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SOME PLANAR GRAPHS WITH TEN-SIDED FACES AND THEIR

METRIC DIMENSION

S. K. SHARMA1, V. K. BHAT1∗, §

Abstract. Let Γ = (V,E) be a non-trivial planar connected graph with vertex set V
and edge set E. A set of ordered vertices R from V (Γ) is said to be a resolving set for
Γ if each vertex of Γ is uniquely determined by its vector of distances to the vertices of
R. The number of vertices in a smallest resolving set is called the metric dimension of
Γ. In this article, we study the metric dimension for two families of planar graphs, each
of which is shown to have an independent minimum resolving set with cardinality three.

Keywords: Metric dimension, independent set, metric basis, planar graph, resolving set,
connected graph.
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1. Introduction and Preliminaries

The graphs considered in this article are simple, undirected, and connected. For the
graph Γ = Γ(V,E), E(Γ) and V (Γ) represent its edge set and vertex set respectively. The
minimum number of edges between the two vertices p and q in Γ, denoted by d(p, q), is
the distance between p and q. The totality of edges that are incident to a vertex of Γ is
known as its degree (valency).

An ordered subset R ⊆ V of distinct vertices is said to be a resolving set if every pair of
different vertices of Γ are resolved by at least one vertex of R. In other words, for a subset
of vertices, R = {x1, x2, x3, ..., xq} of Γ, any vertex β ∈ V can be represented uniquely
in the form of a q-vector ϕ(β|R) = (d(x1, β), d(x2, β), d(x3, β), ..., d(xq, β)). Then, the set
R is a resolving set for Γ, if ϕ(p|R) = ϕ(q|R) implies that p = q for all p, q ∈ V . Next,
the resolving set R is said to be the metric basis for Γ, if the set R has the least possible
cardinality in Γ, and this least cardinality is known as the metric dimension (location
number) of Γ, represented by dimv(Γ). A subset R of distinguishable vertices in Γ is said
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to be an independent resolving set for Γ, if R is independent as well as resolving set.

For a subset R = {x1, x2, x3, ..., xq} of distinct ordered vertices in Γ, the lth component
(distance coordinate) of ϕ(x|R) is zero if and only if x = xl. Therefore, in order to check
that the set R is a resolving set in Γ, it is sufficient to prove that ϕ(p|R) 6= ϕ(q|R) for
each pair of distinct vertices p, q ∈ V (Γ) \R.

The first paper consisting of the concepts of resolving set and that of minimum resolv-
ing set were introduced by Slater [18], in association with the problem of recognizing the
location of a thief or an intruder in a given network. He used the terms location number
and locating set, to describe the cardinality of a minimum resolving set and a resolving
set of a given network, respectively. Harary and Melter [7] independently introduced the
same concept, but used the terms resolving set and metric dimension, rather than locating
set and location number as used by Slater, respectively.

Afterward, these concepts were studied in-depth, Melter and Tomescu [11] employed the
concept of metric dimension in image processing and pattern recognition, Sebo and Tan-
nier [13] discussed the notion of metric dimension in terms of combinatorial optimization,
Cáceres et al. [4] employed these concepts on coin weighing problems and mastermind
games, Khuller et al. [10] found an application of metric dimension in the navigation
of robots, Beerloiva et al. [2] discussed these ideas to network discovery and verification,
Chartrand et al. [5] studied applications to chemical science, Slater [18] discussed problems
related to SONAR (Sound Navigation and Ranging), coastguard LORAN (Long-Range
Navigation), facility location problems, etc.

The notion of metric dimension has recently been addressed for a lot of significant graph
families. For instance, Javaid et al. [9] studied metric dimension for regular graphs, cir-
culant graphs & Harary graphs, Sharma and Bhat [14, 15, 16] considered several graph
families and obtained their metric dimension, Khuller et al. [10] investigated these notions
for trees, Sharma and Bhat [17] also obtained the metric dimension of the line graph of
the subdivision graph of the graph of convex polytope. For a comparative study of graph
parameters and metric dimension of more algebraic flavor, see [1] by Cameron and Bailey.
For a survey on some variations and metric dimension, see Saenpholphat and Zhang [12]
and Chartrand and Zhang [6]. For more detail on metric dimension, readers are refer to
[3, 13, 19].

In this manuscript, we construct few planar graphs with some specific properties, that

is, they consist of n sided faces (where even n ≥ 10) and m(n+12)
4 number of vertices. We

represent these graphs as An
m (or Bn

m), where m = 2s; s ≥ 3 and n = 2k; k ≥ 5 with
s, k ∈ N. In this article, we take k = 5 and so consider two families, represented by A10

m

and B10
m , of planar graphs (see Fig. 1 and 2, respectively), for which we determine their

metric dimension. We also prove that the graphs A10
m and B10

m possesses an independent
minimum resolving sets of cardinality three, that is, only three vertices are the minimum
requirement for the unique identification of all vertices in the planar graphs A10

m and B10
m .

