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ESTIMATING THE BOUND SET OF A CHAOTIC SYSTEM AND ITS

APPLICATION IN CHAOS SYNCHRONIZATION

A. KHAN1, S. ALI1∗, A. KHAN1, §

Abstract. In this paper, we investigate the ultimate bound set for a chaotic system.
Based on Lagrange multiplier method, an optimization problem has been done analyt-
ically to calculate a precise ultimate bound set of the chaotic system. Apart from that
application of the bound set is also discussed and it can be used to study chaos synchro-
nization. Synchronization has been realized between two identical chaotic systems via
globally exponential approach. Resulting bound sets and synchronization are quantita-
tively tested to illustrate the effectiveness of the theoretical analysis.
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1. Introduction

E.N. Lorenz [1] introduced the idea of chaos using the weather model and obtained
the first chaotic attractor-Lorenz system. The nonlinear systems exhibit complex behav-
ior leads to chaos due to the sensitive dependence upon the initial conditions, which is
known as butterfly’s effect. The use of chaos theory is found in encrypted communication
[2], biology [3], engineering technology [4, 5], many other fields and it has been studied
thoroughly by researchers.

One interesting idea in chaos is to estimate the boundaries for the solution of chaotic
systems to study the dynamical behaviour of a system more deeply. To find the ultimate
bound sets attractive sets for a dynamical system is a crucial task and it has important
application such as controlling and synchronizing chaotic systems, Hausdorff dimension,
and identifying hidden attractors [6, 7, 8, 9, 10]. Under certain conditions, if one can
able to determine an ultimate bound set (UBS) for a chaotic dynamical system, then it
ensure that absence of periodic solutions, quasi-periodic solutions and equilibrium points
outside the UBS of the system. In 1987, Leonov et al. [8] studied two bounds—a spher-
ical bound and a cylindrical bound — for the globally attractive and positive invariant
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sets of the Lorenz system. Li et al. [11] have analyzed the ultimate bound set for hy-
perchaotic Lorenz-Haken system. By applying dimension reduction method, Wang et al.
[12] obtained explicit bound sets for the hyperchaotic Lorenz-Stenflo system. Using the
extremum principle of function and generalised Lyapunov function theory, Nik et al. [13]
obtained ultimate bound sets for the hyperchaotic system. After constructing a suitable
Lyapunov function, boundedness of the solutions of Chen system [14] and Lü system [15]
has been discussed also. Recently, Lei et al. [16] have spotlighted the complete inaccuracy
of the results regarding estimating the ultimate bound set [17]. Wang and Dong [18] then
looked into the boundedness of the system once again by considering an appropriate Lya-
punov function and demonstrated that the solutions of system are globally bounded in the
designated areas. To get the ultimate bound estimation of any existing chaotic and hyper-
chaotic systems, the common approach can be followed for optimization methodology and
Lyapunov function. However, the search for Lyapunov functions and ultimate bound sets
corresponding to hyperchaotic attractors is much more difficult than the chaotic attractor.
Consequently, the ultimate bound estimation for hyperchaotic systems can be typically
observed as an optimization problem. Based on these, Wang et al. [19] developed a uni-
fied approach for estimating the ultimate bound for a certain class of high-dimensional
quadratic autonomous dynamical systems and studied it in two chaotic systems and a
hyperchaotic system, respectively. Using this unified approach, authors estimated the
bounded sets of various hyper-chaotic and chaotic systems [10, 20]. Moreover, researchers
are interested to study the estimation of the bound set in case of fractional-order chaotic
system [21, 22, 23]. Studies related to ultimate bound estimation has been the subject of
extensive interest. These deliberations have been done in case of chaotic systems which is
the key component of present scenario.

