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CONTROLLABLE SOLITON AND BREATHER INTERACTIONS FOR

FIFTH-ORDER VARIABLE COEFFICIENT NONLINEAR

SCHRÖDINGER EQUATION IN OPTICAL FIBERS

Z. ABBAS1, §

Abstract. In this article, we investigate fifth-order variable coefficient nonlinear Schrö-
dinger equation, which govern optical pulse in fiber optics and obtain soliton and breather
solutions by applying Darboux transformation. Soliton and breather are responsible for
data transmission over the long distance without loss of power. In optical fibers, control
soliton and breather interactions have important application in signal processing and
transmission. In solutions, With different values of coefficients of dispersion we obtain
parabolic, cubic and periodical oscillating soliton. By controlling spectral parameter λ,
we obtain different types of interactions like head on, overtaking and parallel on soli-
ton. The effects of coefficients of dispersion and spectral parameter λ on the pattern of
breather also presented.
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1. Introduction

In different fields, soliton and breather play significant role specially in molecular biol-
ogy, plasma physics, oceanography and optical fibers [1, 2, 3, 4, 5, 6, 7, 8]. Particularly,
when we discuss their control in different media then their significance become more clear.
As localized wave structures solitons have been largely investigated in several nonlinear
mechanisms like in optics. Optical solitons have fruitful applications in different optical
control and photonic signal processing. Fiber optics is one of the such field where, the
controllable soliton and breather are responsible for transmission of signals to long dis-
tance with out loss of energy. Attenuation, dispersion and other nonlinear effects causes
difficulties during propagation of optical signals. A well balance between dispersion and
nonlinear effects generate soliton in fiber optics [9, 10, 11, 26, 29]. Nonlinear Schrödinger
equation (NLS) is govern the soliton pulse transmission in optical fibers. Different re-
searchers obtained soliton solutions of (NLS) by using different methods like Hirota’s bi
linear method, Darboux transformation (DT), inverse scattering transformation (IST) and
Bäcklund transformation (BT) [12, 13, 14, 15, 16, 17, 18, 19, 24, 25, 27, 28]. The pulse
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in fiber optics gets shorter, when the intensity of optical field become stronger. In this
situation we govern the behavior of pulse by using higher-order (NLS). By using (DT), we
will investigate fifth-order variable coefficient (NLS) equation proposed in [20] as

irt + b(t)(rxx + 2r|r|2)− ia(t)H[r(x, t)] + c(t)P [r(x, t)]− id(t)Q[r(x, t)] = 0 (1)

where

H[r(x, t)] = rxxx + 6|r|2rx,
P [r(x, t)] = rxxxx + 8|r|2rxx + 6r|r|4 + 4r|rx|2 + 6r2

xr
∗ + 2r2r∗xx,

Q[r(x, t)] = rxxxxx + 10|r|2rxxx + 10(r|r|2)x + 20r∗rxrxx + 30|r|4rx.

where r(x, t) represents the amplitude, the subscripts denoted the corresponding deriva-
tives with respect to spatial coordinate x and temporal coordinate t and asterisk ∗ rep-
resent complex conjugate. a(t), b(t), c(t) and d(t) represent third order dispersion, group
velocity dispersion, forth order dispersion and fifth order dispersion coefficients respec-
tively. Also H[r(x, t)], P [r(x, t)] and Q[r(x, t)] represent Hirota’s operator, Lakshmanan
Porsezian Daniel (LPD) operator and quintic operator having orders third, forth and fifth
respectively.

The equation (1) reduced to (NLS) [21], (LPD) [22] and Hirota’s equation [23] by
setting coefficients a = c = d = 0, a = d = 0 and c = d = 0 which are describe in
optical fiber applications, ultrashort optical pulse propagation and correction to cubic
non linearity in water waves respectively. In this paper, we will apply (DT) to fifth order
variable coefficient (NLS) equation to obtain soliton and breather solutions. By controlling
different parameters in solutions, we will investigate the interactions between soliton and
breather. The division of sections in this article is as follows.

In section 2, we will construct N-soliton solution for equation (1) by applying (DT).
With the help of N-soliton solution, we will derive one and two soliton solutions and
their interactions in section 3. In section 4, we will obtain breather solution and give
their characteristics by controlling parameters. In section 5, we will give conclusions and
suggestions that how the controlling parameters in solutions will help to control the optical
pulse in fiber optics for stable propagation.