This article is organized as follows. In Section 2, we investigate the metric dimension
of the planar graph A10

m . In Section 3, we investigate the metric dimension of the planar
graph B10

m . Finally, the conclusion and future work of this paper is presented in Section 4.
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2. Location Number of Planar graph A10
m

In this section, we introduce a new family of planar graph, represented by A10
m , and for

which we investigate its metric dimension.

The planar graph A10
m (where m = 2s; s ≥ 3 & s ∈ N) comprises of 11m

2 and 8m number
of vertices and edges respectively. It consists of m faces each are having four sides, m
faces each are having five sides, m

2 faces each are having ten sides, and two faces each are

having m-sides, and is shown in Fig. 1. The vertex set V (A10
m ) and the edge set E(A10

m )
for A10

m , respectively are given by V (A10
m ) = {ah, bh, fh, gh|1 ≤ h ≤ m} ∪ {ch, dh, eh|1 ≤

h ≤ s} and E(A10
m ) = {ahbh, ahah+1, fhgh, ghgh+1|1 ≤ h ≤ m} ∪ {chdh, dheh|1 ≤ h ≤

s} ∪ {b2h−1ch, b2hch, f2h−1eh, f2heh+1|1 ≤ h ≤ s} ∪ {bhbh+1|h is even & 1 ≤ h ≤ m} ∪
{fhfh+1|h is odd & 1 ≤ h ≤ m}. Next, it is important to note that, a1 = am+1, b1 = bm+1,
c1 = cs+1, d1 = ds+1, e1 = es+1, f1 = fm+1 and g1 = gm+1 (whenever necessary).

Figure 1. Planar graph A10
m

We refer the collection of vertices {al : 1 ≤ l ≤ m} in A10
m , as the a-vertices, the col-

lection of vertices {bl : 1 ≤ l ≤ m} in A10
m , as the b-vertices, the collection of vertices

{cl : 1 ≤ l ≤ s} in A10
m , as the c-vertices, the collection of vertices {dl : 1 ≤ l ≤ s} in

A10
m , as the d-vertices, the collection of vertices {el : 1 ≤ l ≤ s} in A10

m , as the e-vertices,
the collection of vertices {fl : 1 ≤ l ≤ m} in A10

m , as the f -vertices, and the collection of
vertices {gl : 1 ≤ l ≤ m} in A10

m , as the g-vertices.

Next, for the graph A10
m , the vertex set V (A10

m ) is as follows {ah, bh, fh, gh|1 ≤ h ≤
m} ∪ {ch, dh, eh|1 ≤ h ≤ s}. Then, we represent the set of metric codes for the planar
graph A10

m as follows: R1 = {ϕ(ah|R)|1 ≤ h ≤ m}, R2 = {ϕ(bh|R)|1 ≤ h ≤ m}, R3 =
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{ϕ(ch|R)|1 ≤ h ≤ s}, R4 = {ϕ(dh|R)|1 ≤ h ≤ s}, R5 = {ϕ(eh|R)|1 ≤ h ≤ s}, R6 =
{ϕ(fh|R)|1 ≤ h ≤ m}, and R7 = {ϕ(gh|R)|1 ≤ h ≤ m}. Next, we prove that the graph
A10
m consists of a minimum resolving set R with cardinality three i.e., |R| = dim(A10

m ) = 3.

Theorem 2.1. Let A10
m be a planar graph as defined above. Then, dimv(A10

m ) = 3 ∀ m ≥ 6.

Proof. The natural number m in A10
m is always given by m = 2s; where s ≥ 3 and

s ∈ N. Now, to investigate that the planar graph A10
m consists of a resolving R with

|R| = dimv(A10
m ) = 3, we consider the two cases based upon the natural number s i.e.,

when s is odd (s ≡ 1 (mod 2)) and when it is even (s ≡ 0 (mod 2)).

Case(I) s ≡ 0 (mod 2).
Then, m = 2s such that s ≥ 4 and s ∈ Es (where s = 2k; k ≥ 2 and k ∈ N). Let
R = {a2, as+1, am} ⊂ V (A10

m ). To complete the proof for this case, we have to show that
the set R is a minimum resolving set for A10

m (Note that, for 6 ≤ m ≤ 12, one can verify
easily that the set R is a resolving set for A10

m ). For m ≥ 14, we can give the metric codes
for every element of V (A10

m ) corresponding to the set R.

For the set of a-vertices {ah : 1 ≤ h ≤ m} in A10
m , metric codes are as follows:

ϕ(ah|R) =


(1, s, 1), h = 1;

(h− 2, s− h+ 1, h), 2 ≤ h ≤ s
(s− 1, 0, s− 1), h = s+ 1

(2s− h+ 2, h− s− 1, 2s− h), s+ 2 ≤ h ≤ 2s− 1.

