TWMS J. App. and Eng. Math. V.14, N.1, 2024, pp. 247-258

EXTREMAL POINTS FOR A (n,p)-TYPE RIEMANN-LIOUVILLE
FRACTIONAL-ORDER BOUNDARY VALUE PROBLEMS

B. M. B. KRUSHNA!, §

ABSTRACT. The main objective of this work is to use the Krein—-Rutman theorem to
characterize extremal points for a (n, p)-type Riemann-Liouville fractional-order bound-
ary value problem. The key premise is that a mapping from a linear, compact operator
to its spectral radius, which depends on $, is continuous and strictly increasing as a
function of &. A nonlinear problem is also treated as an application of the result for the
linear case’s extremal point.
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Fractional-order differential equations (FDEqs) have emerged as an important tool for
modeling a wide range of physical phenomena. Besides that, substantial progress has been
achieved in the theory of fractional calculus [12, 13, 16, 19, 20, 22, 23]|. The Krein-Rutman
theorem [15] has been used to prove the existence of extremal points for second-order DEgs,
higher-order DEgs, and systems of DEgs, see Coppel [1], Schmitt and Smith [24].

The existence of a nontrivial solution that lies in a cone is a standard approach for
describing the extremal point of boundary value problems (BVPs), see [3, 8, 9, 10]. Cone
theoretic arguments are applied to linear, monotone, compact operators that are developed
to support the traditional Green’s function technique. The sign properties of a Green’s
function, which exists to serve as the Kernel of the operators, are being used to show that
the mapping preserves the cone. According to Kerin and Rootman’s operator theory, the
existence of the largest eigenvalues of the operator with the corresponding eigenfunction
occurs in a cone. Eloe et al [3, 4, 7], and Eloe and Henderson [5, 6] extended these methods
to a different BVPs. The authors recently worked on first extremal points (FEPs) for a
variety of FBVPs [11, 25]. Neugebauer [17] investigated the classification of first extremal
points for a FBVP. In [21], Prasad et al utilized the Guo—Krasnosel’skii fixed point theorem
to determine the eigenvalue intervals for which the iterative system of (n,p)-type FBVP
has at least one positive solution. Inspired and motivated by above works, in this article,
we consider the FDEqs

D4 w(t) + gt)w(t) =0, te(0,9), (1)
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associated with conditions

w(0)=0, i=0,n-2,
(0) } @

=P)($) =0,

where q € (n —1,n] for n > 3, p € [1,q — 1] is a fixed integer, ¥ > 0 and Dy, is the
Riemann-Liouville derivative. The goal of this article is to prove the existence of a largest
interval, [0, o), s.t. on any subinterval [mj, ms] of [0, o), there is only one trivial solution
of FBVP (1) and (2). The value Sy is defined as the FEP of (1), which corresponds to
the conditions (2). We'll refer to the FBVP(S), (1) and (2), seeing as & is a variable in
this article.
Throughout the paper, we consider the following assumptions:
(H1) A =T(q)39PL,
(H2) g(t) is a nonnegative continuous function and does not vanish identically on any
compact subinterval of [0, 00).
(Hsz) There exist two constants T and p > 0 s.t.
Fla-p)?* T@l@-p)| T _
(2a—2p) (2q-p) |F(a)
(H4) There exists a constant k € [0, p] s.t.
F'p—k+2)
'p—k+a)l(p—a-—k+2)
This article is organized as follows. Section 2 consists some auxiliary results. The main
theorems are presented in Section 3, and Section 4 makes significant progress in discussing
nonlinear eigenvalue problems for FBVPs using fixed point theory.

<1

1. AUXILIARY RESULTS
Definition 1.1. We say Sy is the FEP of the FBVP(S), (1) and (2), if
Sp = inf {% >0 : (1) and (2) has a nontrivial solution}.
Lemma 1.1. Suppose that (H1) holds. If 5(t) € C[0,S], then the FDEq
Di,w(t) 4+ y(t) =0, te(0,9), (3)

o

with (2) has a unique solution w(t) = / N(35t, 0)7(0)do, where
0

1 [t (3 — g)ap? 0
R(S:t,0) = — ’
(35t,0) A { 5 0

as

-1 t
w(t) = / (t — 0)9 y(0)do + kyt9 ! + kot9 2 4 4 K t9PL
F(Q) 0
USng w(j)(o) = 07 ] = m, one has kn = Kp—1="""= k2 =0. Then
-1 t
t)=w— [ (t—0% s 0)do+ kit
=0 = | (€= 0" o+ Rt

p

=0 =k [[a- e - T[S (=072 oo

i=1 i=1 F(q)
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Sr(x_ ,\a-p-1
F P(X) =0 tk—/ —(‘9 0)
rom w'P) () , we get ki | TgoarT

