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A NUMERICAL SOLUTION OF THE MATHEMATICAL MODELS FOR

WATER POLLUTION BY SHIFTED JACOBI POLYNOMIALS

A. EBRAHIMZADEH1∗, E. HASHEMIZADEH2, R. MIRABBASI3, §

Abstract. Water pollution is one of the most significant environmental issues in de-
veloping countries, particularly in relation to drinking water quality. Therefore, moni-
toring and modeling the quality of water resources is very important in managing the
exploitation and protection of water resources. This study presents a numerical ap-
proach for solving a mathematical model of soluble and insoluble water pollutants by
utilizing shifted Jacobi polynomials (SJP). The transmissibility of water pollution was
investigated using a system of ordinary differential equations. In this essay, a nonlinear
system of ordinary differential equations is turned into an algebraic system by utilizing
the collocation approach based on SJP. Finally, the Newton’s method is used to obtain
numerical experiments. We also compared present method results by Runge-Kutta (RK)
method to demonstrate the efficiency of the propounded method, which shows the results
obtained are acceptable and in good agreement with the RK method.

Keywords: Water pollutants, Collocation method, Operational matrix of derivatives,
Mathematical model, Shifted Jacobi polynomials.

AMS Subject Classification: 65L60, 91B76

1. Introduction

The accessibility of clean drinking water is one of the challenges facing human soci-
eties. Unfortunately, water pollutants in rivers and coastal areas pose a serious threat
to aquatic ecosystems in many parts of the world [18]. Water pollutants are substances
that contaminate water and change its physical, chemical, or biological properties [12].
These substances can come from a variety of sources, including agricultural fertilizers and
pesticides, industrial waste, sewage treatment plants, and stormwater runoff [12]. The
foundation of pollutants happens when nutrients, pathogens, plastics, and chemicals such
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Figure 1. The model diagram for the transmission of water pollutants

as antibiotics, heavy metals, and pesticides are discharged into water bodies like oceans,
lakes, rivers, and groundwater [2].

Water pollution can be caused by a wide variety of substances including pathogenic mi-
croorganisms, putrescence organic waste, fertilizers and plant nutrients, toxic chemicals,
sediments, heat, petroleum (oil), and radioactive substances [2]. The main causes of water
pollution are attributed to industrial activities, urbanization, religious and social prac-
tices, agricultural fertilizers and pesticides, and accidents such as oil spills and nuclear
fallout [17]. There are several methods for controlling water pollution including physi-
cal methods such as sedimentation and filtration, chemical methods such as coagulation
and disinfection, biological methods such as activated sludge treatment and constructed
wetlands, and ecological methods such as riparian buffer zones [17].

Detailed discussions related to the definitions of water pollution, various kinds of wa-
ter pollution and its causes and control methods can be seen in the reference [12]. A
mathematical model is a simplified representation of a real-world system that uses math-
ematical language to describe the relationships between different variables [2]. Recently,
the mathematical models have been utilized repeatedly to describe the dynamics of in-
fectious diseases such as HIV, HBV, Ebola, H1N1, cancer, malaria, COVID-19, and etc
[13, 20, 21, 3, 36, 33]. This essay presents a numerical solution for solving a mathematical
model in [2] which describes the relationships between different variables that affect the
transmission of water pollutants. The dynamical system for the transmission of water
pollutants is described as follows:

W′ = Λ− α1 W S− α2 W I+ ρα2I− µW, W ≥ 0,

S′ = α1W S+ δ I− (θ1 + µ)S, S ≥ 0,

I′ = α2W I− ρα2 I− (δ + θ2 + µ)I, I ≥ 0,

T′ = θ1S+ θ2I− µT, T ≥ 0, (1)

with initial conditions

W(0) = W0, S(0) = S0, I(0) = I0, T(0) = T0. (2)

In this paper, we want to explore the transmission of water pollutants by determining the
unknowns W, S, I, and T, where W represents the concentration of water pollution in
parts per million (PPM), S is the volume of solvable water pollutants, and I is the volume
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of insolvable water pollutants. T shows the volume of insoluble water that is removed by
treatment. The diagram that shows the transmission of water pollutants can be found in
Figure 1.