For the set of b-vertices {bh : 1 ≤ h ≤ m} in A10
m , metric codes are as follows: ϕ(bh|R) =

ϕ(ah|R) + (1, 1, 1) for all 1 ≤ h ≤ m. Next, for the set of c-vertices {ch : 1 ≤ h ≤ s} in
A10
m , metric codes are as follows:

ϕ(ch|R) =


(2, s+ 1, 3), h = 1;

(2h− 1, s− 2h+ 3, 2h+ 1), 2 ≤ h ≤ k;

(s+ 1, 2, s), h = k + 1;

(2s− 2h+ 4, 2h− s, 2s− 2h+ 2), k + 2 ≤ h ≤ s.

For the set of d-vertices {dh : 1 ≤ h ≤ s} in A10
m , metric codes are as follows: ϕ(dh|R) =

ϕ(ch|R) + (1, 1, 1) for all 1 ≤ h ≤ s. For the set of e-vertices {eh : 1 ≤ h ≤ s} in A10
m ,

metric codes are as follows: ϕ(eh|R) = ϕ(dh|R) + (1, 1, 1) for all 1 ≤ h ≤ s. Next, for the
set of f -vertices {fh : 1 ≤ h ≤ m} in A10

m , metric codes are as follows:

ϕ(feven|R) =



(6, s+ 2, 7), h = 2;

(h+ 3, s− h+ 4, h+ 5), 4 ≤ h ≤ s− 2;

(s+ 3, 5, s+ 3), h = s;

(2s− h+ 5, h− s+ 4, 2s− h+ 3), s+ 2 ≤ h ≤ 2s− 2;

(2s− h+ 5, h− s+ 4, 5), h = 2s.
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and

ϕ(fodd|R) =



(5, s+ 3, 6), h = 1;

(h+ 3, s− h+ 4, h+ 5), 3 ≤ h ≤ s− 3;

(s+ 2, 6, s+ 4), h = s− 1;

(2s− h+ 5, h− s+ 4, 2s− h+ 3), s+ 1 ≤ h ≤ 2s− 3;

(2s− h+ 5, h− s+ 4, 5), h = 2s− 1.

Finally, for the set of g-vertices {gh : 1 ≤ h ≤ m} in A10
m , metric codes are as follows:

ϕ(gh|R) = ϕ(fh|R) + (1, 1, 1) for all 1 ≤ h ≤ m.

Now, from all the above metric codes, we find that no two codes are the same as the
sets of metric codes holds |R1| = |R2| = |R6| = |R7| = m, |R3| = |R4| = |R5| = s, and all
are pairwise disjoint. Thus, from this we conclude that dimv(A10

m ) ≤ 3. Next, in order to
finish this case, we have to prove that dimv(A10

m ) ≥ 3. To obtain this, we show that no
resolving set R with |R| = 2 exist. Suppose dimv(A10

m ) = 2, on the contrary. Then, we
must have to discuss the following possibilities.

Resolving sets Contradictions

R = {a1, aj}; 2 ≤ j ≤ m ϕ(b1|R) = ϕ(am|R) for 2 ≤ j ≤ s; and ϕ(a2|R) =
ϕ(am|R) for j = s+ 1, a contradiction.

R = {b1, bj}; 2 ≤ j ≤ m

ϕ(fm|R) = ϕ(f1|R) for j = 2; ϕ(gm|R) = ϕ(fm−1|R)
for j = 3; ϕ(a3|R) = ϕ(b3|R) for 4 ≤ j ≤ 5;
ϕ(bm−1|R) = ϕ(e1|R) for 6 ≤ j ≤ s − 1; ϕ(cs|R) =
ϕ(d1|R) for j = s, and ϕ(a2|R) = ϕ(am|R) for
j = s+ 1, a contradiction.

R = {c1, cj}; 2 ≤ j ≤ s ϕ(cs|R) = ϕ(fm|R) for 2 ≤ j ≤ 3; and ϕ(a2|R) =
ϕ(b3|R) for 4 ≤ j ≤ k + 1, a contradiction.

R = {d1, dj}; 2 ≤ j ≤ s ϕ(b4|R) = ϕ(f3|R) for 2 ≤ j ≤ 3; and ϕ(a2|R) =
ϕ(b3|R) for 4 ≤ j ≤ k + 1, a contradiction.

R = {e1, ej}; 2 ≤ j ≤ s ϕ(d1|R) = ϕ(fm|R) for 2 ≤ j ≤ 3; and ϕ(a2|R) =
ϕ(b3|R) for 4 ≤ j ≤ k + 1, a contradiction.

R = {f1, fj}; 2 ≤ j ≤ m
ϕ(d1|R) = ϕ(fm|R) for 2 ≤ j ≤ 3; ϕ(b4|R) = ϕ(b3|R)
for j = 4; and ϕ(f2|R) = ϕ(g1|R) for 5 ≤ j ≤ k + 1, a
contradiction.

R = {g1, gj}; 2 ≤ j ≤ m ϕ(f1|R) = ϕ(gm|R) for 2 ≤ j ≤ s; and ϕ(g2|R) =
ϕ(gm|R) for j = s+ 1, a contradiction.

