, called
a divisor labeling of G, such that G ∼= G[f(V (G))].

A labeling f : V (G) → N is called a divisor labeling if u 6= v where u, v ∈ V (G), uv ∈
E(G) if and only if f(u) | f(v) or f(v) | f(u) . If a graph G possess divisor labeling, then G
is called divisor graph. Every graph does not possess divisor labeling. See [1, 3, 6, 7, 8, 9]
for more information on divisor graphs. For a dynamic survey on graph labelings such as
graceful labelings, prime labelings and magic labelings, we refer to Gallian [4]. For recent
results on graceful labelings, one can refer [10].

Let S be nonempty set of positive integers. The divisor digraph D(S) of S has the
vertex set S and (i, j) is an arc of D(S) if i divides j. Thus G(S) is the underlying graph
of D(S).

The degree deg v of a vertex v in a digraph D is the sum of its indegree and outdegree,
that is, deg v = id v + od v. A vertex v is an end vertex if deg v = 1.
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For a vertex u of D, let N+(u) = {x|(u, x) ∈ E(D)} and N−(u) = {x|(x, u) ∈ E(D)}.
u is called a transmitter (respectively, receiver) N−(u) = ∅ (respectively N+(u) = ∅).

A vertex u of D is a transitive vertex, if outdegree of u and indegree of u are both
greater than zero and for every x ∈ N−(u) and y ∈ N+(u), necessarily (x, y) ∈ E(D).

Let G be a divisor graph and G be isomorphic to G(S). The orientation given by D(S)
is called the divisor orientation of G.

An orientation D of a graph G in which every vertex is a transmitter, a receiver, or
a transitive vertex is called a divisor orientation of G. If G is a divisor graph and f is a
divisor labeling of G, then D[f(V (G))] is called the orientation of G induced by f.

For S = {2, 4, 6, 8, 18}, the divisor graph G(S) and divisor digraph D(S) are shown in
Figure 1

Figure 1. A divisor graph and a divisor digraph

The graph G = 2P2 +K1 of Figure 1 is a divisor graph and the function f : V (G)→ N
defined by f(v) = 2, f(u) = 4, f(w) = 6, f(x) = 8, f(y) = 18 is a divisor labeling. The
vertex v is a transmitter, the vertices y and x are receivers and the vertices u and w are
transitive vertices. The orientation given by D(S) is the divisor orientation of G.

Also, the graph G = K4 − e is a divisor graph and the graph K3 ×K2 is not a divisor
graph ([5] and [2]).

In [2], it is proved that the graph G′ of Figure 2 is not a divisor graph.

Figure 2. The graph G′ is not a divisor graph

It is shown in [11] that Kn,K1,n, C2n, Pn,Km,n are divisor graphs. Also it is shown that
the odd cycles C2n+1 for all n > 1 are not divisor graphs and any graph with an induced
subgraph which is an odd cycle of length greater than or equal to 5 is not a divisor graph.

It is known in [2] that no divisor graph contains an induced odd cycle of length 5 or
more and every bipartite graph is a divisor graph.

It is known in [5] that a triangle-free graph G is a divisor graph if and only if G is
bipartite. However there are divisor graphs that contain triangles. A forbidden subgraph
characterization for all divisor graphs containing at most three triangles is given in [5].
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Lemma 1.1. [11] Every induced subgraph of a divisor graph is a divisor graph.

Theorem 1.1. [2] A graph G is a divisor graph if and only if G has a divisor orientation.

Theorem 1.2. [5] If G is a connected graph that contains at most three triangles and no
other induced odd cycles, then G is a divisor graph if and only if G does not contain any
of the graphs in Figure 3 as an induced subgraph, where each dashed line represents an
edge that may or may not be present.

Figure 3. Non divisor graphs

In [5] Gera et al. raised the following question, ‘Which graphs with four or more triangles
and no other induced odd cycles are divisor graphs?’

In this paper, we give a complete solution to the above problem for graphs with at most
four triangles.