2. Lax pair and N-soliton solution

The Lax pair for the system in equation (1) is given as

Ψx = LΨ, L = i

(
λ r∗(x, t)

r(x, t) −λ

)
,

Ψt = MΨ , M =
5∑
j=0

λjMj , Mj =

(
Aj B∗

j

Bj −Aj

)
. (2)
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where

A0 = −1

2
|r|2 − 3c(t)|r|4 − ia(t)Υ1 − c(t)Υ2 − id(t)(r∗xxxr − r∗xxrx + rxxr

∗
x − rxxxr∗)

− 6id(t)(r∗t r − rtr∗)|r|2,
A1 = 2a(t)|r|2 + 6d(t)|r|4 − 2ic(t)Υ1 + 2d(t)Υ2, A2 = 2b(t) + 4c(t)|r|2 + 4id(t)Υ1,

A3 = −4a(t)− 8d(t)|r|2, A4 = −8c(t), A5 = 16d(t),

B0 = 2a(t)|r|2r + 6d(t)|r|4r + i
1

2
rx + 6ic(t)|r|2rx + a(t)rxx + 2d(t)r∗xxr

2 + 4d(t)|rx|2r

+ 6d(t)(rx)2r∗ + 8d(t)rxx|r|2 + ic(t)rxxx + d(t)rxxxx,

B1 = r + 4c(t)|r|2r − 2ia(t)rx − 12id(t)|r|2rx + 2c(t)rxx − 2id(t)rxxx,

B2 = −4a(t)r − 8d(t)|r|2r − 4ic(t)rx − 4d(t)rxx, B3 = −8c(t)r + 8id(t)rx, B4 = 16d(t)r,

B5 = 0,Υ1 = r∗xr − rxr∗, Υ2 = r∗xxr − |rx|2 + rxxr
∗.

In equation (2), Ψ = (Ψ1,Ψ2)T represent the vector function and Ψ1 and Ψ2 are the
function of x and t. The T represent the transpose of the matrix. λ denoted the spectral
parameter which is independent of x and t. The compatibility condition Lx−Mt +LM −
ML = 0 give the system in equation (1).

By applying gauge transformation Ψ[1] = D[1]Ψ the Lax pair in equation (2) transforms
the matrices into Ψ[1]x = L[1]Ψ[1] and Ψ[1]t = M [1]Ψ[1] having same form as L and M
except that r, r∗ are replaced by r[1], r[1]∗. The matrix D[1] can be derived as

D[1] =

[
λ 0
0 λ

]
−
[
ψ1,1 ψ∗

2,1

ψ2,1 −ψ∗
1,1

] [
λ1 0
0 λ∗1

] [
ψ1,1 ψ∗

2,1

ψ2,1 −ψ∗
1,1

]−1

(3)

where (ψ1,1, ψ2,1)T and
(
ψ∗

2,1,−ψ∗
1,1

)T
are the solutions of equation (2) with λ = λ1 and

λ = λ∗1. ψ1,1 and ψ2,1 are complex functions of x and t.
Then the DT for the system in equation (1) can be written as

r[1] = r[0] +
(λ∗1 − λ1)ψ∗

1,1ψ2,1

ψ1,1ψ∗
1,1 + ψ2,1ψ∗

2,1

(4)

where r[0] represent the seed solution for system in equation (1).

By setting the eigenfunctions (ψ1,1, ψ2,1)T , (ψ1,2, ψ2,2)T , ....., (ψ1,N , ψ2,N )T for N dis-

tinct solutions of Lax pair in equation (2) with λ1, λ2, .....λN are eigenvalues and λ
′
ls

(l = 1, 2, .....N), and ψ
′
1,Ns and ψ

′
2,Ns are functions of x and t.