R = {a1, bj}; 1 ≤ j ≤ m
ϕ(a2|R) = ϕ(am|R) for j = 1, s + 1; ϕ(f1|R) =
ϕ(fm|R) for 2 ≤ j ≤ 3; and ϕ(b1|R) = ϕ(am|R) for
4 ≤ j ≤ s, a contradiction.

R = {a1, cj}; 1 ≤ j ≤ s
ϕ(f1|R) = ϕ(fm|R) for j = 1; ϕ(b2|R) = ϕ(a3|R)
for j = 2; ϕ(b1|R) = ϕ(am|R) for 3 ≤ j ≤ k; and
ϕ(cs|R) = ϕ(b3|R) for j = k + 1, a contradiction.

R = {a1, dj}; 1 ≤ j ≤ s
ϕ(f1|R) = ϕ(fm|R) for j = 1; ϕ(b2|R) = ϕ(a3|R)
for j = 2; ϕ(b1|R) = ϕ(am|R) for 3 ≤ j ≤ k; and
ϕ(cs|R) = ϕ(b3|R) for j = k + 1, a contradiction.

R = {a1, ej}; 1 ≤ j ≤ s
ϕ(f1|R) = ϕ(fm|R) for j = 1; ϕ(b2|R) = ϕ(a3|R)
for j = 2; ϕ(b1|R) = ϕ(am|R) for 3 ≤ j ≤ k; and
ϕ(cs|R) = ϕ(b3|R) for j = k + 1, a contradiction.
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Resolving sets Contradictions

R = {a1, fj}; 1 ≤ j ≤ m

ϕ(g1|R) = ϕ(f2|R) for j = 1; ϕ(b2|R) = ϕ(a3|R) for
2 ≤ j ≤ 4; ϕ(b1|R) = ϕ(am|R) for 5 ≤ j ≤ s − 1;
ϕ(a2|R) = ϕ(am|R) for j = s; and ϕ(bm|R) = ϕ(a3|R)
for j = s+ 1, a contradiction.

R = {a1, gj}; 1 ≤ j ≤ m

ϕ(cs|R) = ϕ(b3|R) for j = 1; ϕ(b2|R) = ϕ(a3|R) for
2 ≤ j ≤ 4; ϕ(b1|R) = ϕ(am|R) for 5 ≤ j ≤ s − 1;
ϕ(a2|R) = ϕ(am|R) for j = s; and ϕ(bm|R) = ϕ(a3|R)
for j = s+ 1, a contradiction.

R = {b1, cj}; 1 ≤ j ≤ s
ϕ(a1|R) = ϕ(bm|R) for j = 1; ϕ(b4|R) = ϕ(d2|R) for
j = 2; ϕ(b4|R) = ϕ(a5|R) for j = 3; and ϕ(g1|R) =
ϕ(f2|R) for 4 ≤ j ≤ k + 1, a contradiction.

R = {b1, dj}; 1 ≤ j ≤ s
ϕ(a1|R) = ϕ(bm|R) for j = 1; ϕ(b4|R) = ϕ(f2|R) for
j = 2; ϕ(b4|R) = ϕ(a5|R) for j = 3; and ϕ(g1|R) =
ϕ(f2|R) for 4 ≤ j ≤ k + 1, a contradiction.

R = {b1, ej}; 1 ≤ j ≤ s
ϕ(a1|R) = ϕ(bm|R) for j = 1; ϕ(b3|R) = ϕ(e1|R) for
j = 2; ϕ(b4|R) = ϕ(a5|R) for j = 3, we have and
ϕ(g1|R) = ϕ(f2|R) for 4 ≤ j ≤ k + 1, a contradiction.

R = {b1, fj}; 1 ≤ j ≤ m
ϕ(f2|R) = ϕ(v1|R) for j = 1; ϕ(c2|R) = ϕ(fm|R)
for j = 2; ϕ(f2|R) = ϕ(d2|R) for 3 ≤ j ≤ 4; and
ϕ(g1|R) = ϕ(f2|R) for 5 ≤ j ≤ s+ 1, a contradiction.

R = {b1, gj}; 1 ≤ j ≤ m ϕ(bm|R) = ϕ(a1|R) for j = 1; and ϕ(g1|R) = ϕ(f2|R)
for 2 ≤ j ≤ s+ 1, a contradiction.

R = {c1, dj}; 1 ≤ j ≤ s
ϕ(fm|R) = ϕ(f1|R) for j = 1; ϕ(f2|R) = ϕ(b4|R) for
j = 2; ϕ(b4|R) = ϕ(a5|R) for j = 3; and ϕ(g1|R) =
ϕ(f2|R) for 4 ≤ j ≤ k + 1, a contradiction.