If a graph G contains four triangles, then it is more complicated to determine whether
G is a divisor graph. In order to determine all forbidden subgraphs for divisor graphs with
exactly four triangles, we first present preliminary results.

2. Main Results

Lemma 2.1. Each graph in Figure 1 is a divisor graph.
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Figure 1. The graphs Hi(1 ≤ i ≤ 37)

The graph H1(= W5) is a divisor graph [11].
For each 2 ≤ i ≤ 25, the graph Hi has an orientation, in which every vertex is a

transmitter, a receiver, or a transitive vertex, as shown in Figure 2. Thus for each 2 ≤
i ≤ 25 the graph Hi has a divisor orientation.

It follows by Theorem 1.1, that each graph Hi(2 ≤ i ≤ 25) is a divisor graph.
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Figure 2. Orientations of Hi for 2 ≤ i ≤ 25

For each 26 ≤ i ≤ 33 except for i = 28, 31 the graph Hi has two components, one
component is K3 and the another component has divisor orientation as shown in Figure 3.

Figure 3. Orientation of a component Hi for 26 ≤ i ≤ 33 except for i = 28, 31

It follows by Theorem 1.1 that each graph Hi (for 26 ≤ i ≤ 33 except for i = 28, 31) is
a divisor graph. Since the graph K4 − e, 2P2 + K1 and K3 are divisor graphs, each graph
Hi (for i = 28, 31 and for 34 ≤ i ≤ 37) is a divisor graph. Thus each graph Hi(1 ≤ i ≤ 37)
in Figure 1 is a divisor graph.

Each of the parts of the following lemma shows that the certain graphs that contain one
of the graphs Hi(1 ≤ i ≤ 37) in Figure 1 are divisor graphs. We omit the routine proofs
of these lemma.

Lemma 2.2. Let G be a bipartite graph with
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(1) S = {v2, v4, v5} (respectively, S∗ = {v1, v2, v3, v4}) ⊆ V (G) such that 〈S〉 = P3 :
v4, v5, v2 (respectively, 〈S∗〉 = C4 : v1, v2, v3, v4, v1). Define D1 (respectively, D∗1)
from G by adding two (respectively, one) new vertices v1, v3 (respectively, vertex
v5) such that each vertex v1, v3 is adjacent with v2, v4, v5 (respectively, the vertex
v5 is adjacent with every vertex in S∗).

(2) S = {v5, v6} (respectively, S∗ = {v1, v2, v3, v4, v6}) ⊆ V (G) such that v5v6 ∈ E(G)
(respectively, 〈S∗〉 = K1,4 with its central vertex v6). Define D2 (respectively, D∗2)
from G by adding four (respectively, one) new vertices v1, v2, v3, v4 (respectively,
vertex v5) such that each vertex v1, v2, v3, v4 is adjacent with both v5, v6 (respec-
tively, the vertex v5 is adjacent with every vertex in S∗).

(3) S = {v4, v5, v6} (respectively, S∗ = {v1, v2, v3, v5}) ⊆ V (G) such that 〈S〉 = P3 :
v4, v5, v6 (respectively, 〈S∗〉 = K1,3 with its central vertex v5). Define D3 (respec-
tively D∗3) from G by adding three (respectively, two) new vertices v1, v2, v3 (respec-
tively v4, v5) such that each vertex v1, v2 is adjacent with both v4, v5 and the vertex
c is adjacent with v4, v5, v6 (respectively, the vertex v4 is adjacent with v1, v2, v3, v5
and the vertex v6 is adjacent with both v3, v5).

(4) S = {v2, v3, v4, v6} ⊆ V (G) such that 〈S〉 = P4 : v3, v4, v2, v6. Define D4 from G
by adding two new vertices v1, v5 such that the vertex a is adjacent with v2, v3, v4
and the vertex v5 is adjacent with v2, v4, v6.