(3), (2) is

] 7(0)do. Hence the unique solution of

I N L 99 (G g
(0 = prg7 [, (1= 0 oMo+ s [ S —slode

o

= / R(35t, 0)s(0)do,
0
where (S5 ¢, o) is given in (4). O

Lemma 1.2. Suppose that (H1) holds. Then the Kernel X(3;t, 0) given by (4) has the
properties

(1) N(Ss5t,0) >0, Vt,0€(0,9),
(i) N0} >0, Yo (0.9)
Proof. The Kernel R(S;¢, 0) is given in (4). Let 0 < t < p < $. Then
NSit,0) =[98~ 99 > L1178 - o) P31 - )7 > 0,

A
Let 0 < o <t <. Then

N(Sit,0) = [tq S - )t P - QTP (¢ - )1
[q 1(; q@)"’ [ B (q;l)QJr (q—1)2(§2— 2)0 +O(93)}
> -1 _ oy, 2
A [1 L a 1)2(; 2)o +O(93)]
> 0.

Hence N(S;¢,0) > 0. Let 0 <t < 9 < S. Then
O (n@in0)} = 2 {t‘“(% - g)QPI} _ 197 (q—p -~ Do(S — 0)I7P

a3 3| T(@3art [ =0

AT

Let 0 < o <t < . Then

i{ } _ 0t (S -t PT (t— o)
o3 R I'(q)3a-p-1 I'(q)
9 a—p—1)o(S — 997 P?
= AG > 0.
9 k.
Hence 8—0{2\2(\9 t g)} > 0. O

Let us define

where
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Lemma 1.3. Suppose that (H1) holds. Then the Kernel R(S;t, 0) given by (5) has the
properties

(i4) 88%{,@(%;15, g)} >0, fort,0€ (0,9).
(1ii) R(S3;0,0) =0, for p € (0,).

,{ﬁ(%;o,g)} —0,i=T,n—2.
{ﬁ(s; 0, g)} >0, for o€ (0,3).
(vi) 5 [g;{ﬁ(%;o,g)}} >0, for o€ (0,).

Proof. The Kernel £(S3;t, 0) is given in (5). For 0 <t < p < S,

/it 0) =5 [tp(% - Q)q_p_l} ~ %[tp(% - 9)_p} (1 - )97 > 0.

R(351,0) =  [P(3 —0)"P 7! - (é)p_wa - @‘*‘1]
I )
S L Ar AN
_[1_ qa : e, 22 0 + 0 3>] [%p_qﬂ]
>0

Hence R(S5t,0) > 0. Let 0 <t < p < 3. Then

i{ﬁ(%;t, 9)} 0 {tp(g — 0P } _ [tf’(q -pP- 1)} o(S — g)a P2

PR T 93| T(q)Sa Pl I'(q) Ja-p
(@a—p—1)tPo(S — g)9 P2
= A5 > 0.

Let 0 < o <t < . Then

P(& _ )d—P— p _ -1
aa%{ﬁ(%;t"’)} - is{t F((Q)%i‘)‘p‘1 - Ft(q) <t t Q>q }

(@—p— 1tPo(S — g)9 P2
= A5 > 0.
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0

Hence a—(\{ﬁ(%;t, g)} > 0. We can easily establish the properties (zi7) and (iv) utilizing
R}

simple algebraic calculations. Let 0 < t < p < . Then

—p— P
p'(% - Q)q p-1 - Z | & tpqukJrlX
P A k

{8t o)} = k=0

op T(p—k+2) (t—oPrah!

F'p-q-k+2) I'(p—Fk+aq)

> 0.

8p
Hmwéﬁ{ﬂ&a@}>0Fmﬂ%La0<g§t<%ﬂmw

o] - B[P - e

Let 0 < o <t < . Then

8[81){5%(%;0,9)}} _ (q-p-—

o3 | ote

The following are the results of our extremal point analysis.

Theorem 1.1. [14] Let N: B — B be a compact and positive linear operator. Then N
has an essentially unique eigenvector in P, and the corresponding eigenvalue is simple,
positive, and larger than the absolute value of any other eigenvalue.