R = {c1, ej}; 1 ≤ j ≤ s
ϕ(fm|R) = ϕ(f1|R) for j = 1; ϕ(f2|R) = ϕ(d2|R) for
j = 2; ϕ(b4|R) = ϕ(f2|R) for j = 3; and ϕ(g1|R) =
ϕ(f2|R) for 4 ≤ j ≤ k + 1, a contradiction.

R = {c1, fj}; 1 ≤ j ≤ m
ϕ(f2|R) = ϕ(g1|R) for j = 1; ϕ(c2|R) = ϕ(fm|R)
for j = 2; ϕ(d2|R) = ϕ(f2|R) for 3 ≤ j ≤ 4; and
ϕ(g1|R) = ϕ(f2|R) for 5 ≤ j ≤ s+ 1, a contradiction.

R = {c1, gj}; 1 ≤ j ≤ m ϕ(bm|R) = ϕ(a1|R) for j = 1; and ϕ(g1|R) = ϕ(f2|R)
for 2 ≤ j ≤ s+ 1, a contradiction.

R = {d1, ej}; 1 ≤ j ≤ s
ϕ(fm|R) = ϕ(f1|R) for j = 1; ϕ(g2|R) = ϕ(c2|R) for
j = 2; ϕ(fm|R) = ϕ(b2|R) for j = 3; and ϕ(g1|R) =
ϕ(f2|R) for 4 ≤ j ≤ k + 1, a contradiction.

R = {d1, fj}; 1 ≤ j ≤ m
ϕ(f2|R) = ϕ(g1|R) for j = 1; ϕ(g2|R) = ϕ(e2|R)
for j = 2; ϕ(gm|R) = ϕ(b3|R) for 3 ≤ j ≤ 4; and
ϕ(g1|R) = ϕ(f2|R) for 5 ≤ j ≤ s+ 1, a contradiction.

R = {d1, gj}; 1 ≤ j ≤ m ϕ(bm|R) = ϕ(a1|R) for j = 1; and ϕ(g1|R) = ϕ(f2|R)
for 2 ≤ j ≤ s+ 1, a contradiction.

R = {e1, fj}; 1 ≤ j ≤ m ϕ(fm|R) = ϕ(d1|R) for 1 ≤ j ≤ 4; and ϕ(g1|R) =
ϕ(f2|R) for 5 ≤ j ≤ s+ 1, a contradiction.

R = {e1, gj}; 1 ≤ j ≤ m ϕ(bm|R) = ϕ(a1|R) for j = 1; and ϕ(g1|R) = ϕ(f2|R)
for 2 ≤ j ≤ s+ 1, a contradiction.

R = {f1, gj}; 1 ≤ j ≤ m ϕ(bm|R) = ϕ(a1|R) for j = 1; and ϕ(g1|R) = ϕ(f2|R)
for 2 ≤ j ≤ s+ 1, a contradiction.
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From the cases as discussed above, we obtain that for the planar graph A10
m , the set com-

prising with exactly two vertices can never be the resolving set, and so we find that |R| ≥ 3
i.e., dimv(A10

m ) = 3 for this case.

Case(II) s ≡ 1 (mod 2).
Then, m = 2s such that s ≥ 3 and s ∈ Os (where s = 2k + 1; k ≥ 2 and k ∈ N). Let
R = {a2, as+1, am} ⊂ V (A10

m ). To complete the proof for this case, we have to show that
the set R is a minimum resolving set for A10

m (Note that, for 7 ≤ m ≤ 11, one can verify
easily that the set R is a resolving set for A10

m ). For m ≥ 13, we can give the metric codes
for every element of V (A10

m ) corresponding to the set R.

For the set of a-vertices {ah : 1 ≤ h ≤ m} in A10
m , metric codes are as follows:

ϕ(ah|R) =


(1, s, 1), h = 1;

(h− 2, s− h+ 1, h), 2 ≤ h ≤ s
(s− 1, 0, s− 1), h = s+ 1;

(2s− h+ 2, h− s− 1, 2s− h), s+ 2 ≤ h ≤ 2s.

For the set of b-vertices {bh : 1 ≤ h ≤ m} in A10
m , metric codes are as follows: ϕ(bh|R) =

ϕ(ah|R) + (1, 1, 1) for all 1 ≤ h ≤ m. Next, for the set of c-vertices {ch : 1 ≤ h ≤ s} in
A10
m , metric codes are as follows:

ϕ(ch|R) =


(2, s+ 2, 3), h = 1;

(2h− 1, s− 2h+ 3, 2h+ 1), 2 ≤ h ≤ k;

(s, 2, s+ 1), h = k + 1;

(2s− 2h+ 4, 2h− s, 2s− 2h+ 2), k + 2 ≤ h ≤ s.