(5) S = {v2, v3, v4, v6} (respectively, S∗ = {v1, v4, v5}) ⊆ V (G) such that 〈S〉 = K1,3

with its central vertex d (respectively, 〈S∗〉 = P3 : v1, v4, v5). Define D5 (respec-
tively, D∗5) from G by adding two (respectively, three) new vertices v1, v5 (respec-
tively, v2, v3, v6) such that the vertex v1 is adjacent with v2, v3, v4 and the vertex
v5 is adjacent with v2, v4, v6 (respectively, the vertex v2 is adjacent to v3, v4, v5 and
the vertex v3 is adjacent with both v1, v4 and the vertex v6 is adjacent with both
v4, v5).

(6) S = {v4, v5, v7} (respectively, S∗ = {v1, v2, v3, v5, v7}) ⊆ V (G) such that 〈S〉 =
P3 : v4, v5, v7. (respectively, 〈S∗〉 = K1,4 with its central vertex v5). Define D6 (re-
spectively, D∗6) from G by adding four (respectively, two) new vertices v1, v2, v3, v6
(respectively, v4, v6) such that each vertex v1, v2, v3 is adjacent with both v4, v5 and
the vertex v6 is adjacent with both v5, v7 (respectively, the vertex v4 is adjacent with
v1, v2, v3, v5 and the vertex v6 is adjacent with both v5, v7).

(7) S = {v1, v2, v3, v5, v7} ⊆ V (G) such that 〈{v1, v2, v3, v5}〉 = K1,3 with its central
vertex v5 and v2v7 ∈ E(G). Define D7 from G by adding two new vertices v4, v6
such that the vertex v4 is adjacent with v1, v2, v3, v5 and the vertex v6 is adjacent
with both v2, v7.

(8) S = {v2, v3, v4, v7} ⊆ V (G) such that 〈S〉 = P4 : v3, v4, v2, v7. Define D8 from G by
adding three new vertices v1, v5, v6 such that the vertex v1 is adjacent with v2, v3, v4
and the vertex v5 is adjacent with both v2, v4 and the vertex v6 is adjacent with both
v2, v7.

(9) S = {v2, v3, v4, v7} ⊆ V (G) such that 〈S〉 = K1,3 with its central vertex v4. Define
D9 from G by adding three new vertices v1, v5, v6 such that the vertex v1 is adjacent
with v2, v3, v4 and the vertex v5 is adjacent with both v1, v4 and the vertex v6 is
adjacent with both v4, v7.

(10) S = {v1, v4, v5, v7} ⊆ V (G) such that 〈S〉 = P4 : v1, v4, v5, v7. Define D10 from G
by adding three new vertices v2, v3, v6 such that the vertex v2 is adjacent with the
vertex v1, v4, v5 and the vertex v3 is adjacent with both the vertices v1, v4 and the
vertex v6 is adjacent with both the vertices v7, v5.
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(11) S = {v3, v4, v5, v6, v7} ⊆ V (G) such that 〈S〉 = P5 : v3, v4, v5, v6, v7. Define D11

from G by adding two new vertices v1, v2 such that the vertex v1 is adjacent with
v3, v4, v5 and the vertex v2 is adjacent with v5, v6, v7.

(12) S = {v3, v4, v5, v6} (respectively, S∗ = {v2, v3, v4, v5, v7}) ⊆ V (G) such that 〈S〉 =
P4 : v3, v4, v5, v6 (respectively, 〈{v2, v4, v5, v7}〉 = K1,3 with its central vertex v5 and
v3v4 ∈ E(G)). Define D12 (respectively, D∗12) from G by adding three (respectively,
two) new vertices v1, v2, v7 (respectively, v1, v6) such that the vertex v1 is adjacent
with v3, v4, v5 and each vertex v2, v7 is adjacent with both v5, v6 (respectively, the
vertex v1 is adjacent with v3, v4, v5 and the vertex v6 is adjacent with v2, v5, v7).