The technique for controlling chaos is Predictive control and synchronization [24]. The
phenomenon of having many chaotic systems—whether identical or not—following the
same path is known as chaos synchronization. In other words, the behavior of one system
merges with the behaviour of another, forcing them to synchronize in a way that triggers
the states of both systems reaching asymptotically to each other. Carroll and Pecora
[25] initially proposed the concept of synchronization in order to design the appropriate
controllers to synchronize two chaotic systems with distinct initial conditions. There are
variety of control strategies, such as active control, sliding mode control, adaptive control,
and others. Complete synchronization, anti-synchronization, compound synchronization,
difference synchronization and others have been developed to control the chaotic behaviour
of systems [26, 27, 28, 29]. Among all the control techniques for chaos synchronization,
linear feedback control is the most common, simple and easy to bring in practice. Many
authors have used the linear feedback control approach to synchronize and control chaos in
various chaotic and hyper chaotic systems such as Rössler system [30], Lorenz system [31]
and other nonlinear systems [32]. These control techniques are too appealing and have
been widely used due to their simplicity in configuration and implementation. Linear
feedback synchronization approach has been used to achieve the globally exponentially
synchronization [33, 34] and lyapunov stability theory ensure the global stability of the
nonlinear systems. The main features of the paper are as follows:
–This paper focuses on two aspects: First is to estimate the ultimate bound set of a chaotic
system, and secondly the investigation of synchronization between two identical systems
for chaotic systems with the idea of bound set.
–To obtain ultimate bound set of the chaotic system, a combination of Lyapunov stability
theory and Lagrange optimization method have been applied.
–Globally exponential synchronization has been achieved between two identical chaotic
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systems.
–Numerical simulations have been carried out to demonstrate the effectiveness of this
technique by using the concept of determined ultimate bound set.
–Comparison analysis has been done with relative existing literature.

This article has been organised as follows: Section 2 discusses the dynamics of a chaotic
system. Section 3 deals with method description and estimation of ultimate bound set
of the system. Section 4 contains globally exponential synchronization scheme via linear
feedback control. Section 5 provides the numerical simulations. Section 6 includes the
comparative analysis. Conclusion is drawn in section 7.

2. Dynamics of 3D system

Consider the 3D chaotic system [35] as follows:
ẇ1 =

1
3w2w3 − αw1 +

1√
6
w3,

ẇ2 = −w1w3 + βw2,

ẇ3 = w1w2 −
√
6w1 − γw3,

(1)

where α, β and γ are the parameters and wi for i = 1, 2, 3, are state variables of the
system (1). For α = 0.400, β = 0.175, and γ = 0.400, Lyapunov exponents of the
system (1) at t = 300 with initial conditions (1, 1.5, 2.5) are λ1 = 0.1501, λ2 = 0.0050,
and λ3 = −0.7802. In Fig.1, we observe that one of the three lyapunov exponents value is
positive, one lyapunov exponent is near to zero, while the remaining one lyapunov exponent
is negative, which ensure the chaotic behaviour of the system. Chaotic attractors can be
seen in Fig.2.

(a) (b)

Figure 1. (A) Lyapunov exponents; (B) State trajectories of chaotic
system (1).

3. Boundedness of the chaotic system

To compute the ultimate bound set of the chaotic system, first we describe the technique
before addressing the optimization issue and its analytical solution.

3.1. Method description. Assuming W = (w1, w2, ..., wn)
T to be the solution of the

following autonomous system:

dW

dt
= f(W ), (2)
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(a) (b) (c)

Figure 2. (A), (B), (C) show chaotic attractors of the chaotic system
(1) for parameters α = 0.400, β = 0.175,γ = 0.400 with initial conditions
(1, 1.5, 2.5).

where f : Rn → R3. LetW0 =W (t0, t0,W0) is the initial value ofW (t, t0,W0), and ℧ ⊂ Rn

is the compact set. The distance between W (t, t0,W0) and ℧ described η is given as,

η(W (t, t0,W0),℧) = inf
Y ∈℧

||W (t, t0,W0)− Y ||.

Suppose for each χ > 0, ℧χ = {W |η(W,℧) < χ}, then we have ℧ ⊂ ℧χ.

Definition 3.1. Assume that there is a compact set ℧ ∈ Rn fulfilling the following crite-
rion [19]:

lim
t→∞

η(W (t),℧) = 0, ∀ W0 ∈ Rn/℧, (3)

i.e., for each χ > 0, there exists T > t0, such that W (t, t0,W0) ∈ ℧χ for all t ≥ T . The
set ℧χ is said to be an ultimate bound set (USB) of system (2). If, for any W0 ∈ ℧ and
for all t ≥ t0, W (t, t0,W0) ∈ ℧, then ℧ is called the positively invariant set for system (2).