In water science and engineering, it is essential to calculate these variables to determine
the progression of water pollutant transfer. The models can provide valuable information
to designers and planners for the implementation of water treatment or control plans.
Table 1 provides the definition of parameters. To investigate the feasibility and positivity
of solutions in model (1), one can refer to [2]. In the dynamics of a system, it is best
to classify equilibrium points based on their stability according to the Routh Hurwitz
criteria in [26]. The global and local stability of system (1) are discussed in [2] based on
the equilibrium point. The sensitivity analysis is also verified in [2]. Sensitivity analysis
needs to know how decisive, the role of each parameter is in the transmission of water
pollutants [6, 25].

Table 1. Definitions of parameters in the transmission of water pollutant
model

Parameters Descriptions
Λ The rate of water pollutant
α1 The transmission rate for soluble water pollutant
α2 The transmission rate for insoluble water pollutant
ρ The rate of insoluble water pollutants becoming water pollution
µ The removable rate of water pollutants
δ The amount of treating insoluble water pollutants to solute
θ1 The amount of solvable water pollutants treated
θ2 The amount of insolvable water pollutants treated

In recent years, various researchers have created different models for water pollution
transmission and presented numerical methods to solve them. Agusto and Bamigbola in
[1] dissolve the mathematical models of water pollution with the Crank-Nicolson numerical
approach. The ultimate results demonstrate that contaminant concentration diminished
faster hereon. The authors in [24] presented a model for the dispersion of river pollution
using the density of pollutant variables and dissolved it with the finite element method.
Their approach resulted in the concentration of water pollutants being reduced to the
standard specified by the world health organization. A mathematical model for the trans-
mission of water pollutants is constructed by Parsaie and Haghabi [22] in 2015. They
have used the finite volume method and an artificial neural network for soft computing
techniques to solve it. Their simulation results showed that their model is suitable for
predicting the longitudinal dispersion coefficient of pollution in the Severn River. Shah
et al. in [31] constructed a non-linear mathematical model for the transmission of water
pollutants. They applied control to insoluble water pollutants to transform them into
soluble water pollutants. The stability of the model is verified according to the basic
reproduction number. By utilizing proper treatment, the river pollutant is removed to
some extent. We have developed a mathematical model for river pollution that consists
of a pair of nonlinear equations that are coupled together. We have also studied how the
degradation of pollutants is affected by aeration. In 2009, Pimpuncha et al. [23] studied
how aeration affects the degradation of pollutants. The mathematical model consists of
two advection-dispersion equations that are coupled together.

In this paper, a collocation approach based on SJP and its operational matrix of deriv-
ative is utilized to convert the mathematical model of water pollutant into an algebraic
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system. Finally, the Newton method has been utilized to obtain the numerical solution.
This method can be applied to a wider range of real-life mathematical models after minor
revision, particularly those with more complicated systems and geometry. Also, imple-
menting the derivative operational matrices of SJP is easy. According to (19), these
matrices have many zero elements and are sparse, which makes the method very efficient.
The collocation approach based on SJP is also easy to implement and have good con-
vergence properties. They increase the accuracy of the solution due to the least-squares
minimization property of the orthogonal polynomials [34].

The paper is structured as follows: Section 2 presents some fundamental properties of
SJPs and their operational matrix. In section 3, we explore the use of SJPs and their
operational matrix of derivatives in a collocation approach to solve a system of ordinary
differential equations that models the transmission of water pollutants. The numerical
results are presented in section 4. Finally, section 5 concludes the paper.

2. Some basic properties of SJP

By means of the main properties of Jacobi polynomials, we conclude the following:

P(α,β)
k+1 (t) =

(
a
(α,β)
k − b

(α,β)
k

)
P(α,β)
k (t)− c

(α,β)
k P(α,β)

k−1 (t), k ≥ 1.