For the set of d-vertices {dh : 1 ≤ h ≤ s} in A10
m , metric codes are as follows: ϕ(dh|R) =

ϕ(ch|R) + (1, 1, 1) for all 1 ≤ h ≤ s. For the set of e-vertices {eh : 1 ≤ h ≤ s} in A10
m ,

metric codes are as follows: ϕ(eh|R) = ϕ(dh|R) + (1, 1, 1) for all 1 ≤ h ≤ s. Next, for the
set of f -vertices {fh : 1 ≤ h ≤ m} in A10

m , metric codes are as follows:

ϕ(feven|R) =



(6, s+ 2, 7), h = 2;

(h+ 3, s− h+ 4, h+ 5), 4 ≤ h ≤ s− 1;

(s+ 4, 6, s+ 2), h = s+ 1;

(2s− h+ 5, h− s+ 4, 2s− h+ 3), s+ 3 ≤ h ≤ 2s− 2;

(2s− h+ 5, h− s+ 4, 6), h = 2s.

and

ϕ(fodd|R) =



(5, s+ 3, 6), h = 1;

(h+ 3, s− h+ 4, h+ 5), 3 ≤ h ≤ s− 2;

(s+ 3, 5, s+ 3), h = s;

(2s− h+ 5, h− s+ 4, 2s− h+ 3), s+ 2 ≤ h ≤ 2s− 3;

(2s− h+ 5, h− s+ 4, 5), h = 2s− 1.

Finally, for the set of g-vertices {gh : 1 ≤ h ≤ m} in A10
m , metric codes are as follows:

ϕ(gh|R) = ϕ(fh|R) + (1, 1, 1) for all 1 ≤ h ≤ m.

Now, from all the above metric codes, we find that no two codes are the same as the
sets of metric codes holds |R1| = |R2| = |R6| = |R7| = m, |R3| = |R4| = |R5| = s, and
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all are pairwise disjoint. Thus, from this we conclude that dimv(A10
m ) ≤ 3. Next, in order

to finish this case, we have to prove that dimv(A10
m ) ≥ 3. To obtain this, we show that

no resolving set R with |R| = 2 exist. Then, following the same pattern as we adopted in
Case 1, we get contradictions similarly. This implies that dimv(A10

m ) = 3 for this case as
well, which completes the proof of the theorem. �

In terms of independent resolving set, this result can also be presented as follows:

Theorem 2.2. Let A10
m be the planar graph as defined above. Then, for A10

m their exist an
independent resolving set with cardinality three, ∀ m ≥ 6.

Proof. Refer to Theorem 2.1, for proof. �

3. Location Number of planar graph B10
m

In this section, we introduce a new family of planar graph, represented by B10
m , and for

which we investigate its metric dimension.

The planar graph B10
m (where m = 2s; s ≥ 3 & s ∈ N) comprises of 11m

2 and 17m
2

number of vertices and edges respectively. It consists of 3m
2 faces each are having four

sides, m faces each are having five sides, m
2 faces each are having ten sides, and two faces

each are having m-sides, and is shown in Fig. 1. In other words, the graph B10
m can

be obtained from A10
m by introducing the set of m

2 new edges {fhfh+1|h is even & 2 ≤
h ≤ m} in A10

m . The vertex set V (B10
m ) and the edge set E(B10

m ) for B10
m , respectively are

given by V (B10
m ) = {ah, bh, fh, gh|1 ≤ h ≤ m} ∪ {ch, dh, eh|1 ≤ h ≤ s} and E(B10

m ) =
{ahbh, ahah+1, fhgh, fhfh+1, ghgh+1|1 ≤ h ≤ m}∪{chdh, dheh|1 ≤ h ≤ s}∪{b2h−1ch, b2hch,
f2h−1eh, f2heh+1|1 ≤ h ≤ s} ∪ {bhbh+1|h is even & 1 ≤ h ≤ m}. Next, it is important
to note that, a1 = am+1, b1 = bm+1, c1 = cs+1, d1 = ds+1, e1 = es+1, f1 = fm+1 and
g1 = gm+1 (whenever necessary).

We refer the collection of vertices {al : 1 ≤ l ≤ m} in B10
m , as the a-vertices, the col-

lection of vertices {bl : 1 ≤ l ≤ m} in B10
m , as the b-vertices, the collection of vertices

{cl : 1 ≤ l ≤ s} in B10
m , as the c-vertices, the collection of vertices {dl : 1 ≤ l ≤ s} in

B10
m , as the d-vertices, the collection of vertices {el : 1 ≤ l ≤ s} in B10

m , as the e-vertices,
the collection of vertices {fl : 1 ≤ l ≤ m} in B10

m , as the f -vertices, and the collection of
vertices {gl : 1 ≤ l ≤ m} in B10

m , as the g-vertices.

Next, for the graph B10
m , the vertex set V (B10

m ) is as follows {ah, bh, fh, gh|1 ≤ h ≤ m} ∪
{ch, dh, eh|1 ≤ h ≤ s}. Then, we represent the set of metric codes for the planar graph B10

m

as follows: R1 = {ϕ(ah|R)|1 ≤ h ≤ m}, R2 = {ϕ(bh|R)|1 ≤ h ≤ m}, R3 = {ϕ(ch|R)|1 ≤
h ≤ s}, R4 = {ϕ(dh|R)|1 ≤ h ≤ s}, R5 = {ϕ(eh|R)|1 ≤ h ≤ s}, R6 = {ϕ(fh|R)|1 ≤ h ≤
m}, and R7 = {ϕ(gh|R)|1 ≤ h ≤ m}. Next, we prove that the graph B10

m consists of a
minimum resolving set R with cardinality three i.e., |R| = dim(B10

m ) = 3.

