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SOME NEW TRAPEZOIDAL TYPE INEQUALITIES FOR STRONGLY
GEOMETRIC-ARITHMETICALLY CONVEX FUNCTIONS

A. K. DEMIREL!, §

ABSTRACT. This paper considers some preliminary conclusions of Fejér’s integral in-
equality relevant to strongly geometric arithmetic convex functions that is a type of
the class of convex functions and also a mapping to produce a novel trapezoidal form.
This mapping is used to derive new theorems and results. By utilization these, some
applications were given.
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1. INTRODUCTION

Convexity theory provides an active research area in both pure and practical sciences.
The major of these research areas is the theory of inequality. The convexity theory was
also essential in broadening and generalizing the inequalities theory. It established various
fundamental integral inequalities for convex functions and their variant forms, utilizing
diverse concepts and approaches (see [2, 4, 12, 19]).

In usual analysis, a trapezoidal type inequality is an inequality that ensures upper
and/or lower bounds for the cardinality

¢(9) + ¢(s) )
ADLA) (o)~ [ gtmin,
in other words this is the error in approaching the integral by a trapezoidal rule for
diverse types of integrable functions described on the compact interval [0, <] (see [6]).

There are a lot of studies on trapezoidal type inequalities that have a considerable
place in inequality theory. One of the trapezoidal type inequalities studies in the liter-
ature belongs to Dragomir and Sofo [8]. They obtained some novel results relevant to
the trapezoidal type inequality. Usta et al. [22] suggested refinements inequalities for
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the Hermite-Hadamard’s type inequality and they specify explicit bounds for the trape-
zoid inequalities in terms of s-convexity. Mohammed [14] offered some novel trapezoidal
type inequalities for h-convex functions via generalized fractional integrals. Delavar and
Dragomir [7], using a M,(t) mapping, obtained some preliminary results and a new trape-
zoidal form of the Fejér inequality for h-convex functions. Turhan [21] demonstrated a
novel trapezoidal form of Fejér inequality relevant to the harmonically arithmetic convex
functions. The author also obtained the new theorems and corollaries by usage a mapping
M(t). Baleanu et al. [1] demonstrated certain novel generalized fractional inequalities
of the trapezoidal type for A\, —preinvex functions. They also investigated the novel esti-
mates on trapezoidal type inequalities for usual integral and Riemann—Liouville fractional
integrals. Dragomir [5] established some Ostrowski and trapezoidal type inequalities for
the k — g-fractional integrals of functions of bounded variation. Kalsoom et al. [11] novel
(p, ), -integral and (p, ¢)"2-integral identities. By utilizing these identities, they obtained
(p,q)r, and (p,q)"2- trapezoidal type inequalities for strongly convex and quasi-convex
functions. Budak et al. [3] demonstrated an identity for double partially differentiable
mappings. By employing this identity, they presented certain generalized inequalities for
differentiable coordinated convex functions. Sitthiwirattham et al. [18] proved several
trapezoidal and Ostrowski type inequalities via generalized fractional integrals via func-
tions of bounded variations with two variables.

In the next section, we primarily represent the definitions and theorems that will form
the basis of the paper.

2. PRELIMINARIES

In 1906, Fejér [9] introduced the following integral inequalities called that the Fejér
inequality:

6(%) = [emars [omemar < ®22E Fogan

where ¢ : [0,¢] — R is convex and ¢ : [0,s] — RT = [0, 00) is integrable and symmetric to
A= 05 (eN) =9 (%), YA€ [o,q]).

To see some other inequalities relating to Fejér’s inequalities see [13, 15, 17, 20, 21] and
the references.

Definition 2.1. Let Q be a interval, ¢ : Q C RT — R is said to be strongly GA-convex
function with modulus ¢ > 0, if

¢ (NTIRT) < (1 =) ¢ (N) + 0 (k) — en (1= 1) [[Ink — I [, (2)
for all \,k € Q and n € [0,1].