To determine the bound set of a dynamical system, let us rewrite the system (2) as:

Ẇ = AW +

n∑
i=1

wiHiW + U, (4)

where W = (w1, w2, ..., wn)
T ∈ Rn are system state vectors. Also, A ∈ Rn×n, U ∈ Rn,

and Hi = (hijk)n×n ∈ Rn×n with every element of Hi satisfying h
i
jk = hjik, for all i, j, k =

1, 2, ..., n.
The quadratic function V is defined as follows:

V(W ) = (W + ψ)TM(W + ψ), (5)

where M = MT = (mij)n×n for all i, j = 1, 2, ..., n is a symmetric matrix and ψ =
(ψ1, ψ2, ..., ψn) ∈ Rn×n are real parameters to be calculated. Taking the derivative of (5),
we get,

V̇(W ) = Ẇ TM(W + ψ) + (W + ψ)TMẆ, (6)

V̇(W ) =W T [ATM +MA+ 2(HT
1 Mψ,HT

2 Mψ, ...,HT
nMψ)T ]W

+
n∑

i=1

wiW
T (HT

i M +MHi) + 2(ψTMA+ UTM)W + 2UTMψ. (7)

Denoting Q = ATM +MA+ 2(HT
1 Mψ,HT

2 Mψ, ...,HT
nMψ)T

and G = 2(ψTMA+ UTM).
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One gets,

V̇(W ) =W TQW +
n∑

i=1

wiW
T (HT

i M +MHi)W +GW + 2UTMψ. (8)

Theorem 3.1. [19] Suppose that M > 0 is a positive definite symmetric matrix and
ψ ∈ Rn is a vector, such that

Q = ATM +MA+ 2(HT
1 Mψ,HT

2 Mψ, ...,HT
nMψ)T < 0, (9)

and for any W = (w1, w2, ..., wn)
T ∈ Rn

n∑
i=1

wiW
T (HT

i M +MHi)W = 0, (10)

then system (4) is bounded and its ultimate bound set is defined as follows:

℧ = {W ∈ Rn : (W + ψ)TM(W + ψ) ≤ J}, (11)

where J is a real value to be determined by following optimization problem :

maximize (W + ψ)TM(W + ψ)

subject to W TQW + 2(ψTMA+ UTM)W + 2UTMψ = 0. (12)

3.2. Estimation of the ultimate bound set for the chaotic system. Description of
the methodology to compute the bound set of the satellite chaotic system with help of
Theorem 3.1 has been discussed in part. For that we rewrite the system (1) in the form
of equation (4) as follows:

Ẇ = AW +

3∑
i=1

wiHiW + U, (13)

where

A =

 −α 0 1√
6

0 β 0

−
√
6 0 −γ

 , H1 =

 0 0 0
0 0 −1

2
0 1

2 0

 , H2 =

 0 0 1
6

0 0 0
1
2 0 0

 ,

H3 =

 0 1
6 0

−1
2 0 0
0 0 0

, and U =

 0
0
0

.

Let M =MT = (mij)3×3, i, j = 1, 2, 3. From the equation (10), we have

3∑
i=1

wiW
T (HT

i M +MHi)W = 0, (14)

holds for any wi ∈ R, i = 1, 2, 3. Therefore,

m13w
2
1w2m21

(
− w2

1w3 +
w2
2w3

3

)
+m12(w

2
1w3 + w2

2w3) +m31

(
w2
1w2 +

w2w
2
3

3

)
+m13

(
w2
1w2 +

w2w
2
3

3

)
+m32

(
w1w

2
2 − w1w

2
3

)
+m23

(
w1w

2
2 − w1w

2
3

)
+

(
m33 −m22 +m33 +

m11

3
+
m11

3
−m22

)
w1w2w3 = 0. (15)
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Let m13 = m21 = m32 = 0, m33 −m22 +m33 +
m11
3 + m11

3 −m22 = 0. Corresponding to
these calculation the matrix M becomes,

M =

 m11 0 0
0 m33 +

m11
3 0

0 0 m33

 ,

and one can also obtain,

Q =


−2αm11 m33ψ3

m11√
6
−m33

√
6−

(
m33 +

m11

3

)
ψ2

m33ψ3 2β

(
m33 +

m11

3

)
m11

3 ψ1

m11√
6
−m33

√
6−

(
m33 +

m11

3

)
ψ2

m11

3 ψ1 −2γm33

 .