(13) S = {v3, v4, v5} (respectively, S∗ = {v2, v3, v4, v6}) [respectively, S∗∗ =
{v1, v2, v4, v6, v7}] ⊆ V (G) such that 〈S〉 = P3 : v3, v4, v5 (respectively, 〈S∗〉 = K1,3

with its central vertex v4) [respectively, 〈S∗∗〉 = K1,4 with its central vertex v4].
Define D13 (respectively, D∗13) [respectively, D∗∗13] from G by adding four (respec-
tively, three) [respectively, two] new vertices v1, v2, v6, v7 (respectively, v1, v5, v6)
[respectively, v3, v5] such that each vertex v1, v6 is adjacent with both v3, v4 and
each vertex v2, v7 is adjacent with both v4, v5 (respectively, each vertex v1, v6 is
adjacent with both v3, v4 and the vertex v5 is adjacent with v2, v4, v7) [respectively,
the vertex v3 is adjacent with v1, v4, v6 and vertex v5 is adjacent with v2, v4, v7].

(14) S = {v3, v4, v5, v6} ⊆ V (G) such that 〈S〉 = C4 : v3, v4, v5, v6, v3. Define D14 from
G by adding three new vertices v1, v2, v7 such that the vertex v1 is adjacent with
v3, v4, v5 and the vertex v2 is adjacent with both v5, v6 and the vertex v7 is adjacent
with both v3, v6.

(15) S = {v3, v4, v5, v6, v8} ⊆ V (G) such that 〈S〉 = P5 : v3, v4, v5, v6, v8. Define D15

from G by adding three new vertices v1, v2, v7 such that the vertex v1 is adjacent
with v3, v4, v5 and the vertex v2 is adjacent with both v5, v6 and the vertex v7 is
adjacent with both v6, v7.

(16) S = {v2, v4, v6, v7, v8} ⊆ V (G) such that 〈{v2, v4, v6, v7}〉 = K1,3 with its cen-
tral vertex v4 and v2v8 ∈ E(G). Define D16 from G by adding three new vertices
v1, v3, v5 such that the vertex v1 is adjacent with v2, v4, v8 and the vertex v5 is
adjacent with both v4, v7 and the vertex v3 is adjacent with both v4, v6.

(17) S = {v1, v4, v5, v6, v8} ⊆ V (G) such that 〈{v1, v4, v5, v6}〉 = K1,3 with its cen-
tral vertex v4 and v6v8 ∈ E(G). Define D17 from G by adding three new vertices
v2, v3, v7 such that the vertex v2 is adjacent with both v4, v5 and the vertex v3 is
adjacent with v1, v4, v6 and the vertex v7 is adjacent with both v6, v8.

(18) S = {v3, v4, v5, v6, v8} ⊆ V (G) such that 〈S〉 = P5 : v8, v3, v4, v5, v6. Define D18

from G by adding three new vertices v1, v2, v7 such that the vertex v1 is adjacent
with v3, v4, v5 and the vertex v7 is adjacent with both v3, v8 and the vertex v2 is
adjacent with both v5, v6.

(19) S = {v3, v4, v5, v8} (respectively, S∗ = {v1, v4, v5, v6, v8}) ⊆ V (G) such that 〈S〉 =
P4 : v3, v4, v5, v8 (respectively, 〈{a, v4, v5, v6}〉 = K1,3 with its central vertex v4 and
v5v8 ∈ E(G)). Define D19 (respectively, D∗19) from G by adding four (respectively,
three) new vertices v1, v2, v6, v7 (respectively, v2, v3, v7) such that each vertex v1, v6
is adjacent with both v3, v4 and the vertex v2 is adjacent with both v4, v5 and the
vertex v7 is adjacent to both v5, v8 (respectively, the vertex v2 is adjacent with both
v4, v5 and the vertex v3 is adjacent with v1, v4, v6 and the vertex v7 is adjacent with
both v5, v8).