Theorem 1.2. [18] Let Ny, v < & < ¢ be a family of compact, linear operators on Banach
space s.t. the mapping S — Ny is continuous in the uniform operator topology. Then the
mapping S +— t(]Vg) 18 continuous.

Theorem 1.3. [14, 15] Assume v(N) > 0. Then t(N) is an eigenvalue of N, and there is a
corresponding eigenvalue in P.

Theorem 1.4. [14, 15| Suppose there exists S > 0, w € B, —w ¢ P, s.t. Sw = New w.r.1.
P. Then N has an eigenvector in P which corresponding to an eigenvalue x with x > .

2. MAIN RESULTS
Let B = {w €C[0,S]: w =t P71y 2 €0, %]} be the Banach space with the norm

@]l = sup [z(t)] = [z]o.
t€[0,9]

Define a cone P C B by
P:{weBmdﬂZOﬂntGM%G.
Next, for each 9 > 0, define the Banach space
By = {w €Cl0,9] : w=tTP 1l 2 C[O,ﬁ]}
with the norm

Il = sup |2()] = |2]..
t€[0,9]

Notice that for w € By, we have
()] = [t97P12(0)] < 192 ao]lg, ¢ € [0,0].
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This also gives the inequality
| (t)| < 9P @]y, t € [0,9).
For each 9 > 0, define the cone Py C By to be
Py = {w €By:w(t)>0forte [0,19]}.
Lemma 2.1. The cone Py is solid in By and hence reproducing.

Proof. Set Qy = {w = t4P7ly € By : w(t) > 0fort € (0,9],2(0) > } We show

that Qy C Pj. Let w € Q. Then there exists an ¢; > 0 s.t. 2(0) — ¢ > 0 since

z(0) > 0. For z € C[0,?], there exists a m; € (0,9) s.t. z(t) > (1, t € (0,m;). Therefore,
w(t) = t97P1z(t) > (9 P~! for t € (0,m;). Furthermore, w(t) > 0 on [my,d]. Thus
there exists an (2 > 0 s.t. w(t) > (2, Vt € [my, V).

Let ( = min {621 CQ} Define B¢(w) = {fﬂ € By : ||lw—wly < C} Let @ € B¢(w),
then & = t9"P~12 where 2 € C[0,9]. Now,
() — w(t)] < 19P & — wlly < (9P, te 0,0,

So for t € (0,my),

1
ZgaP=le S .

|
,tqp1C1:2

G(t) > w(t) —t1TP7I¢ > 1Pl 5

Consequently, we attain |&(t) — @(t)| < ||& — @]y < ¢. For t € [my, ],

fz(t)>w(t)—§>(§ —9) %>o

Therefore @ € Py, and thus B¢(w) C Py. Hence 2y C Py. O

Next, let Nowo(t) =0, t € [0, 3], and for each ¥ > 0, define Ny : B— B by

Nyoo(t) = fo R(J; ¢, 0)g(0)w(e)do, 0<t<4d,
fO t9—P— 1ﬁ(19, 19, Q) (Q)w(g)dg7 9 <t< &

We shall also refer to Ny : By — By, where Ny is represented by

9
Nyw(t) = /0 R(9:t, 0)g(0)w(0)do

9
= tqpl/ R(V;t, 0)g(0)w(0)do, 0 <t <.
0

By applying the methods used in [9], we establish a result for the possibility of the
extremal point g for FBVP(SJ), (1) and (2).

Theorem 2.1. Assume that (Hi)-(H4) hold. Then the FBVP(), (1) and (2) has a

unique solution for ¢ € (0, p). In particular, if 9 > p, then w = 0 is the only solution of

FBVP®), (1) and (2).

Proof. Let T = Hh?)é] lg(t)|. We utilize the contraction mapping principle to prove the
¢

existence of a p > 0, s.t. if ¥ € (0,p), FBVP(?), (1) and (2) has a unique solution. Let
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w1,y € By and consider
VP(9 — g)a P!