Then the Nth iterated DT for the system in equation (1) can be expressed as

r[N ] = r[0] + 2
N∑
p=1

(
λ∗p − λp

)
ψ∗

1,p[p− 1]ψ2,p[p− 1]

ψ1,p[p− 1]ψ∗
1,p[p− 1] + ψ2,p[p− 1]ψ∗

2,p[p− 1]
(5)

also

Ψ[N ] = D[N ]D[N − 1]....D[1]Ψ,(
ψ1,1[0]
ψ2,1[0]

)
=

(
ψ1,1

ψ2,1

)
,

(
ψ1,p[p− 1]
ψ2,p[p− 1]

)
= (D[p− 1]....D[p− 1]) |λ=λp

(
ψ1,p

ψ2,p

)
(6)
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The Darboux matrix D[p] for Nth iterated DT in equation (5) is

D[p] =

[
λ 0
0 λ

]
−
[
ψ1,p[p− 1] ψ∗

2,p[p− 1]
ψ2,p[p− 1] −ψ∗

1,p[p− 1]

] [
λp 0
0 λ∗p

] [
ψ1,p[p− 1] ψ∗

2,p[p− 1]
ψ2,p[p− 1] −ψ∗

1,p[p− 1]

]−1

(7)
By using Nth iterated DT, we can obtain soliton and breather solutions for the system in
equation (1).

3. Soliton solutions

In this section, we will obtain soliton solutions for the system in equation (1). By
inserting trivial seed solution r[0] = 0 into the Lax pair in equation (2), we can obtain the
solution for the Lax pair as

ψ1,1 = ei(2∆1+λ1x), ψ1,2 = e−i(2∆1+λ1x) (8)

where

∆1 = λ2
1

∫ [
−2λ1a(t) + λ1b(t)− 4λ2

1c(t) + 8λ3
1d(t)

]
dt

By inserting the values in equation (8) along with trivial seed solution r[0] = 0 into
equation (4), we obtain one soliton solution as

r[1] = − 2 (λ1 − λ∗1)

e2i(2∆1+λ1x) + e2i(2∆∗1+λ∗1x)
(9)

We can obtain the intensity of r[1] by rewriting one soliton solution in equation (9) with
λ1 = c+ id, where a and b are real constants.

|r[1]|2 = 4b2 sech2[2b(x−Q0Q1 + 4aQ3)] (10)

Where Q0 = 4(a2 − b2), Q1 =
∫

[(−12a2 + 4b2)d(t) + 4ac(t) + a(t)]dt, Q3 =
∫

[(8a3 −
24ab2)d(t)−Q0c(t)− 2a a(t) + b(t)]dt From equation (10), we can easily obtain that the
amplitude of soliton is |2b|. From which we can understand that the amplitude of soliton
is only related to the imaginary part of λ1, which is spectral parameter.

The concept of characteristic line is introduce in order to obtain soliton velocity. From
equation (10), the characteristic line can be written as 2b(x−Q0Q1+4aQ3) =constant. We
can get soliton v = 4(3a2− b2)a(t) + 32a(a2− b2)c(t) + 16(−5a4 + 10a2b2− b4)d(t)− 4ab(t)
after differentiating characteristic line with respect to t to the both sides. From which we
govern that soliton velocity is depend upon λ1 = a+ ib and a(t), b(t), c(t) and d(t) which
are spectral parameter and coefficients of dispersion

When pulse propagate in optical fiber, then due to dispersion optical signal spread out
and consequently the amplitude of optical decrease. So by controlling spectral parameter
and coefficients of dispersion, we can maintain the amplitude of the pulse, hence soliton
formed which are responsible for data transmission over long distance with out loss of
intensity.
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Figure: 1 One soliton solution as computed from Eq. (9) with parameters λ1 = 1 + i,
a(t) = b(t) = c(t) = d(t) = 0.01t

Figure: 2 One soliton solution as computed from Eq. (9) with parameters λ1 = 1 + i,
a(t) = b(t) = c(t) = d(t) = 0.01t2
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Figure: 3 One soliton solution as computed from Eq. (9) with parameters λ1 = 1 + i,
a(t) = b(t) = c(t) = d(t) = 0.02 sin(t)

In Figure: 1, by choosing parameters as describe in caption the one soliton solution
in equation (9) shows a parabolic soliton. When we change the parameters from a(t) =
b(t) = c(t) = d(t) = 0.01t2 to a(t) = b(t) = c(t) = d(t) = 0.02 sin(t), we obtain cubic and
periodical oscillating soliton respectively as shown in Figure: 2 and 3.