Theorem 3.1. Let B10
m be the planar graph as defined above. Then, dim(B10

m ) = 3 ∀
m ≥ 6.

Proof. The natural number m in B10
m is always given by m = 2s; where s ≥ 3 and

s ∈ N. Now, to investigate that the planar graph B10
m consists of a resolving R with

|R| = dimv(B10
m ) = 3, we consider the two cases based upon the natural number s i.e.,

when s is odd (s ≡ 1 (mod 2)) and when it is even (s ≡ 0 (mod 2)).
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Figure 2. Plane graph B10
m

Case(I) s ≡ 0 (mod 2).
Then, m = 2s such that s ≥ 4 and s ∈ Es (where s = 2k; k ≥ 2 and k ∈ N). Let
R = {a2, as+1, am} ⊂ V (B10

m ). To complete the proof for this case, we have to show that
the set R is a minimum resolving set for B10

m (Note that, for 6 ≤ m ≤ 12, one can verify
easily that the set R is a resolving set for B10

m ). For m ≥ 14, we can give the metric codes
for every element of V (B10

m ) corresponding to the set R.

For the set of a-vertices {ah : 1 ≤ h ≤ m} in B10
m , metric codes are as follows:

ϕ(ah|R) =


(1, s, 1), h = 1;

(h− 2, s− h+ 1, h), 2 ≤ h ≤ s
(s− 1, 0, s− 1), h = s+ 1

(2s− h+ 2, h− s− 1, 2s− h), s+ 2 ≤ h ≤ 2s− 1.

For the set of b-vertices {bh : 1 ≤ h ≤ m} in B10
m , metric codes are as follows: ϕ(bh|R) =

ϕ(ah|R) + (1, 1, 1) for all 1 ≤ h ≤ m. Next, for the set of c-vertices {ch : 1 ≤ h ≤ s} in
B10
m , metric codes are as follows:

ϕ(ch|R) =


(2, s+ 1, 3), h = 1;

(2h− 1, s− 2h+ 3, 2h+ 1), 2 ≤ h ≤ k;

(s+ 1, 2, s), h = k + 1;

(2s− 2h+ 4, 2h− s, 2s− 2h+ 2), k + 2 ≤ h ≤ s.

For the set of d-vertices {dh : 1 ≤ h ≤ s} in B10
m , metric codes are as follows: ϕ(dh|R) =

ϕ(ch|R) + (1, 1, 1) for all 1 ≤ h ≤ s. For the set of e-vertices {eh : 1 ≤ h ≤ s} in B10
m ,

metric codes are as follows: ϕ(eh|R) = ϕ(dh|R) + (1, 1, 1) for all 1 ≤ h ≤ s. Next, for the
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set of f -vertices {fh : 1 ≤ h ≤ m} in B10
m , metric codes are as follows:

ϕ(feven|R) =



(6, s+ 2, 7), h = 2;

(h+ 3, s− h+ 4, h+ 5), 4 ≤ h ≤ s− 2;

(s+ 3, 5, s+ 3), h = s;

(2s− h+ 5, h− s+ 4, 2s− h+ 3), s+ 2 ≤ h ≤ 2s− 2;

(2s− h+ 5, h− s+ 4, 5), h = 2s.

and

ϕ(fodd|R) =



(5, s+ 3, 6), h = 1;

(h+ 3, s− h+ 4, h+ 5), 3 ≤ h ≤ s− 3;

(s+ 2, 6, s+ 4), h = s− 1;

(2s− h+ 5, h− s+ 4, 2s− h+ 3), s+ 1 ≤ h ≤ 2s− 3;

(2s− h+ 5, h− s+ 4, 5), h = 2s− 1.

Finally, for the set of g-vertices {gh : 1 ≤ h ≤ m} in B10
m , metric codes are as follows:

ϕ(gh|R) = ϕ(fh|R) + (1, 1, 1) for all 1 ≤ h ≤ m.

Now, from all the above metric codes, we find that no two codes are the same as the
sets of metric codes holds |R1| = |R2| = |R6| = |R7| = m, |R3| = |R4| = |R5| = s, and all
are pairwise disjoint. Thus, from this we conclude that dimv(B10

m ) ≤ 3. Next, in order to
finish this case, we have to prove that dimv(B10

m ) ≥ 3. To obtain this, we show that no
resolving set R with |R| = 2 exist. Next, we consider the same possibilities as we adopted
in Case 1 of Theorem 2.1, and obtained the contradictions similarly. From the cases as
discussed above, we obtain that for the planar graph B10

m , the set comprising with exactly
two vertices can never be the resolving set, and so we find that |R| ≥ 3 i.e., dimv(B10

m ) = 3
for this case.