P(α,β)
0 (t) = 1, P(α,β)

1 (t) =
1

2
(α+ β + 2)t+

1

2
(α− β),

P(α,β)
k (−t) = (−1)kP(α,β)

k (t), P(α,β)
k (−1) =

(−1)kΓ(k + β + 1)

k!Γ(β + 1)
, (3)

in which α, β > −1, x ∈ [−1, 1] and a
(α,β)
k , a

(α,β)
k , and a

(α,β)
k are defined as follows

a
(α,β)
k =

(2k + α+ β)(2k + α+ β + 2)

2(k + 1)(k + α+ β + 1)
,

b
(α,β)
k =

(β2 − α2)(2k + α+ β + 1)

2(k + 1)(k + α+ β + 1)(2k + α+ β)
,

c
(α,β)
k =

(k + α)(k + β)(2k + α+ β + 2)

(k + 1)(k + α+ β + 1)(2k + α)
,

For the shifted Jacobi polynomials P(α,β)
T,k (t) = P(α,β)

k (2tT − 1), T > 0, the explicit analytic

form is defined as [15, 35]

P
(α,β)
T,i (t) =

k∑
j=0

(−1)k−j Γ(k + β + 1)Γ(j + k + α+ β + 1)

Γ(j + β + 1)Γ(k + α+ β + 1)(k − j)!j!T j
tj , (4)

=
k∑

j=0

Γ(k + α+ 1)Γ(k + j + α+ β + 1)

j!(k − j)!Γ(j + α+ 1)Γ(k + α+ β + 1)T j
(t− T )j . (5)

We conclude the following:

P(α,β)
T,k (0) = (−1)k

Γ(k + β + 1)

Γ(β + 1)k!
(6)

The set of SJPs {P (α,β)
T,i (t)}ni=0 for i = 0, 1, · · · in [0, T ] is defined as follows [7]:

P
(α,β)
T,i (t) =

(α+ β + 2i− 1) {α2 − β2 +
(
2t
T − 1

)
(α+ β + 2i) (α+ β + 2i− 2)}

2i (α+ β + i) (α+ β + 2i− 2)
. (7)
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The SJPs P
(α,β)
T,i of degree i have an analytic form given by the equation below

P
(α,β)
T,i (t) =

i∑
k=0

(−1)i−k Γ(i+ β + 1)Γ(i+ k + α+ β + 1)

Γ(k + β + 1)Γ(i+ α+ β + 1)(i− k)!k!T k
tk, (8)

where,

P
(α,β)
T,i (0) = (−1)i

Γ(i+ β + 1)

Γ(β + 1)i!
. (9)

They are orthogonal over the interval [0, T ] with respect to the weight functionW
(α,β)
T (t) =

tβ(T − t)α and satisfy the following properties for k = 0, 1, · · · , n, as follows:∫ T

0
P

(α,β)
T,j (t)P

(α,β)
T,k (t)W

(α,β)
T (t)dt = hk, (10)

in which,

hk =

{
Tα+β+1Γ(k+α+1)Γ(k+β+1)
(2k+α+β+1)k!Γ(k+β+α+1) i = j,

0, i ̸= j.
(11)

A function f(t) ∈ L2(0, 1) can be expressed in the terms of the SJPs as follows:

f(t) =

n∑
k=0

akP
α,β
T,j (t) = ATϕ(t), (12)

where, A = [a0, a1, · · · , an] and

ϕ(t) = [Pα,β
T,0 (t), P

α,β
T,1 (t), · · · , P

α,β
T,n (t)]

T . (13)

The coefficients aj for j = 0, 1, · · · , n can be obtained in the following form,

aj =
1

hj

∫ T

0
W

(α,β)(t)
T f(t)P

(α,β)
T,j (t)dt. (14)

The definition and lemma below will be required in the section 3 from [13].
Definition 1. The tensor product of vectors Xm̂ = [xi] and Ym̂ = [yi] is defined as follows:

X ⊗ Y = (xi × yi)m̂ (15)

The tensor product of two matrices M = [mi,j ] and N = [ni,j ] of order m̂× m̂ is expressed
by

M ⊗N = (mij × yij)m̂×m̂ . (16)

For more information about tensor products, one can see [32].
Lemma 1.[13] Let the functions f(t) = fTϕ(t) and g(t) = gTϕ(t) belong to L2[0, 1] are
expressed by SJPs. Then we have

f(t)g(t) =
(
fT ⊗ gT

)
ϕ(t). (17)

The interested reader can see [10, 15, 14] for the convergent discussion about SJP approx-
imations.