(20) S = {v3, v4, v5, v8} (respectively, S∗ = {v1, v4, v5, v6, v8}) ⊆ V (G) such that 〈S〉 =
K1,3 with its central vertex v4 (respectively, 〈S∗〉 = K1,4 with its central vertex
v4). Define D20 (respectively, D∗20) from G by adding four (respectively, three) new
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vertices v1, v2, v6, v7 (respectively, v2, v3, v7) such that each vertex v1, v6 is adjacent
with both v3, v4 and the vertex v2 is adjacent with both v4, v5 and the vertex v7 is
adjacent with both v4, v8 (respectively, the vertex v2 is adjacent with both v4, v5
and the vertex v3 is adjacent with v1, v4, v6 and the vertex v7 is adjacent with both
v4, v8).

(21) S = {v3, v5, v6, v8} ⊆ V (G) such that 〈S〉 = P4 : v8, v3, v5, v6. Define D21 from
G by adding four new vertices v1, v2, v4, v7 such that each vertex v1, v4 is adjacent
with both v3, v5 and the vertex v7 is adjacent with both v3, v8 and the vertex v2 is
adjacent with both v5, v6.

(22) S = {v3, v4, v5, v6, v9} ⊆ V (G) such that 〈S〉 = P5 : v4, v5, v6, v3, v9. Define D22

from G by adding four new vertices v1, v2, v7, v8 such that the vertex v1 is adjacent
with both v4, v5 and the vertex v2 is adjacent with both v5, v6 and the vertex v7 is
adjacent with both v3, v6 and the vertex v8 is adjacent with both v3, v9.

(23) S = {v5, v6, v7, v8, v9} ⊆ V (G) such that 〈S〉 = P5 : v5, v6, v7, v8, v9. Define D23

from G by adding four new vertices v1, v2, v3, v4 such that the vertex v1 is adjacent
with both v5, v6 and the vertex v2 is adjacent with both v6, v7 and the vertex v3 is
adjacent with both v7, v8 and the vertex v4 is adjacent with both v8, v9.

(24) S = {v2, v4, v6, v7, v9} ⊆ V (G) such that 〈{v2, v4, v6, v7}〉 = K1,3 with its cen-
tral vertex v4 and v7v9 ∈ E(G). Define D24 from G by adding four new vertices
v1, v3, v5, v8 such that the vertex v1 is adjacent with both v2, v4 and the vertex v3
is adjacent with both v6, vd and the vertex v5 is adjacent with both v4, v7 and the
vertex v8 is adjacent with both v7, v9.

(25) S = {v2, v4, v6, v7, v9} ⊆ V (G) such that 〈S〉 = K1,4 with its central vertex v4.
Define D25 from G by adding four new vertices v1, v3, v5, v8 such that the vertex v1
is adjacent with both v2, v4 and the vertex v3 is adjacent with both v4, v6 and the
vertex v5 is adjacent with both v4, v7 and the vertex v8 is adjacent with both v4, v9.

(26) S = {v4, v5, v7, v8} (respectively, S∗ = {v1, v2, v3, v5, v7, v8}) ⊆ V (G) such that
v4v5, v7v8 ∈ E(G) (respectively, 〈{v1, v2, v3, v5}〉 = K1,3 with its central vertex v5
and v7v8 ∈ E(G)). Define D26 (respectively, D∗26) from G by adding four (re-
spectively, two) new vertices v1, v2, v3, v6 (respectively, d,f) such that each vertex
v1, v2, v3 is adjacent with both v4, v5 and the vertex v6 is adjacent with both v7, v8.
(respectively, the vertex v4 is adjacent with v1, v2, v3, v5 and the vertex v6 is adja-
cent with both v7, v8).

(27) S = {v2, v3, v4, v7, v8} ⊆ V (G) such that 〈{v2, v3, v4}〉 = P3 : v3, v4, v2 and v7v8 ∈
E(G). Define D27 from G by adding three new vertices v1, v5, v6 such that the vertex
v1 is adjacent with v2, v3, v4 and the vertex v5 is adjacent with both v2, v4 and the
vertex v6 is adjacent with both v7, v8.