Case(II) s ≡ 1 (mod 2).
Then, m = 2s such that s ≥ 3 and s ∈ Os (where s = 2k + 1; k ≥ 2 and k ∈ N). Let
R = {a2, as+1, am} ⊂ V (B10

m ). To complete the proof for this case, we have to show that
the set R is a minimum resolving set for B10

m (Note that, for 7 ≤ m ≤ 11, one can verify
easily that the set R is a resolving set for B10

m ). For m ≥ 13, we can give the metric codes
for every element of V (B10

m ) corresponding to the set R.

For the set of a-vertices {ah : 1 ≤ h ≤ m} in B10
m , metric codes are as follows:

ϕ(ah|R) =


(1, s, 1), h = 1;

(h− 2, s− h+ 1, h), 2 ≤ h ≤ s
(s− 1, 0, s− 1), h = s+ 1;

(2s− h+ 2, h− s− 1, 2s− h), s+ 2 ≤ h ≤ 2s.

For the set of b-vertices {bh : 1 ≤ h ≤ m} in B10
m , metric codes are as follows: ϕ(bh|R) =

ϕ(ah|R) + (1, 1, 1) for all 1 ≤ h ≤ m. Next, for the set of c-vertices {ch : 1 ≤ h ≤ s} in
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B10
m , metric codes are as follows:

ϕ(ch|R) =


(2, s+ 2, 3), h = 1;

(2h− 1, s− 2h+ 3, 2h+ 1), 2 ≤ h ≤ k;

(s, 2, s+ 1), h = k + 1;

(2s− 2h+ 4, 2h− s, 2s− 2h+ 2), k + 2 ≤ h ≤ s.

For the set of d-vertices {dh : 1 ≤ h ≤ s} in B10
m , metric codes are as follows: ϕ(dh|R) =

ϕ(ch|R) + (1, 1, 1) for all 1 ≤ h ≤ s. For the set of e-vertices {eh : 1 ≤ h ≤ s} in B10
m ,

metric codes are as follows: ϕ(eh|R) = ϕ(dh|R) + (1, 1, 1) for all 1 ≤ h ≤ s. Next, for the
set of f -vertices {fh : 1 ≤ h ≤ m} in B10

m , metric codes are as follows:

ϕ(feven|R) =



(6, s+ 2, 7), h = 2;

(h+ 3, s− h+ 4, h+ 5), 4 ≤ h ≤ s− 1;

(s+ 4, 6, s+ 2), h = s+ 1;

(2s− h+ 5, h− s+ 4, 2s− h+ 3), s+ 3 ≤ h ≤ 2s− 2;

(2s− h+ 5, h− s+ 4, 6), h = 2s.

and

ϕ(fodd|R) =



(5, s+ 3, 6), h = 1;

(h+ 3, s− h+ 4, h+ 5), 3 ≤ h ≤ s− 2;

(s+ 3, 5, s+ 3), h = s;

(2s− h+ 5, h− s+ 4, 2s− h+ 3), s+ 2 ≤ h ≤ 2s− 3;

(2s− h+ 5, h− s+ 4, 5), h = 2s− 1.

Finally, for the set of g-vertices {gh : 1 ≤ h ≤ m} in B10
m , metric codes are as follows:

ϕ(gh|R) = ϕ(fh|R) + (1, 1, 1) for all 1 ≤ h ≤ m.

Now, from all the above metric codes, we find that no two codes are the same as the
sets of metric codes holds |R1| = |R2| = |R6| = |R7| = m, |R3| = |R4| = |R5| = s, and
all are pairwise disjoint. Thus, from this we conclude that dimv(B10

m ) ≤ 3. Next, in order
to finish this case, we have to prove that dimv(B10

m ) ≥ 3. To obtain this, we show that
no resolving set R with |R| = 2 exist. Then, following the same pattern as we adopted in
Case 1, we get contradictions similarly. This implies that dimv(B10

m ) = 3 for this case as
well, which completes the proof of the theorem. �

In terms of independent resolving set, this result can also be presented as follows:

Theorem 3.2. Let B10
m be the planar graph as defined above. Then, for B10

m their exist an
independent resolving set with cardinality three, ∀ m ≥ 6.

Proof. Refer to Theorem 3.1, for proof. �

4. Conclusion

In this manuscript, we have studied the metric dimension of two planar graphs A10
m and

B10
m . For these two families, we proved that dimv(A10

m ) = 3 = dimv(B10
m ) (a partial answer

to the problem posed in [8]) . We also observed that the minimum resolving sets R are
independent for both of the graphs A10

m and B10
m . In future, we will try to obtain other

variants of metric dimension such as edge metric dimension, mixed metric dimension [20],
etc. for these two graph A10

m and B10
m .
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