Theorem 1.[14] For any u ∈ D(A
r
2
α,β), r ∈ N and 0 ≤ µ ≤ r,

||πα,β
n u− u||

D(A
µ
2
α,β)

< nµ−r||u||
D(A

r
2
α,β)

. (18)

The proof of this theorem, he notation πα,β
n and D(A

µ
2
α,β) are given in [14].
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2.1. SJP operational matrix of derivative. The derivative of vector ϕ(t) in equation
(13) can be expressed in matrix form as shown in [9].

dϕ(t)

dt
= D(1)ϕ(t). (19)

D(1) = [dij ] is the (n + 1) × (n + 1) derivative operational matrix of SJP. This matrix is
obtained in [9] and defined as follows:

D(1) = (dij) =

{
A1(i, j), i > j,

0, otherwise,
(20)

where,

A1(i, j) =
Tα+β(i+ α+ β + 1)(i+ α+ β + 2)j(j + α+ 2)i−j−1Γ(j + α+ β + 1)

(i− j − 1)!Γ(2j + α+ β + 1)

×3F2

(
−i+ 1 + j, i+ j + α+ β + 2 j + α+ 1
j + α+ 2 2j + α+ β + 2 ; 1

)
. (21)

The proof of obtaining (21) is given in [9] and for the general definition of a generalized
hypergeometric series and special 3F2 see [19].

3. Implementation of a numerical approach to the water pollutant
problem

As per [5], the four variables of system (1) are normalized in the following way:

Wp =
W

N
, Sp =

S

N
, Ip =

I

N
, Tp =

T

N
, Λ1 =

Λ

N
. (22)

where, N = W +S + I + T . The main model (1) is converted to the following normalized
model:

W
′
p = Λ1 − α1N Wp Sp − α2N Wp Ip + ρα2Ip − µWp, Wp ≥ 0,

S′p = α1NWp Sp + δ Ip − (θ1 + µ)Sp, Sp ≥ 0,

I
′
p = α2NWp Ip − ρα2 Ip − (δ + θ2 + µ)Ip, Ip ≥ 0,

T
′
p = θ1Sp + θ2Ip − µTp, Tp ≥ 0, (23)

with initial conditions:

Wp(0) = Wp0 , Sp(0) = Sp0 , Ip(0) = Ip0 , Tp(0) = Tp0 . (24)

In this paper, we want to obtain the numerical solution of the mathematical model for
transmission of water pollutants (23) with initial conditions in (24) by applying the col-
location method based on SJPs. We can express our unknown functions in terms of SJPs
as an approximation:

Wp = AT
1 ϕ(t), Ip = AT

2 ϕ(t), Sp = AT
3 ϕ(t), Tp = AT

4 ϕ(t), (25)

where, ϕ is defined in equation (13) and vectors Ai : i = 1, · · · 4 are defined as follows:

A1 = [a0, · · · , an]T , A2 = [an+1, · · · , a2n+1]
T ,

A3 = [a2n+2, · · · , a3n+2]
T , A4 = [a3n+3, · · · , a4n+3]

T . (26)

By utilizing Eqs. (19) and (25), we possess

W
′
p(t) = AT

1 ϕ
′(t) = AT

1 D
(1)ϕ(t) S

′
p(t) = AT

1 ϕ
′(t) = AT

2 D
(1)ϕ(t),

I
′
p(t) = AT

3 ϕ
′(t) = AT

3 D
(1)ϕ(t), T

′
p(t) = AT

4 ϕ
′(t) = AT

4 D
(1)ϕ(t). (27)
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and
Wp(t) = AT

1 ϕ(t), Sp(t) = AT
2 ϕ(t),

Ip(t) = AT
3 ϕ(t), Tp(t) = AT

4 ϕ(t). (28)

By substituting equations (27) and (28) in system dynamics (23), we have

AT
1 D

(1)ϕ(t) = Λ1 − α1N
(
AT

1 ⊗AT
2

)
ϕ(t)− α2N

(
AT

1 ⊗AT
3

)
ϕ(t) + ρα2A

T
3 ϕ(t)− µAT

1 ϕ(t).