Definition 2.2. A function ¢ : [0,5] — R is said to satisfy Lipschitz condition (see [16])
on [o,] if there is a constant M so that for any two points \, k € [o,<],

[0 (A) = (k)] < M[X—5|. 3)

In [10], The Fejér trapezoid inequality for convex functions was obtained by Hwang as
follows:

Theorem 2.1. Let ¢ : Q C R — R be differentiable on Q°, where o, € Q with o < g,
and let ¢ : [o,¢] = [0,00) be continuous, positive and symmetric to %+

5= If |¢'] is convex
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on [o,s], then the following inequality holds:

@016 [y [Foin
< (27 / / T(o,5m) ‘
[|¢" ()] +[¢' (<) / /m7 ) dAdi,

where B (0,¢,n) = o + 506 and T (0,5,1) = 50 + Hls.

In [7], The Fejér trapezmd inequality for h-convex functions was obtained by Delavar
and Dragomir as follows:

Theorem 2.2. Suppose that ¢ : Q@ — R be differentiable on Q°, where o, € Q° with
o << and let ¢ : [0,5] — R is differentiable and symmetric to ‘TT“ If |¢'| is a h-convex
on [o,¢], then

'aﬁ ()/ N dA— /¢ o\
<(s—o)[|¢' (o) + |4 () /+/ () + h (1 — )] dndA.

In [21], The Fejér trapezoid inequality for harmonically-convex functions was obtained
by Turhan as follows:

(5)

Theorem 2.3. Suppose that ¢ : @ — R\0 is a differentiable on Q°, where 0,5 € Q° with
o < ¢, and let ¢ : [0,5] — R is differentiable and symmetric to UQL_,_E If |¢'| is a
harmonically-convex on [o,s], then

(@) +6() [TeN),,  [T6N e
5 /U 32 d/\—/g 2 d)\‘

<(s—0) a</” @ [A1 () [¢ ()] + A2 (N [¢' (<)[] @A

where

= 0 =1 (-m)
A1 (N) _/0 (17<+(1—n)a)2dn+/o ((1—77)<+770)2d77

and

(i (1—n) -1 n
Az (V) _/0 (n<+(1—n)a)2dn+/o ((1—77)<+770)2dn

3. MAIN RESULTS

With respect to a function ¢ : [0,¢] — R contemplate the mapping x : [0,1] — R as
follows:

1 n
)= [ (e ds= [To () as 7
U
There are some features for x(n), gathered in the next lemma.

Lemma 3.1. Suppose that Q@ C R and o, € Q° with 0 < ¢ and o] CRT - R
integrable on [o,s].
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(i) If ¢ is symmetric to \/os, then

X(n) _ anl/?(p (O,l—sgs) ds, 0<n< 1/27
—2 [/ (c1756%) ds, 1/2<n <1,

(1i) Forn € [0,1], x (n) + x (1 —n) = 0.
(iii) If ¢ is a nonnegative function, then

x(m) =0, 0<n<1/2
x(m) <0, 1/2<n<1.

(iv) This inequalities hold:

1
1
| xeldn <3 el
0

1 1
/ x ()] dn < 2 lgll, /
0 0

(v) Let Q CR* and ¢ : Q° — R is a differentiable on Q°, Q0 is an interior of Q and ¢ is
a differentiable. If ¢' € Lo,<], then this equality holds:

| K¢<o>+¢<<>>/gsO(;)dA_/Cde}

and

1/p
dn.

1
Ty

In¢—Ino 2
In¢—Ino (! L o1— 1—
= ——5 | x(md(o777") o dn.
0
Proof.
(i) Using the replace of variable A = ¢!~%¢® in the description of x (1), for 0 < n < 1/2,
we obtain
1=ncn
1 7 (M) e
= — —d\ — ——=dA 8
x (1) In¢—Ino [/U A ol-nen A (8)

where /o¢ < a177¢" < ¢. Since  is symmetric to /o,

S VoS

/ QO(A)dA:/ AN
Joe A - A

and so

ol=nen NG ol=mnen
/ w(A)dA:/ wiA)dA+/ AU

! o G (9)
:/g w(A)dAJr/" RGN
N NS A
On the other hand,
S ol=ngn S
/ wi)\)d)\: / SOE\)\)d)\qL / SO(AA)CM (10)
NS NG al=n¢n