For simplification, we choose ψ = (ψ1, ψ2, ψ3) =

(
0, −1

m33+
m11
3

, 0

)
,

Q =


−2αm11 0

(
m11√

6
−m33

√
6

)
+ 1

0 2β

(
m33 +

m11
3

)
0(

m11√
6
−m33

√
6

)
+ 1 0 −2γm33

 .

Expressing

(
m11√

6
−m33

√
6

)
= τ1 and

(
m33 +

m11
3

)
= τ2, then

Q =

 −2αm11 0 τ1 + 1
0 2βτ2 0

τ1 + 1 0 −2γm33

.

Subsequently, we get

V(W ) = (W + ψ)TM(W + ψ), (16)

V(W ) = m11w
2
1 + τ2

(
w2 −

1

τ2

)2

+m33w
2
3. (17)

V̇(W ) = 0 gives

−αm11w
2
1 + βτ2w

2
2 − γm33w

2
3 + (τ1 + 1)w1w3 − βw2 = 0. (18)

Since, V̇(W ) describes an ellipsoidal surface. Therefore in case of V̇(W ) = 0, V(W ) obtains
its maximum value on the ellipsoidal surface. Thus, the problem has an optimal solution.
Let us assume that J be the optimal solution of the problem (12). Now,

℧ =

{
W (t) = (w1, w2, w3) ∈ R3 : m11w

2
1 + τ2

(
w2 −

1

τ2

)2

+m33w
2
3 ≤ J

}
(19)

is a compact set for any M > 0. We require to show that

lim
t→∞

η(W,℧) = 0.

If limt→∞ η(W,℧) ̸= 0, then the solutions of the system (13) will remain in R3/℧ forever

and V̇(W ) < 0. Hence, V(W (t)) uniformly deceases in R3/℧, and we have,

lim
t→∞

V(W (t)) = V∗ > J.
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Let B = {W (t) : V∗ ≤ V(W (t)) ≤ V(W (t0))}, where t0 represents the starting time,

and B1 = inf{−V̇(W (t)) : W ∈ B}. Clearly, B1 > 0 and V∗ > 0 are the constants and

V̇(W (t)) ≤ −B1 as t→ ∞. Thus, one can get, 0 ≤ V(W (t)) ≤ V(W (t0))−B1(t− t0) tends
to −∞. Consequently, we get

lim
t→∞

η(W,℧) = 0.

This indicates that system (13) is bounded and ℧ is ultimate bound of the system (13).

Lemma 3.1. Suppose that α, β, γ, m11,m22 and m33 all are positive real values and

℧ =

{
W (t) ∈ R3 : m11w

2
1 + τ2

(
w2 −

1

τ2

)2

+m33w
2
3 ≤ J

}
. (20)

Then, the system (13) has an ultimate bound set ℧, where

J =
1

τ2
=

1

m33 +
m11
3

, (α, β, γ) ∈ E3 (21)

and,

E1 = {(α, β, γ) ∈ R3+ : α > γ > 0},
E2 = {(α, β, γ) ∈ R3+ : γ > α > 0},
E3 = R3+ ∼ (E1 ∪ E2).

Proof. In order to optimize, consider

max V = m11w
2
1 + τ2

(
w2 −

1

τ2

)2

+m33w
2
3,

s.t −αm11w
2
1 + βτ2w

2
2 − γm33w

2
3 + (τ1 + 1)w1w3 − βw2 = 0. (22)

Expressing
√
m11w1 = y1,

√
τ2w2 − 1√

τ2
= y2,

√
m33w3 = y3. The above equations can

be rewritten as follows:

max V = y21 + y22 + y23

s.t − αy21 + β

(
y2 +

1
√
τ2

)2

− γy23 +
(τ1 + 1)y1y3√

m11m33
− β

√
τ2

(
y2 +

1
√
τ2

)
= 0. (23)

Using the Lagrange method, Θ is defined as,

Θ = y21+y
2
2+y

2
3−ζ

[
−αy21+β

(
y2+

1
√
τ2

)2

−γy23+
(τ1 + 1)y1y3√

m11m33
− β
√
τ2

(
y2+

1
√
τ2

)]
. (24)

∂Θ

∂y1
= 2y1 − ζ

[
2αy1 −

(τ1 + 1)y3√
m11m33

]
= 0,

∂Θ

∂y2
= 2y2 − ζ

[
− 2β

(
y2 +

1

τ2

)
+
β

τ2

]
= 0, (25)

∂Θ

∂y3
= 2y3 − ζ

[
2γy3 −

(τ1 + 1)y1√
m11m33

]
= 0,

∂Θ

∂ζ
= −

[
αy21 + β

(
y2 +

1
√
τ2

)2

− γy23 +
(τ1 + 1)y1y3√

m11m33
− β

√
τ2

(
y2 +

1
√
τ2

)]
= 0.