(NWZQ Nﬂwl) (t) = t (t — Q)q—l
/o T(q)ta—p-1 —8(0) (=2 — m)(g)d@) .

g(0)(w2 — @1)(e)de

Set

g(o) (w2 — w1)(0)de

VP — g P!
/0 [(q)ya—p-!
Lt—o!
- || TgrarE@ @ - =) (ede.
Therefore, HNﬁ’WQ - Ngleﬁ = ‘Z‘o‘ For t € (0,9),

v _ ya—p-1
/0 tplg?q)ﬁi)qppl g(0)(w2 — @1)(e)de
}Z(t)l - t (t—g)qfl

" Jo T(qyta—r—18

z(t) =

(&)(s - m)(@)de‘

yPY ¢ q-p-1
_| wm =l [ o0 - o] a0
- Yepat ' q—p—1 a-1y
\ +F<q)IW2—W1M/O 0 (t—o) 0
¥9TT(q — p)* | TYIT(q)T(q - p)
< w9 — W1||yY-
T(@a-2p)  T(a)(2a-p) 22 =1l
I'(q—p)®  T(qT(q—p)| T . .
Choose p > 0s.t. = 1. Asaresult,if 0 < ¥ < p, Ny isa
v (29 — 2p) (2a—-p) |I(a) R

contraction map with a unique fixed point according to the contraction mapping principle.
This fixed point is a solution to FBVP(9), (1) and (2). However, w = 0 is a solution of
FBVP(¥), (1) and (2), so FBVP(¢), (1) and (2) has only the trivial solution. O

Lemma 2.2. Assume that (H1)-(Ha) hold. The linear operator Ny is positive w.r.t. P and
Py for each ¥ > 0. Furthermore, Ny : Py \ {0} — Pj.

Proof. The sign properties of the Kernels X and R yield a straightforward result of the
positivity of Ny w.r.t. P and Py. We will clearly show that Ny : Py \ {0} — P§. From
Lemma 2.1, we have 2y C Py. Later, we prove that Ny : Py \ {0} — Qy.

Let w € Py \ {0}, then there exists [m;, ms] C [0,7] s.t. g(t) > 0 and w(t) > 0 for all
t € [m1, ms]. So

0 mo
Nyzo(t) :/0 N(J;t, Q)g(Q)W(Q)dQZ/ N(¥;t, 0)g(0)w(0)do >0, Ve (0,9).

Note z(t) = ta—P~! foﬂ R t, 0)g(0)w(0)do, we have

9 mo
2(9) = 9aP! / R(0:9, 0)g(0)w(0)dg > 99 P / /(0;9, 0)g()w(0)do > 0.

mi

Notice from (H4) and Lemma 1.3 that, we have

¥ gn—1
=10 :/O gtn_l{ﬁ(ﬁ;(),g)}g(@w(@)d@ > 0.
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Thus, Nyw € 0y and Ny : Py \ {0} — Pg. O

Lemma 2.3. Assume that (H1)-(H4) hold. The mapping ¥ — tv(Ny) with Ny defined on B
for each ¥ € (0, is continuous in the uniform topology.

Proof. Define f : (0,3] — {Ny} by £(9) = Ny. Assume w = t9 P71z € B. Let 0 < m; <
my < . Then

£ (mg) —£ (m) || = [N, — N, [| = sup || N, @ — N, 0|

[|[wo||=1

/m R(ma;t, 0)g(0)w(0)do — /m1 RK(my;t, @)g(g)W(@)dQ’ }
0 0

= sup sup
ell=1 { t€[0,S]

where Nyw(t) = t9 P~ &yew(t). Notice if ||w| = 1, then |w(t)| < 997P~1 for t € [0,9]. Let
T = H%(E)lx] lg(t)|. Since K(V;t, p) is continuous w.r.t. ¥, for ¢ > 0 there exists p > 0 s.t.
tel0,

|R(ma; t, 0) — R(my;t, 0)] < % whenever |ms — m;| < p. Now we shall discuss in
21rn(1l P=iy
three cases.
Case 1. Suppose t < mj. Let & = sup ‘R(mg; t, Q)’ Choose p = %_1
t€[0,my],0€[m1,my] 2ﬁ1Tm§‘ P
Then
mo mj
‘ / R(ma;t, 0)g(o)w(e)de — R(my;t, 0)g(o)w(o)de
0 0
m;
| I8tmst.0) - SGas 0| g(0)] [ (0)lde
< 0 ms
+ [ 8t o) Je(o)] |0)|de
mi
¢ —p-1 —p-1
—— Tm P+ &K TmS P jmy — my|
= —p—1 1 2
2m(1]l P=iy
<.
Case 2. Supposem; <t < ms. Let R =  sup ‘ﬁ(mg;t, g){ Choose p = < ——-
t,0€[my,ms)] 28 Tmg P
Then