(28) S = {v2, v4, v6, v7} (respectively, S∗ = {v2, v4, v5, v7, v8}) [respectively, S∗∗ =
{v1, v3, v4, v5, v7, v8}] ⊆ V (G) such that v2v4, v6v7 ∈ E(G) (respectively, 〈{v5, v7,
v8}〉 = P3 : v5, v7, v8 and v2v4 ∈ E(G)) [respectively, 〈{v1, v3, v4}〉 = P3 : v1, v4, v3
and 〈{v5, v7, v8}〉 = P3 : v5, v7, v8]. Define D28 (respectively, D∗28) [respectively,
D∗28] from G by adding four (respectiely, three) [respectively, two] new vertices
v1, v3, v5, v8 (respectively, v1, v3, v6) [respectively, v2, v6] such that each vertex v1, v3
is adjacent with both v2, v4 and each vertex v5, v8 is adjacent with both v6, v7 (re-
spectively, each vertex v1, v3 is adjacent with both v2, v4 and the vertex v6 is adjacent
with v5, v7, v8) [respecitvely, the vertex v2 is adjacent with v1, v3, v4 and the vertex
v6 is adjacent with v5, v7, v8].

(29) S = {v3, v4, v5, v6, v8, v9} ⊆ V (G) such that 〈{v3, v4, v5, v6}〉 = P4 : v3, v4, v5, v6
and v8v9 ∈ E(G). Define D29 from G by adding three new vertices v1, v2, v7 such
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that the vertex v1 is adjacent with v3, v4, v5 and the vertex v2 is adjacent with both
v5, v6 and the vertex v7 is adjacent with both v8, v9.

(30) S = {v3, v4, v5, v8, v9} (respectively, S∗ = {v1, v4, v5, v6, v8, v9}) ⊆ V (G) such that
〈{v3, v4, v5}〉 = P3 : v3, v4, v5 and hi ∈ E(G) (respectively, 〈{v1, v4, v5, v6}〉 = K1,3

with its central vertex v4 and v8v9 ∈ E(G)). Define D30 (respectively, D∗30) from G
by adding four (respectively, three) new vertices v1, v2, v6, v7 (respectively, v2, v3, v7)
such that each vertex v1, v6 is adjacent with both v3, v4 and the vertex v2 is adjacent
with both v4, v5 and the vertex v7 is adjacent with both v8, v9 (respectively, the vertex
v3 is adjacent with v1, v4, v6 and the vertex v2 is adjacent with both v4, v5 and the
vertex v7 is adjacent with both v8, v9).

(31) S = {v2, v4, v7, v8, v9} (respectively, S∗ = {v1, v3, v4, v7, v8, i} ⊆ V (G) such that
〈{v7, v8, v9}〉 = P3 : v8, v7, v9 and bd ∈ E(G) (respectively, 〈{a, c, d}〉 = P3 :
v1, v4, v3 and 〈{v7, v8, v9}〉 = P3 : v8, v7, v9). Define D31 (respectively, D∗31) from G
by adding four (respectively, three) new vertices v1, v3, v5, f (respectively, v2, v4, v5)
such that each vertex v1, v3 is adjacent with both v2, v4 and the vertex v5 is adjacent
with both v7, v8 and the vertex f is adjacent with both v7, v9 (respectively, the vertex
v2 is adjacent with v1, v4, v3 and the vertex v5 is adjacent with both v7, v8 and the
vertex v6 is adjacent with both v7, v9).

(32) S = {v4, v5, v6, v7, v9, v10} ⊆ V (G) such that 〈{v4, v5, v6, v7}〉 = P4 : v4, v5, v6, v7
and v9v10 ∈ E(G). Define D32 from G by adding four new vertices v1, v2, v3, v8
such that the vertex v1 is adjacent with both v4, v5 and the vertex v2 is adjacent
with both v5, v6 and the vertex v3 is adjacent with both v6, v7 and the vertex v8 is
adjacent with both v9, v10.