By repeating above method and inserting ψ2,1 and ψ2,2 with λ = λ2 into equation (5)
we obtain two soliton solution as

r[2] =
2F

G
(11)

where

F = E0e
2i(2∆1+λ1x) + E1e

2i(2∆2+λ2x) + E2e
2i(2∆∗2+λ∗2x) + E3e

2i(2∆∗1+λ∗1x),

G = E4e
2i[2(∆1+∆∗1)+(λ1+λ∗1)x] + E5e

2i[2(∆2+∆∗1)+(λ2+λ∗1)x] + E6e
2i[2(∆1+∆∗2)+(λ1+λ∗2)x]

+ E7e
2i[2(∆2+∆∗2)+(λ2+λ∗2)x] + E8e

2i[2(∆1+∆2)+(λ1+λ2)x] + E9e
2i[2(∆∗1+∆∗2)+(λ∗1+λ∗2)x],

∆2 = λ2
2

∫ [
−2λ2a(t) + λ2b(t)− 4λ2

2c(t) + 8λ3
2d(t)

]
dt,

E0 = (λ∗1 − λ∗2) (λ2 − λ∗1) (λ2 − λ∗2) , E1 = − (λ∗1 − λ∗2) (λ1 − λ∗1) (λ1 − λ∗2) ,

E2 = (λ1 − λ2) (λ1 − λ∗1) (λ2 − λ∗1) , E3 = − (λ1 − λ2) (λ1 − λ∗2) (λ2 − λ∗2) ,

E4 = E7 = (λ1 − λ∗1) (λ2 − λ∗2) , E5 = E6 = − (λ2 − λ∗1) (λ1 − λ∗2) ,

E8 = E9 = (λ1 − λ1) (λ∗1 − λ∗2) .

In multimode optical fiber, multiple modes of light propagate. When optical signals propa-
gate in the form of soliton, than during propagation soliton keeps its shape unchanged even
before and after interactions, which is very helpful for huge amount of data transmission
without distortion of signals.
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Figure: 4 Interaction of two soliton solution as computed from Eq. (11) with parameters
λ1 = 1 + i, λ2 = 4

5 + i, a(t) = b(t) = c(t) = d(t) = 0.01t

Figure: 5 Interaction of two soliton solution as computed from Eq. (11) with parameters
λ1 = 1 + i, λ2 = 4

5 + i, a(t) = b(t) = c(t) = d(t) = 0.01t2
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Figure: 6 Interaction of two soliton solution as computed from Eq. (11) with parameters
λ1 = 1 + i, λ2 = 4

5 + i, a(t) = b(t) = c(t) = d(t) = 0.02 sin(t)

Figure: 7 Interaction of two soliton solution as computed from Eq. (11) with parameters
λ1 = 1 + i, λ2 = 1

100 + i, a(t) = b(t) = c(t) = d(t) = 0.01t
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Figure: 8 Interaction of two soliton solution as computed from Eq. (11) with parameters
λ1 = 1 + i, λ2 = 4

5 + i, a(t) = b(t) = c(t) = d(t) = 0.01t

Figure: 9 Interaction of two soliton solution as computed from Eq. (11) with parameters
λ1 = 1 + i, λ2 = 7

5 + i, a(t) = b(t) = c(t) = d(t) = 0.01t

In Figure: 4, the interaction between two parabolic soliton can easily be seen. By control-
ling parameters a(t) = b(t) = c(t) = d(t) = 0.01t which are coefficients of dispersion with
λ2 = 4

5 + i, we can see that the soliton shape remain unchanged after interaction except
phase shift, which describe that the interaction is elastic. Similarly in Figure: 5 and 6
the interactions can be seen between two cubic and periodic oscillating soliton, when we
change the coefficients of dispersion from 0.01t2 to 0.02 sin(t). By controlling different
values of spectral parameter λi = (i = 1, 2, 3, ....) we can change the propagation direction
of soliton. In Figure: 7, with a(t) = b(t) = c(t) = d(t) = 0.01t and λ2 = 1

100 + i, we can see
that the direction of two parabolic soliton are opposite and head-on interaction. Similarly
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in Figure: 8 and 9, with λ2 = 4
5 + i and λ2 = 7

5 + i the interactions between two cubic and
periodical oscillating soliton is overtaking and parallel respectively.

4. Breather solution

For obtaining breather solution, we begin with plane wave seed solution

r[0] = ei
∫

2[(t)+3c(t)]dt and inserting this solution into Lax pair in equation (2) with λ = ih,
where h represent real constant, we can obtain solution of Lax pair as

Ω̃(h) =

(
ψ1,1

ψ1,2

)
=

(
i
(
c1e

[ξ(x+ζ(t))]
)
−
(
c2e

[−ξ(x+ζ(t))]
)
e−i
∫

[b(t)+3c(t)]dt(
c2e

[ξ(x+ζ(t))]
)
−
(
c1e

[−ξ(x+ζ(t))]
)
ei
∫

[b(t)+3c(t)]dt

)
(12)

where

c1 =

√
h− ξ
ξ

, c2 =

√
ξ + h

ξ
, ξ =

√
h2 − 1,

ζ(t) = 2
∫ [

8h4d(t) + 4ih3c(t) + 2h2a(t) + 4h2d(t) + ihb(t) + 2ihc(t) + a(t) + 3d(t)
]
dt.