(i) If ζ = 1
α and α > γ > 0, then we obtain

(y⋆1, y
⋆
2, y

⋆
3) =

(
± i

β

2
√
τ2(α+ β)

√
(2α+ β)

α
,

−β
2
√
τ2(α+ β)

, 0

)
, (26)
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(ii) If ζ = 1
γ and γ > α > 0, then we obtain

(y⋆1, y
⋆
2, y

⋆
3) =

(
0,

−β
2
√
τ2(γ + β)

,±i β

2
√
τ2(γ + β)

√
(2γ + β)

γ

)
, (27)

complex critical points are not to be considered.

(iii) Ifζ ̸= 1
α or

(
̸= 1

γ

)
, then we obtain

(y⋆1, y
⋆
2, y

⋆
3) =

(
0,− 1

√
τ2
, 0

)
. (28)

Hence V1 = V1(y
⋆
1, y

⋆
2, y

⋆
3) =

1
τ2
,

or (y⋆1, y
⋆
2, y

⋆
3) = (0, 0, 0), V2 = V2(y

⋆
1, y

⋆
2, y

⋆
3) = 0.

Clearly, equation (23) represents the ellipsoidal surface, thus V shall have its minimum
and maximum values. Let us assume that the minimal value of V is V2 = 0, and the
maximum value is Vmax.

For simplicity,one can denote,

E1 = {(α, β, γ) ∈ R3+ : α > γ > 0},
E2 = {(α, β, γ) ∈ R3+ : γ > α > 0},
E3 = R3+ ∼ (E1 ∪ E2).
Hence, we obtain,

Vmax =
1

τ2
=

1

m33 +
m11
3

, (α, β, γ) ∈ E3, (29)

and knowing that Vmax = J . This completes the proof. □

4. Synchronization via linear feedback control

In this section, we discuss the exponential synchronization of the chaotic system. This
study is based on the conclusions of the calculation of ultimate bound set of the system
(1). First, let us state the following lemma:

Lemma 4.1. For any µ > 0, w1, w2 ∈ R, then the inequality 2w1w2 ≤ µw2
1 +

1
µw

2
2 holds.

Consider the chaotic system (1) as master (drive) system, and the corresponding slave
(response) system is defined as follows:

ż1 =
1
3z2z3 − αz1 +

1√
6
z3 + p1,

ż2 = −z1z3 + βz2 + p2,

ż3 = z1z2 −
√
6z1 − γz3 + p3,

(30)

where z1, z2, z3 are the states vectors of the system with parameters α = 0.400, β = 0.175,
γ = 0.400, and p1, p2, p3 are the controllers to be designed to achieve the synchronization
between master(drive) system (1) and slave(response) system (30). However, by using
Theorem 3.1 one obtain,

|w1| ≤
√

J
m11

= ∆1,

|w2| ≤
∣∣∣∣w2 − 1

τ2

∣∣∣∣+ 1
τ2

=
√

J
τ2

+ 1
τ2

= ∆2,

|w3| ≤
√

J
m33

= ∆3,

(31)

where J is defined in equation (21).
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Theorem 4.1. Consider the master system (1) and corresponding slave system (30). If
we choose the controllers values as follows:

p1 = −k1e1, p2 = −k2e2, p3 = −k3e3,

where k1 >
∆2

3
√
σ
−3α− 1√

6
√
σ
− ∆3

6
√
σ
, k2 > β− ∆1

4
√
σ
−∆3

√
σ

4 , k3 > ∆2
√
σ−∆1

√
σ

2 −
√
σ
2 −γ, and

σ > 0 is real positive parameter. Then, the master (drive) system (1) and slave (response)
system (30) are exponentially synchronized.

Proof. We define the error system as,

e1 = z1 − w1, e2 = z2 − w2, and e3 = z3 − w3. (32)

Error dynamics becomes, 
ė1 = ż1 − ẇ1,

ė2 = ż2 − ẇ2,

ė3 = ż3 − ẇ3.