mj

/m ﬁ(mz;t,@)g(g)W(@)dQ—/ A(my;my, 0)g(o)w(0)do
0 0

/O " Rl t, 0) — K(mi;my, 0)] [g(0)] [ (0)|do

< my
+ [ 8t o) [e0)] ()] de
mj
< mtl_i_LrTm?_p_l + ﬁngg_p_lhnz —my|
1

<
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¢
Case 3. Suppose t > my. Let K3 = sup |[R(mg;mo, o)|. Choose p = ————.
Qe[mhmg]‘ ‘ 2ﬁ3ng p-1
Then
mo miy
/ R(mz; my, 0)g(0)w(0)de —/ R(my;my, 0)g(0)w(e)de
0 0
mjp
| 8tmasima. o) = Km0 o) |=(0)|de
< my
+ [ |Gz, o) le(o)] |=(0)]de
mi
#qu_p_l + A3TmIT P my —my| < ¢
= 2m‘f—p_1’f 1 31my 2 1 :
Thus f is continuous. Hence ¥ — t(Ny) is continuous due to Theorem 1.2. O

Theorem 2.2. Assume that (H1)-(Ha) hold. For 9 € (0,3, v(Ny) is strictly increasing
as a function of 9.

Proof. Let x > 0 and w € Py\{0}. For t € [0,9], Theorem 1.1 claims that Nyw(t) = xw(t).
Let w(t) = w(?¥) for t > . Then, for t € [0,9], Nyw(t) = xw(t) and t(Ny) > x > 0.
Therefore t(Ny) > 0.

Now, let 0 < ¥ < 2 < 3. Since t(Ny,) > 0, by Theorem 1.3, there exists w € Py,
s.t. Ny, w = t(Ny, )w. Let w; = Ny, w and wy = Ny,w. Then for t € [0,7;], we assert that
wy — w1 € Py . In fact, by stating (w2 — @1)(t) = ta7P~1z5(t), we obtain

’191 7-92
s12(t) = /0 [R(9251,0) — K013, 0)|g(0)w(0)do + /ﬁ A(0;t, 0)g(e)w (V1) de.

1

Since w € Py, \ {0} and (H2) for [0,7:1] C [0,S], accordingly z12(t) > 0 as K(V2;t, 0) >
R(V1;t, 0). So, wa(t) > wi(t) on (0,91). Also from Lemma 1.3(iv) and ¢ € [0, 3],
Vo 81
| | 5:{0020.0}e(0)=(0)do-
Boy={ Jo L
| s {500 e eae

Thus z%Q(O) =0, i =0,n— 2. By Lemma 1.3(v) and ¢ € (0,S), one can get

/0191 [(;9;__11{@(192;0, 0} - g;__ll{ﬁ(ﬁl;o, g)}]g(@)ww)d@
Y2 8n71

atn—l

n—1
257(0) =

+ {R(02:0.0) }g(0)(v1)de

91
> 0.

Furthermore,

2

Y1
z12(0h) = /0 [R(92; 91, 0) — R(Y1; 91, 0)|g(0)w(0)do+ : R(¥2;91, 0)g(0)w(V1)do > 0,

due to Lemma 1.3(ii) and £(¥2;91,0) > 0 on (V1,092). As a result, the restriction of
wy — w1 to [0,v1] pertains to Qy, C Py, So there exists p > 0 s.t. wy — w1 = pw
w.r.t. Py,. Let @i (t) = wi(¥1) for t > 1. In consideration of wy € Py,, it concludes that
wy — wy = pw w.r.t. Py,. Thus, ws = wy + pw = t(Nﬂl)w + pw = [t(ngl) + p]w, ie.,
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Ny, = [t(Ny,) + p]w@. As a result of Theorem 1.4, t(Nyg,) > t(Ny,) + p > t(Ny, ). Hence,
t(Ny) is strictly increasing for 9 € (0, 3. O

Theorem 2.3. The following are equivalent:
(A1) So is the FEP of the FBVP(S), (1) and (2).
(Az) There exists a nontrivial solution w of the FBVP(S¢), (1) and (2) s.t. w € Pg,.
(A3) t(Ng,) = 1.

Proof. (A3) = (A3) is a direct result of Theorem 1.3.

Now, we prove (A2) = (A1). Let w € Pg, \ {0} satisfy FBVP(Sp), (1) and (2)
for 0 < ¢t < Qp. Extend w(t) = @w(Sp) for ¢ > Jp. Clearly, we have v(Ng,) > 1 for
Ng,w(t) = w(t).

If v(Ng,) = 1, then by Theorem 2.2 that v(Ny) < t(Ng,) for ¥ € (0,J¢). Therefore
t(Ny) < 1. Thus the FBVP(9), (1) and (2) has the only trivial solution. Hence Sy is the
FEP of FBVP(S), (1) and (2).