(33) S = {v2, v4, v6, v7, v9, v10} ⊆ V (G) such that 〈{v2, v4, v6, v7}〉 = K1,3 with its cen-
tral vertex v4 and v9v10 ∈ E(G). Define D33 from G by adding four new vertices
v1, v3, v5, v8 such that the vertex v1 is adjacent with both v2, v4 and the vertex v3
is adjacent with both v4, v6 and the vertex v5 is adjacent with both v4, v7 and the
vertex v8 is adjacent with both v9, v10.

(34) S = {v3, v4, v5, v8, v9, v10} ⊆ V (G) such that 〈{v3, v4, v5}〉 = P3 : v4, v3, v5 and
〈{v8, v9, v10}〉 = P3 : v10, v8, v9. Define D34 from G by adding four new vertices
v1, v2, v6, v7 such that the vertex v1 is adjacent with both v3, v4 and the vertex v2
is adjacent with both v3, v5 and the vertex v6 is adjacent with both v8, v9 and the
vertex v7 is adjacent with both v8, v10.

(35) S = {v2, v4, v6, v7, v9, v10} (respectively, S∗ = {v1, v3, v4, v6, v7, v9, v10}) ⊆ V (G)
such that v2v4, v6v7, v9v10 ∈ E(G) (respectively, 〈{v1, v3, v4}〉 = P3 : v1, v4, v3 and
v6v7, v9v10 ∈ E(G)). Define D35 (respectively D∗35) from G by adding four (respec-
tively, three) new vertices v1, v3, v5, v8 (respectively, v2, v5, v8) such that each vertex
v1, v3 is adjacent with both v2, v4 and the vertex v5 is adjacent with both v6, v7 and
the vertex v8 is adjacent with both v9, v10 (respectively, the vertex v2 is adjacent
with v1, v3, v5 and the vertex v5 is adjacent with both v6, v7 and the vertex v8 is
adjacent with both v9, v10).

(36) S = {v3, v4, v5, v7, v8, v10, v11} ⊆ V (G) such that < {v3, v4, v5} >= P3 : v4, v3, v5
and v7v8, v10v11 ∈ E(G). Define D36 from G by adding four new vertices v1, v2, v6, v9
such that the vertex v1 is adjacent with both v3, v4 and the vertex v2 is adjacent
with both v3, v5 and the vertex v6 is adjacent with both v7, v8 and the vertex v9 is
adjacent with both v10, v11.

(37) S = {u1, u2, u3, u4, v1, v2, v3, v4} ⊆ V (G) such that uivi ∈ E(G) for all i = 1, 2, 3, 4.
Define D37 from G by adding four new vertices a1, a2, a3, a4 such that the vertex
ai is adjacent with both ui, vi for all i = 1, 2, 3, 4.
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Then Di( respectively (D∗i ), 1 ≤ i ≤ 37 is a divisor graph containing the graph Hi of
Figure 1 as a subgraph.

We are now prepared to determine all forbidden subgraphs for connected divisor graphs
that contain exactly four triangles. We will only outline the proof of this result.

Theorem 2.1. Let G be a connected graph that contains exactly four triangles and no
other induced odd cycles. Then G is a divisor graph if and only if G does not contain any
of the graphs in the Figure 4 as an induced subgraph, where each dashed line represents
an edge that may or may not be present.

Figure 4. Non divisor graphs

Proof. Since each graph in Figure 4 is not a divisor graph, it follows by Lemma 1.1 that if
G contains any of the graphs of Figure 4 as an induced subgraph, then G is not a divisor
graph. For the converse, assume that G does not contain any of the graphs of Figure 4 as
an induced subgraph. We show that G is a divisor graph. Since G contains exactly four
triangles and no other induced odd cycles, it follows that G contains exactly one of the
graphs Hi(1 ≤ i ≤ 37) shown in Figure 1 as subgraph. Since each Hi(1 ≤ i ≤ 37) is a
divisor graph, by Lemma 1.1, we may assume that G 6= Hi. We consider these 37 cases.
Case 1. G contains H1 as a subgraph.