(33)

It follows that, 
ė1 = −αe1 + 1√

6
e3 +

1
3w3e2 +

1
3e2e3 + p1,

ė2 = βe2 − w1e3 − w3e1 − e1e3 + p2,

ė3 = −
√
6e1 − γe3 + w1e2 + w2e1 + e1e2 + p3.

(34)

Take the Lyapunov function as follows:

ν(e1, e2, e3) =
3

2
σe21 + σe22 +

1

2
σe23.

ν̇(e1, e2, e3) = 3σe1ė1 + σe2ė2 + σe3ė3, (35)

Therefore,

ν̇(e) = 3σe1

(
− αe1 +

1√
6
e3 +

1

3
w3e2 +

1

3
e2e3 − k1e1

)
+ σe2

(
βe2 − w1e3 − w3e1 − e1e3 − k2e2

)
+ σe3

(
−
√
6e1 − γe3 + w1e2 + w2e1 + e1e2 − k3e3

)
, (36)

that is ν̇(e) = −3(α+ k1)σe
2
1 + 2(β − k2)σe

2
2 − (γ + k3)σe

2
3

−
(√

6− 3√
6

)
σe1e3 + 2σe1e3w2 − σe2e3w1 − σe1e2w3. (37)

By using Lemma 4.1, we get
σe1e3 ≤ σ

1
4 |e1|σ

3
4 |e3| ≤

√
σ
2 e

2
1 +

σ
√
σ

2 e23,

σe1e3w2 ≤ σ|e1||e3|∆2 ≤ ∆2
2

√
σe21 +

∆2
2 σ

√
σe23,

σe2e3w1 ≤ σ|e1||e3|∆1 ≤ ∆1
2

√
σe22 +

∆1
2 σ

√
σe23,

σe1e2w3 ≤ σ|e1||e3|∆1 ≤ ∆1
2

√
σe22 +

∆1
2 σ

√
σe23.

(38)
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Then from equation (36) and (38), we have

ν̇ ≤ −3(α+ k1)σe
2
1 + 2(β − k2)σe

2
2 − (γ + k3)σe

2
3

− 3√
6

(√
σ

2
e21 +

σ
√
σ

2
e23

)
+

(
∆2

2

√
σe21 +

∆2

2
σ
√
σe23

)
−
(
∆1

2

√
σe22 +

∆1

2
σ
√
σe23

)
.

This implies that

ν̇ ≤ −
(
3ασ + 3k1σ +

3√
6

√
σ −∆2

√
σ +

∆3

2

√
σ

)
e21

−
(
2k2σ − 2βσ +

∆1

2

√
σ +

∆3

2
σ
√
σ

)
e22

−
(
γσ + k3σ +

3√
6
σ
√
σ +

∆1

2
σ
√
σ −∆2σ

√
σ

)
e23. (39)

Set 
3ασ + 3k1σ + 3√

6

√
σ −∆2

√
σ + ∆3

2

√
σ = α̂1 > 0,

2k2σ − 2βσ + ∆1
2

√
σ + ∆3

2 σ
√
σ = α̂2 > 0,

γσ + k3σ + 3√
6
σ
√
σ + ∆1

2 σ
√
σ −∆2σ

√
σ = α̂3 > 0,

α̂ = min{α̂1, α̂2, α̂3} > 0.

(40)

Then,

ν̇ ≤ α̂1e
2
1 − α̂2e

2
2 − α̂3e

2
3,

ν̇ ≤ −α̂ν.

Hence, ν(t) ≤ ν(t0)e
−α̂(t−t0). It shows that the master (drive) system (1) and slave

(response) system (30) are synchronized globally exponentially, as shown in Fig.7. □

5. Numerical Simulations

In this section, we discuss the numerical simulations to illustrate the validation of ana-
lytical method which is used to determine the ultimate bound of the chaotic system. Lya-
punov exponents of system (1) at t = 200 for the parameter values α = 0.400, β = 0.175,
and γ = 0.400 as: λ1 = 0.1501, λ2 = 0.0050, and λ3 = −0.7802. In Fig.1, we observe
that one of the three Lyapunov exponents values is positive, one goes to zero, and one
is negative, which is a necessary requirement for chaotic behaviour of the systems. It
confirmed that the three-dimensional satellite system is chaotic.