If we use (9) and (10) to (8), we get

ol=n¢n S ol=-ncn
1 / @(A)dA_/ AGYPIN I / AW
In¢—Ino |/, A ol-nen A In¢—Ino T A
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Here x (n) = 2[;/2g0 (Ul_sgs) ds, where 1/2 <n < 1.
(i) For 5 [0, 1],

1-ncn
_ 1 7 eV Coe()
x(n) = In¢—1Ino [/U A dX /01%7] A dX

i 0'1_ O’ ag
__ / T 7 2N g - 2 (3,
In¢—1Ino |/, ol-nen A

1 [ S 7€ ol=mem %
)\
e — — AL\ — =—x(1—mn).
In¢—Ino /01%7] dn X( )

(iii) It is an easy result of the (i) claim.
(iv) With the claim (iii), we have

1/2 1
[ wontan= [ xonar= [ xiaas
/2 11/2
—2/ / 155d8d77+2/ / lssdsdn
1/2 /2
172 f1/2
<2 / / sup goalssdsdn+2/ / sup gpalss)dsdn
s€[n,1/2] 1/2J1/2 s€[1/2,n)
1/2 1 1 1
<2 [T (G-n)teleansz [ (n-3) el
0 1/2
1
<2ll¢l, |
0

For the second part of (iv),
1 1
| xelan=z [
0 0

Using Holder’s inequality to the last inequality, we have

1/2 12 |V
/ ¢ (o 1=s ¢*)ds < / ds
n n

1/p
lell, -

n_

1 1
Zldn = =
2] 1= ¢l

dn. (11)

1/2
/ (,D(O'I_SCS) ds
n

1/q

/71/2 (p(o77%7)) " ds

(12)

2

<|n-

Now applying (14) in (13), we get

/01 X ()

1/p

L



556 TWMS J. APP. AND ENG. MATH. V.14, N.2, 2024

(v) First, the equality is calculated as follows:
! 1
| xmage =)
1 LT e ) Ce
= LA . PR x| d (¢ (a1
lng—lna/o [/U A /(,1_n<7, A (¢ (U o ))

A A S ECTE

—KMLW”)<M”W]
g (000 [ - [

=(1n<—1n0)/0 x () ¢ (o7776") o' dn.

If we multiply both sides of the above equality by 1/2, the proof is complete. O
Theorem 3.1. Assume that ¢ : @ C Rt — R is a differentiable on Q°, o,¢ € Q° with

o <csand ¢ : [0,5] = R is a differentiable. Suppose that ¢’ is an integrable on [o,s]| and
there are constants r < R such that

—o<r<A (\)<R< o (13)

for all A € [lno,Ing]. Then

s ([ 2400)

N n¢—Ino)(r 1
_/O ¢()\))\80()\)]_(1 s—1 8)( +R)/O ¥ () dn

ng—Iino —Tr 1
S(l : 18)(R )/0 Ix (m)| dn.

Proof. From (v) of Lemma 3.1, we obtain

T R VA e R A
In¢—1Ino

1
e T ) (Jl—ngnd)/ (01_ngn)_r+R+r+R> i
2y 4 4
_ (Ing—1Ino) (r+R) /1
- < i

Ing—1In 1 _ _ r+ R
+20/0 x (1) <01 150! (o' M6 — 1 )dn-

(14)

X (n)dn
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As a result of

P V(U);Gﬁ(@(/g‘pg/\)dk)
ng—1mao o
_/chb()\);p()\)d)\]_(lng—lna)(T+R) /le(n)dn

8

In¢c—Ino (! _ _ r+ R
_soe 1 (e o) g

If the absolute value is used on both sides of the last equation, we obtain

In¢ —Ino (! _ _ r+ R
1< 250 [ l|ot e (o) - L
2 0 4
since from the inequality r < o'~ "7¢"¢’ (0‘1_77§77) < R, we have
T—T—ZRSal_"§”¢’(al_”§")—r+RSR—T+R (15)
which implies that