AT
2 D

(1)ϕ(t) = α1N
(
AT

1 ⊗AT
2

)
ϕ(t) + δ AT

3 ϕ(t)− (θ1 + µ)AT
2 ϕ(t),

AT
3 D

(1)ϕ(t) = α2N
(
AT

1 ⊗AT
3

)
ϕ(t)− ρα2 AT

3 ϕ(t)− (δ + θ2 + µ)AT
3 ϕ(t),

AT
4 D

(1)ϕ(t) = θ1A
T
2 ϕ(t) + θ2A

T
3 ϕ(t)− µAT

4 ϕ(t), (29)

The main objective of this essay is to determine (4n+4) unknowns of ai for i = 0, 1, · · · , 4n+
3. By substituting the initial conditions in equations (28), we can obtain four linear equa-
tions as follows:

Wp0 = AT
1 ϕ(0),Sp0 = AT

2 ϕ(0), Ip0 = AT
3 ϕ(0),Tp0 = AT

4 ϕ(0). (30)

We can obtain ϕ(0) from (9). By replacing a set of (n) points τi =
2i−1

2(n+1) for i = 1, 2, · · · , n,
we can have

AT
1 D

(1)ϕ(τi) = Λ1−α1N
(
AT

1 ⊗AT
2

)
ϕ(τi)−α2N

(
AT

1 ⊗AT
3

)
ϕ(τi)+ρα2A

T
3 ϕ(τi)−µAT

1 ϕ(τi).

AT
2 D

(1)ϕ(τi) = α1N
(
AT

1 ⊗AT
2

)
ϕ(τi) + δ AT

3 ϕ(τi)− (θ1 + µ)AT
2 ϕ(τi),

AT
3 D

(1)ϕ(τi) = α2N
(
AT

1 ⊗AT
3

)
ϕ(τi)− ρα2 AT

3 ϕ(τi)− (δ + θ2 + µ)AT
3 ϕ(τi),

AT
4 D

(1)ϕ(τi) = θ1A
T
2 ϕ(τi) + θ2A

T
3 ϕ(τi)− µAT

4 ϕ(τi), (31)

for i = 1, · · · , n, we can solve the unknown vectors of the system of 4n + 4 equations
obtained from (30) and (31) by using Newton’s iteration approach as described in [13, 16].

4. Numerical outcomes

This section presents the results of numerical simulations conducted in Mathematica
10.4 software on a personal computer with AMD A6-4400M APU with Radeon� HD
processor and 4GB Memory to investigate the transmission rate of water pollutants. The
parameter values and initial conditions used in this study are based on the references
[2] and [31] as follows: Λ1 = 0.0008, ρ = 0.25, α2 = 0.02, δ = 0.3; µ = 0.4, θ1 =
0.2, θ2 = 0.5,Wp0 = 0.5, Ip0 = 0.1, Sp0 = 0.4, and Tp0 = 0. We numerically examined the
factors that contribute to water pollution. Solvable and insolvable water pollutants from
chemical industries, health centers, and improper discharge of garbage into water bodies
were identified as the major factors causing water pollution. Deadly pathogens are rapidly
polluting water supplies, which could lead to disease outbreaks in society. The numerical
results have been obtained with n = 5, α = 0, and β = 0. The errors EW , ES , EI , and ET

in Table 2 are measures of the difference between the solutions from RK and the presented
method divided by the range length function. They are calculated as follows:

Ew =
WRK −WP

Rw
, Es =

SRK − SP

Rs
, EI =

IRK − IP
RI

, ET =
TRK − TP

RT
, (32)

where WRK , SRK , IRK and TRK are calculated from RK method, Wp, Sp, Ip and Tp are
the solutions from presented method, and Rw, Rs, RI and RT are the range length func-
tions. According to the Figure 2, we consider Rw = 500, Rs = 800, RI = 100, RT = 150.
According to table 2, the obtained results for errors Ew, Es, EI and ET demonstrate
that the relative errors obtained are all small and reliable, and this indicates the accuracy
and efficiency of the proposed method. The outcomes of the suggested procedure are
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Table 2. Numerical Results for transmission of water pollutant model

t Ew Es EI ET

0.0 1.82238E − 10 5.60724E − 01 2.74340E − 02 4.23530E − 02
0.1 3.92093E − 02 4.77563E − 02 7.44891E − 02 4.87579E − 02
0.2 9.00948E − 03 4.84820E − 02 3.48936E − 02 2.34431E − 02
0.3 1.70664E − 03 2.50430E − 02 2.56804E − 02 1.40351E − 02
0.4 3.77399E − 04 1.47946E − 02 3.38708E − 02 1.65920E − 02
0.5 2.53874E − 04 2.49247E − 02 3.55370E − 02 9.35553E − 03
0.6 9.10434E − 06 4.59110E − 02 2.70962E − 02 1.16129E − 02
0.7 7.35131E − 04 6.17957E − 02 2.00486E − 02 3.24062E − 02
0.8 3.23355E − 03 5.81400E − 02 2.47571E − 02 3.70840E − 02
0.9 2.95903E − 03 2.85325E − 02 3.09439E − 02 3.08061E − 02
1.0 1.41252E − 01 1.97474E − 02 1.27969E − 02 6.63999E − 02

compared with those of RK Method. Figures 2 illustrate the changes in water pollutant
variables over time for RK and the presented method in 3. Additionally, Figure 2 demon-
strates the convergence behavior of the water pollutant variables for n = 5, α = 0, and
β = 0. Specifically, Figure 2 (a) shows that the concentration of water pollutants remains
relatively stable as the number of days increases. At the beginning of the time period,
solvable water containment increased from 400mg/l to 900mg/l and then decreased as the
number of months increased. Additionally, Figure 2 (a) demonstrates that pollutants can
be removed from water supplies by implementing treatment. In Figure 2 (b), the sharp
increase in soluble water contaminants is expected due to interaction with water pollu-
tants and the transport of insoluble water pollutants to solutes. However, soluble water
containment decreased due to treatment. Treatment resulted in a decrease in insoluble
water pollutants, as demonstrated in Figure 2 (c). Figures 2 (a), (b) and (c) demonstrate
that improved water pollution treatment can lead to a reduction in water pollutants. This
reduction in pollutants can decrease their harmful effects on the environment and living
organisms. Figure 2 (d) also shows that the water refinery improved for two months due
to the high concentration of pollution in the first months, then eliminated it after that.
Although our results are good and have an acceptable accuracy, the functions W (t), S(t),
and I(t) are discontinuous at a point near zero. This paper utilized continuous functions
to estimate the solutions. Therefore, numerical solutions will create Gibbs oscillations
[28] that destroy the expected exponential convergence by Jacobian bases. Our suggestion
for improving numerical results is to determine the location of discontinuity by disconti-
nuity detection methods and then obtain numerical solutions in separate and continuous
intervals. Some other of these methods are in [28, 29, 30] and references therein. These
suggestions will be investigated in future works.

5. Conclusion

Water is a main resource for the survival of humanity. Water pollutants can have a
significant impact on aquatic ecosystems and human health. Treatment can be used to
remove pollutants from the water. In this study, a numerical approach is presented for
a mathematical model of the transmission of water pollutants formulated in a system of
ordinary differential equations. By using shifted Jacobi polynomials and its operational
matrix of derivatives, we convert this mathematical model to an algebraic model. The
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(a) Water pollutant (b) Solvable water pollutant

(c) Insolvable water pollutant (d) Treated water pollutant

Figure 2. Transmission of the concentration of water pollutant.

results of the proposed method were compared with those of the RK method, which
confirmed the results of the present approach.
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