For simulations, we have chosen m11 = 0.1 and m33 = 0.1 and parameter values α =
0.400, β = 0.175, γ = 0.400 with initial conditions (1, 1.5, 2.5). Then it can be observed
that Fig.3 and Fig.4 show the phase portraits and calculated ellipsoidal surface. Hence
all the state trajectories are found to remain within the predicted ellipsoidal surface.
Also, we have selected m11 = 0.1, m33 = 0.1 and parameter values α = 0.100, β =
0.175, γ = 0.400 with initial conditions (1, 1.5, 2.5). Fig.5 shows the phase portraits
and calculated ellipsoidal surface, and all state trajectories are found to remain into the
predicted ellipsoidal surface. For same values ofm11, m33 and parameter values α = 0.400,
β = 0.200, and γ = 0.400 with initial conditions (1, 1.5, 2.5), Fig.6 shows the phase
portraits and calculated ellipsoidal surface, and again all the state trajectories are found
to remain within the predicted ellipsoidal surface. For the synchronization purpose initial
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(a) (b) (c)

Figure 3. (A), (B) , (C): Phase portraits and ellipsoidal surface in 3D-
space of the system (1) with α = 0.400, β = 0.175, γ = 0.400, and m11 =
0.1, m33 = 0.1.

(a) (b) (c)

Figure 4. (A), (B) , (C): Phase portraits and elliptical curve in 2D-plane
of the system (1) with α = 0.400, β = 0.175, γ = 0.400, and m11 = 0.1,
m33 = 0.1.

(a) (b) (c)

Figure 5. (A), (B) , (C): Phase portraits inside ellipsoidal surface in
3D-plane of the system (1) with α = 0.100, β = 0.175, γ = 0.400, and
m11 = 0.1, m33 = 0.1.

conditions of the master system (1) and slave system (30) are chosen as (3, 5,−4) and
(−5,−2, 4), respectively. The controllers pi, i = 1, 2, 3, are also defined by the coefficients
k1 = 4, k2 = 5, and k3 = 16. Hence, simulations show that the master and slave systems
are synchronized and synchronization errors converge exponentially to zero, as illustrated
in Fig.7.
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(a) (b) (c)

Figure 6. (A), (B) , (C): Phase portraits inside ellipsoidal surface in 3D-
plane of the system (1) with α = 0.400, β = 0.200, γ = 0.400, m11 = 0.1
and m33 = 0.1

(a) (b)

(c) (d)

Figure 7. (A), (B), (C) synchronized trajectories and (D) errors of
chaotic systems (1) and (30).

6. A comparative analysis

In this section, we have provided a thorough comparative study between the existing
works and the present work. In [36], authors proposed the predictive control stability and
synchronization methodology of chaotic system and noticed that errors converge to zero at
t = 20(approx.) Adaptive synchronization for two identical satellite systems and observed
that errors converge to zero at t = 2.5(approx.) as studied in [37]. Further, Zadeh and
Zadeh [38] have proposed synchronization scheme using active control method between two
chaotic systems and noted that synchronized errors converge to zero at t = 12(approx.).
In [39], sliding mode control technique was applied to achieve synchronization between
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two identical chaotic systems and noticed that synchronize errors converge to zero at
t = 22(approx.). Whereas in presented work, the globally exponential synchronization
technique is achieved using linear feedback control, and it is noticed that synchronization
errors are converging to zero at t = 1.5(approx.) as displayed in Fig.7. As the results

Table 1. Comparison between various results

Methods Synchronization time(approx.)

Khan and Kumar [36] t = 20
Khan and Kumar [37] t = 2.5
Zadeh and Zadeh [38] t = 12
Khan and Kumar [39] t = 22
Present Method t = 1.5

shown in the Table 1, one can observe that the synchronization time attained in our work
is much less than all the aforementioned techniques.

7. Conclusion

The chaotic system is analysed in this work from the perspective of boundedness and
synchronization. An ultimate bound sets (UBS) has been optimized for its ultimate bound
which has been excellently used to analyse the solutions of the considered chaotic systems
and then there qualitative and analytical nature has been deliberated. Bound set has
been discussed for different parameter values. As an application of bound set, the linear
feedback control method has been used to achieve globally exponential synchronization
between two identical chaotic systems. The feasibility of the suggested method is shown
by performing the simulations. These type of studies can be extended to investigate the
boundary of the integer and fractional order chaotic and hyperchaotic systems.
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