By inserting the value of ψ1,1 and ψ1,2 from equation (12) along with r[0] = ei
∫

[b(t)+3c(t)]dt

into equation (4), we get first order breather solution as

r[1] = ei
∫

2[b(t)+3c(t)]dtR

S
(13)

where

R = −h+ e2ξ[x+2ζ1(t)] + e2ξ[x+2ζ(t)] − e4ξ[x+ζ(t)+ζ1(t)],

S = h+
(
1− 2h2 + 2hξ

)
e2ξ[x+2ζ1(t)] +

(
1− 2h2 − 2hξ

)
e2ξ[x+2ζ(t)] + he4ξ[x+ζ(t)+ζ1(t)],

ζ1(t) =
∫ [

8h4d(t)− 4ih3c(t) + 2h2a(t) + 4h2d(t)− ihb(t)− 2ihc(t) + a(t) + 3d(t)
]
dt.

Figure: 10 First-order breather solution as computed from Eq. (13) with parameters
λ = 0.2i, a(t) = b(t) = c(t) = d(t) = t
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Figure: 11 First-order breather solution as computed from Eq. (13) with parameters
λ = 0.2i, a(t) = b(t) = c(t) = d(t) = t2

Figure: 12 First-order breather solution as computed from Eq. (13) with parameters
λ = 0.2i, a(t) = b(t) = c(t) = d(t) = sin(t)

In Figure: 10, we can see that the first order breather has periodic property but not
symmetrical in t direction. With (0 < h < 1) and λ = 0.2i, we can see that parabolic
breather in Figure: 10. By changing coefficients of dispersion from a(t) = b(t) = c(t) =
d(t) = t2 to a(t) = b(t) = c(t) = d(t) = sin(t), we can see the cubic and periodical
oscillating breathers respectively. The breathers have one peak and two valleys at each
period. They are localized on parabolic, cubic and periodical oscillating curves and not
located at same propagation variable x. Thus the pattern of breathers can be control
by coefficients of dispersion. We can also be obtain second order breather solution by

using Nth order DT in equation (5) with plane wave seed solution r[0] = ei
∫

2[b(t)+3c(t)]dt.
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With different values λ = ih and coefficients of dispersion, we can find different types of
interactions. We will try to obtain higher order soliton and breathers solutions in our next
publications.

5. Conclusion

We have investigated fifth-order variable coefficient nonlinear Schrödinger equation,
which describe the pulse propagation in fiber optics. By applying Darboux transforma-
tion, the soliton and breather solutions have been obtained. In nonlinear theory, optical
soliton and breather have significant role and an attractive research area. Optical solitons
have potential applications in various nonlinear media. Soliton biased transmission are
frequently affected by various in-homogeneous effects (attenuation, dispersion) and nonlin-
ear effects (self phase modulation, cross phase modulation, stimulated Raman scattering).
These effects cause broadening of soliton, soliton shape and soliton control. In order to
minimize the effects with the help of controlling parameters is great importance for trans-
mission of soliton pulse in optical fiber links. The effects of coefficients of dispersion and
spectral parameters λ on the soliton and breather solutions have been demonstrated. In
Figure: 1, 2 and 3, we have plotted one soliton solution from equation (9). By controlling
coefficients of dispersion, we have obtained parabolic, cubic and periodical oscillating soli-
tons. We have plotted two soliton solution from equation (11) and by controlling spectral
parameter λ values, the interactions between solitons have described, which are head on,
overtaking and parallel as shown in Figure: 4-9. From equation (13), we have plotted first
order breather solution and the effects of coefficients of dispersion have been described in
Figure: 10, 11 and 12.

So, by controlling parameters in solutions, we can change the shape, phase, amplitude,
interactions and direction of solitons, which is very helpful to control pulse transmission
in fiber optics. For long and stable propagation of optical signal in the form of solitons
can be achieved by controlling parameters.
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