l=n n 4 (- 7 _r+R<R—r 16
o TN (o1 1 ‘ <= (16)
O

Remark 3.1. If we take g is symmetric to /o<, the from Lemma (3.1), we have

[ ([ 22

[ d)()\))\go()\)] _ (ng—Ino)(r+R) /le(n) i

8

< (In¢ —Ino) (R—r)
- 8

[ ([ 22

_/; qﬁ()\))\go(/\)] _ (Ing—Ino)(r+R) /le(n) i

lell o0,

and

8

1
1(»
—=| dn.
772 n

(Ing —Ino) (R—r) !
< : el |

Theorem 3.2. Assume that ¢ : @ C Rt — R is a differentiable on Q°, o,¢ € Q° with
o < and ¢ : [o,¢] = R is a differentiable and symmetric to \/os. If |¢'| is a strongly
GA-convex (geometric-arithmetic convex) on [o,<], then

¢ (o) + (<) /;wgk)dk_/;wcu’

2
< (Ing¢ —1Ino) (17)

NG
/ SO(AA) [CL ) [¢ (@)] + C2 (V) [¢/ (6)] = ¢ lns — no]|” C5 (A)] dA
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where . .
= nel=n _ 1-nn
/M L mo'ls d77+[m_lm (1 =mn)o "< dn,
Ing—Ino Ing—Ino
1— ! 1
= ”7 - —n-n
/"/\ Ino Jo dn + InA-lno no <,
In¢—Ino Ing—Ino
1 ! 1
C3(N) = /HMM (1 =mn)a"sdn + /le n(1—mn)o~""dn.
Ing—Ino In¢—Ino

Proof. Using the description of x (1), Lemma 3.1 and |¢'| being a strongly GA-convex

function, we obtain

'¢<a>;¢<<> [7§¢§A)dA_/(T<WdA‘

1
x(n)¢ (o176 1"7<”dn‘
lng lna / I H¢ 1— "g”)‘ak”g"dn

< (Ing —Ino)? [/02 (/77é ¢ (o1756%) ds)

< [0 =m |¢ @) + 7|6 ()] — en(1 = m) fins ~ no[?] o ~7c7dy

1 1
+/1 (/ o (156°) ds> [(1—77)|¢’(0)\+17}¢’(<)}

2 2

~ (Ing—1In 0)2

—cen(1—=n)|lng —In a|2]al_"gnd77 .

If the order of integration is changed, we get

'¢ +¢()/ )ax — /¢ ‘
// A=) [(1=n) | @ ()] + 1| ()]

11
—cn (1 —n)|lng — lna”2] o M dnds +[ / o (Ulfsgs)
b S

<[ =) |8/ @) +n]¢' )] = en (@ =n) [Ins = o] o'~ dnds] .

lng—lna

Using the alter of variable A = o' 7%¢®, we obtain

elto0) o0y, [ S0,

InA—Ino

/ [T e 0= @) +alo o)

(A
—cen(1—=n)|lng —Ino|| } 1= "g”dndw—i—/ [M - g\)

Ing—Ino

lng —1Ino)
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X [(L=m)[¢/ @) +0|¢ )] = en(1 =) Ins —no|?| o' ~Pdnda| . (19)
Since ¢ (A) function is symmetric to /og, then

[ LR @l sals ol

Ing—In X\

VS flnemina o (A
—en(1—n)|lng — lna\ﬂ o TN dndx = / /1 " g\)
o 0
< |1 =m)[¢/ @) +n]¢ ()] = en (@ =) s~ o] o' sTdndz. (20)
Additionaly it is not difficult to see that,

Ing—In X

1
Ing—Ino
/ (1—n)o'""dn = / no'lstdn,
0

InA—Ino
Ing—Ino

Ing—In A 1

Ing—Ino
/ no'eMd = / (=) e,
0 Tno Ino

—Ino 1
/1 " (1—mn)o'1"dn = n(1—mn)ols! dn.
0

InA—Ino
Ing—Ino

By using (20), (19) and (18) to (17), then we complete this proof. O

Ing—In \

Theorem 3.3. Let ¢ : Q C RT — R be differentiable on Q°, o,¢ € Q0 with o < ¢ and let
¢ : [0,5] = R nonnegative and integrable that is differentiable on (o,<). Supposing that ¢/
is an integrable on [o,<] and satisfies a Lipschitz condition for some M > 0. Then