If v(Ng,) > 1. Let v € Pg, \ {0} s.t. Ng,b = t(Ng,)v. We see that restriction of v to
[0, J0] belongs to P due to Lemma 2.2. Thus, there exists p > 0 s.t. @ = pb w.r.t. Py,
0 <t <. Extend v(t) = v(S9) for t > . Then w = pov w.r.t. P. Assume p is maximal
s.t. the inequality @ > @b holds. Then, w = Ng,@w > Ng,(pv) = pNg,b = pr(Ng,)v.
Because t(Ng,) > 1, ptr(Ng,) > p. However, this contradicts the premise that @ is the
maximal value that can satisfy w > pv. So v(Ng,) = 1.

To prove (A1) = (As), notice that lim+ t(Ng) = 0. Since (A;) implies v(Ng,) > 1 and
I—0

if t(Ng,) > 1, then by the continuity of v about &, there exists ¥y € (0,p) s.t. t(Ny,) = 1,

contradicting (A;). Thus, (A;) = (As) follows from Theorem 1.2. O

3. APPLICATION TO A NONLINEAR FBVP

Consider a nonlinear FDE(q of the form
O w+1(t,w) =0, te(0,9) (7)
with conditions (2), where £(¢,@) : [0,00) x R — R is continuous, and £(¢,0) = 0, £(¢,w)
is differentiable in . Assume —{f(t, O)} is nonnegative continuous on [0, c0) and does

Ow

not vanish identically on each compact subinterval of [0, 00). Then the variational equation
along the zero solution of (7) is

4, @ + a(;{f(t,O)}w =0, te(0,9). (8)

The following fixed point theorem [2, 24] will be used to obtain sufficient conditions for
the existence of solutions of the FBVP(S), (7) and (2).

Theorem 3.1. Let B be a Banach space and let P C B be a reproducing cone. Let M: B— B
be a completely continuous nonlinear operator s.t. M: P — P and M(0) = 0. Assume M is
Fréchet differentiable at w = 0 whose Fréchet derivative N= M(0) has the property:

(H1) There exist w € P and p > 1 s.t. Mw = pw, and Nw = w implies w ¢ P.
1
Furthermore, there exists p > 0 s.t., if w = <>Mw, w € P and |wl| = p, then
X
x < 1.
Then the equation w = Mw has a solution w € P\ {0}.

We will now prove the following result using this theorem and the main conclusions of
Section 3.
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Theorem 3.2. Suppose that 3¢ is the FEP of FBVP(S), (8) and (2). For each ¥ > g
assume the property:

(71;) There exists p(¥) > 0 s.t. if w(t) is a nontrivial solution of the FDEq

Dl w+ (;)f(t,w) —0, te(0,9), ()

with conditions (2), and if w € P with ||w| = p(¥), then x < 1.
Then the FBVP(9), (7) and (2) has a nontrivial solution @ € P,V ¢ > .

Proof. For each ¥ > 3y, let Ny : B — B be defined by (6), where g(t) = ai{f(t,O)}.
v

Define the nonlinear operator My : B — B by

9
/ R(9; 1, 0)£ (0, @ (0))d, 0<t<v,
Mgz (t) = { 7%
/ (9P R0 9, )% (0, (o)) do, 9 <t < .
0

Then My is Fréchet differentiable at zo = 0. Since

‘ /0 "85t 0)[£ (0. (0) - el ()] d@‘ - /0 "x0it, o) fo (0 5(0) - g(g)]w(g)dg\

< =] | el () — el

where 0 < @(t) < w(t) for t € [0,9] and Q = sup [R(V;¢, p)|. Moreover, M;(0) = Ny.
t,0€[0,S]
By Theorems 2.2 and 2.3, it follows that v(Ng,) = 1 and t(Ny) > 1 if ¥ > Jy. Moreover,
since Sy is the FEP of the FBVP(S), (8), (2), it also follows from Theorem 2.3 that if

Nyw = w and w is nontrivial for ¥ > S, then w ¢ P. So, for ¥ > g, we can apply (772)

to check the condition () in Theorem 3.1. Thus we obtain the existence of a @ € P\ {0}
s.t. @w = Nywo. ]

4. CONCLUSION

We have derived sufficient conditions for characterization of extremal points for a (n, p)-
type Riemann-Liouville FBVP by employing the Krein—-Rutman theorem. Further, these
findings were implemented to a nonlinear FBVP using a fixed-point theorem.
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of this article.
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