If |V (G) − V (H1)| ≤ 1, then G = D1 or G = D∗1, since G has exactly four triangles.
Thus G is a divisor graph by Lemma 1.1. Thus we may assume that |V (G)−V (H1)| ≥ 2.
Since G does not contain G0 as an induced subgraph, it follows that

(1) at least one of deg v1 = 3, deg v2 = 3, deg v5 = 4 (and)
(2) at least one of deg v2 = 3, deg v3 = 3, deg v5 = 4 (and)
(3) at least one of deg v1 = 3, deg v4 = 3, deg v5 = 4 (and)
(4) at least one of deg v3 = 3, deg v4 = 3, deg v5 = 4.

We have the following subcases
1.1. deg v1 = 3, deg v3 = 3
1.2. deg v2 = 3, deg v4 = 3
1.3. deg v5 = 4.

Subcase 1.1. deg v1 = 3, deg v3 = 3.
G−{v1, v3} is a bipartite graph and so G = D1. Thus G is a divisor graph by Lemma 1.1.

Similar proof holds for the subcase 1.2.
Subcase 1.3. deg v5 = 4.
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G−{v5} is a bipartite graph and so G = D∗1. Thus G is a divisor graph by Lemma 2.2.
If

(1) deg v1 > 3 and deg v2 > 3 and deg v5 > 4 (or)
(2) deg v2 > 3 and deg v3 > 3 and deg v5 > 4 (or)
(3) deg v1 > 3 and deg v4 > 3 and deg v5 > 4 (or)
(4) deg v3 > 3 and deg v4 > 3 and deg v5 > 4,

then G contains G0 as an induced subgraph, which is impossible.
Case 2. G contains H2 as a subgraph.

If |V (G) − V (H2)| ≤ 1, then G = D2 or G = D∗2, since G has exactly four triangles.
Thus G is a divisor graph by Lemma 2.2. Thus we may assume that |V (G)−V (H2)| ≥ 2.
Since G does not contain G0 as an induced subgraph, it follows that

(1) at least one of deg v1 = 2, deg v6 = 5, deg v5 = 5 (and)
(2) at least one of deg v2 = 2, deg v6 = 5, deg v5 = 5 (and)
(3) at least one of deg v3 = 2, deg v6 = 5, deg v5 = 5 (and)
(4) at least one of deg v4 = 2, deg v6 = 5, deg v5 = 5.

We have the following subcases
2.1. deg v1 = 2, deg v2 = 2, deg v3 = 2, deg v4 = 2
2.2. deg v5 = 5
2.3. deg v6 = 5.

Subcase 2.1. deg v1 = 2, deg v2 = 2, deg v3 = 2, deg v4 = 2
G − {v1, v2, v3, v4} is a bipartite graph and so G = D2. Thus G is a divisor graph by

Lemma 2.2.
Subcase 2.2. deg v5 = 5.

G−{v5} is a bipartite graph and so G = D∗2. Thus G is a divisor graph by Lemma 2.2.
Proof is similar to the Subcase 2.3. If

(1) deg v1 > 2 and deg v6 > 5 and deg v5 > 5 (or)
(2) deg v2 > 2 and deg v6 > 5 and deg v5 > 5 (or)
(3) deg v3 > 2 and deg v6 > 5 and deg v5 > 5 (or)
(4) deg v>2 and deg v6 > 5 and deg v5 > 5,

then G contains G0 as an induced subgraph, which is impossible.
It is verified that G is a divisor graph for the Case k: G contains Hk as a subgraph for

3 ≤ k ≤ 37. �

We conclude this paper with the following forbidden subgraph characterization for con-
nected divisor graphs that contain at most four triangles.

Corollary 2.1. G is a connected graph that contains at most four triangles and no other
induced odd cycles. Then G is a divisor graph if and only if G does not contain any of
the graphs in Figure 4 as an induced subgraph, where each dashed line induced subgraph,
where each dashed line respresents an edge that may or may not present.

Proof. Combining Theorem 1.2 and Theorem 2.1, we get the forbidden subgraph charac-
terization for connected divisor graphs that contain at most four triangles. �
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