1 <¢(U)+¢(<)/UW&A)M_/;WM)

In¢—1Ino 2

In¢—Ino

e [ 1 (Vo) i

_ 1
< Mlns ;M) ”Ug/ Ix ()] (01*%” (o%*%”*% - 1)(dn.
0
Proof. By using (v) of Lemma 3.1, we get

1 <¢(U)+¢(§)/:‘PE\/\)d/\_/;Wd)\>

In¢—Ino 2

B In¢—Ino

1
= ST [ et [0 (0 = 0 (V) + ¢ (V)] di

B In¢—Ino

1
=G [ et ¢ () — ¢ (V)]
In¢—Ino ! _
2/0 X () 071" (/a<) . (21)
From the last equality, we obtain

1 <¢(U)+¢(<)/;WiA)dA_Lg(WdA)

In¢—Inco 2

In¢—Ino

1
TR o (v
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Ing —Ino (! _ _
=R [ )| oo (o70) = ¢ () i
0
If ¢/ satisfies a Lipschitz condition as (3) for some M > 0, then

¢/ (1776") = ¢/ (Vor<)| < M| 767 —

= M (Vo) )a%*ngnfé - 1] . (22)
Because of this inequality, the proof is completed. O

Remark 3.2. In Theorem 3.3, assume that ¢ is symmetric to \/os. If we use (i) of
Lemma 3.1, we obtain

1 <¢(0)+¢(<)/(:SO(AMdA_/;WdA>

Ing—Ino 2

In¢—Inco

1
— g [ et (Ve dn

1/2
/ © (§1_5§S)
n

1
< M (Ing —1Ino)+/og sup | (o175¢%)]

1
§M(lng—lna)\/&/
0

‘01_77{7’ (a%_”cn_% — 1) ‘ dsdn

0 s€ln,1/2]
L l=nn (G503 _
‘2 n né%f,l]‘a S ((72 ¢ 2 1)‘d3d77
f L1 2
< M (Ing —Ino)+/og <Jd/2§_1/2 —0’) HgoHoo/ (2 - 7]) dn
0
M (Ins — o) (02 = o/5%) llplle
= : (23)
12
Corollary 3.1. In Theorem 3.3, if ¢ (\) =1 is taken for all X € [0,<], then
TR N W T P
2 In¢—Ino J, A
M (Ins —1Ino) (62 — 0/5¢) |loll,  o(ng—Ino
< o =) elle y o ins “Ino) gyl g

- 12 2
4. APPLICATION

In the literature, the following means for real numbers o,¢ € R are well known:
(1) The arithmetic mean:

A=A(o,5) = ;g; o,seR

(2) The geometric mean:
G =G (0,6) =05, 0,6€[0,00)
(3) The harmonic mean:

20¢
o+g

H=H(o,¢) = ;i o,sER
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(4) The generalized logaritmic mean:
gn—l—l o 0.n+1

L,(o,¢)=|———

9= [

Proposition 4.1. Let 0, € (0,00),0 < and r > 2. Then

|A(0",<") (Ing —Ino) — (¢ — o) LI 1 (0,9)]

1
:| ; TZGZ\{—l,O},U,§€R,U7éC

Vel

< (lng — lna)/ " [C’l (A) ¢ (o) + C2 (A) |¢ (5)] — ¢|Ing — Inol|?Cy (/\)] dX. (25)
Proof. In Theorem 3.2, ¢ (A) = X" and ¢ (A\) =1, A€ (0,00), > 2.
# gid)\—/gijd)\‘ _ 'A(adg’“) (Ins - Ino) — a;“
= |A(¢",¢") (Ing —Ino) = (s — o) L]"{ (0,9)]
|A(0",¢") (Ing —Ino) — (s — o) L1 (0,9)]

\/E 1 / / 2

< (lng — lna)/ X [Cﬁ (A) |¢' (0)| +C2 (V) |¢' (s)] — ¢lllng —Ina|* Cy (A)] dX. (26)

O
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