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A VARIABLE SAMPLING PLAN BASED ON QUADRATIC RANDOM

DECISION FUNCTION USING CLASSICAL AND BAYESIAN

ESTIMATES UNDER TYPE II HYBRID CENSORED SAMPLES

H. BELBACHIR1, M. BENAHMED1,2∗, §

Abstract. This article endeavors to develop a single variable sampling plan when the
lifetime of product follows the exponential distribution. The sampling plan has been
developed by assuming that the life test is under type II hybrid censoring. Based on
a two-sided decision function with a quadratic random doubt zone and a suitable loss
function, an explicit expression for the Bayes risk has been determined using classical and
Bayesian estimate with the Linex loss function. In order to obtain the optimal sampling
plan, a simple algorithm based on the grid search method was provided. Finally, a
numerical simulation with extensive tables and a comparison of performance have been
provided to illustrate the proposed model.

Keywords: Two-sided decision function, quadratic random doubt zone, Linex loss func-
tion, optimal sampling plan, type II hybrid censoring.

AMS Subject Classification: 62D05, 62F15, 62N05.

1. Introduction

Acceptance sampling plan plays a vital role in quality control engineering as it can
determine the good quality of both products and processes. In other terms, the objective
of acceptance sampling is twofold: drawing the items’ optimal number and determining
the batch’s quality. There are different criteria that develop sampling plans. Decision
theory approach is a very effective method to quality control. Such that, the sampling
plan is determined by making an optimal decision on the basis of maximizing the return
or minimizing the loss.

In recent years, there has been an increasing interest in Bayesian sampling plans based
on the lifetime censored data, such as, the sampling plan based on type II censored sample
is discussed in Lam (1990), the sampling plan based on type I censored sample is described
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in Lam (1994). Interval censored sample in Chen et al. (2015). The type I hybrid censored
sample was initially introduced by Epstein (1954). Child et al. (2003) computed the exact
distribution of the maximum likelihood estimator (MLE) of the expected lifetime for the
case when the lifetime of components follows exponential distribution under type I and
type II hybrid censoring are provided. Lin et al. (2008) have studied the type I and type
II hybrid censoring for quadratic loss function. Also, Lin et al. (2011) developed Bayesian
sampling plan for the exponential distribution with progressive hybrid censoring based on
the classical one-sided decision function and the quadratic loss function. The type I hybrid
censored sample was initially introduced by Liang et al. (2013). Further, with a curtailed
decision function, Chen et al. (2017) discussed Bayesian sampling based on type II cen-
sored samples. Modified type II hybrid censoring where the inspection interrupted at the
censoring time τ = min

{
max

(
X(m), t

)
, X(n)

}
has been provided by Yang et al. (2017).

For exponential distribution under type I censoring and type I hybrid censoring a new
shrinkage estimator for the expected lifetime studied by Prajapati et al. (2018), which al-
ways exists even if no failure occurs at the censoring time τ = min

(
X(m), t

)
. Furthermore

Prajapati et al. (2020) developed generalized type II hybrid censoring for the exponen-
tial distribution case, they employed the posterior expectation to construct a Bayesian
one-sided decision function. Aslam (2019a, 2019b) have proposed acceptance sampling
plan for variable and attribute using the neutrosophic statistics. Recently, Prajapati et al.
(2021) discussed the Bayesian sampling plan under the balanced joint censoring scheme,
where the lifetime of items exponentially distributed. This type of sampling plan can
be applied where several types of products must be studied simultaneously. Aslam et al
(2022) studied the acceptance sampling plan of a two-step process loss using neutrosophic
statistics based on the operating characteristic curve function and the producer’s and the
consumer’s risks. Chen et al. (2022, 2023) investigate Bayesian sampling plans for simple
and random step-stress of accelerated life test based on censored data, which can provide
more accurate and reliable results compared to traditional methods. The Bayesian sam-
pling plan under competing risks data has been developed by Prajapati et al. (2023a).
In addition, Prajapati et al. (2023b) investigated the Bayesian sampling plan based on
random stress-change time model.

However, several single variable sampling plans have been improved in recent years,
most improvements have been achieved by considering the one-sided decision function.
Nonetheless, it is key to take into account that a doubt zone existed in the decision in-
terval i.e. the minimum acceptable T0 and the maximum rejectable T1 surviving time are
not equal. As given in the Figure 1:

T0T1

d0

d1

doubt zone

Figure 1. Schematic representation of a decision function with doubt zone

where d0 and d1 represent respectively the decisions of accepting and rejecting the batch.
Belbachir and Benahmed (2022a, 2022b) investigated Bayesian sampling plans for expo-
nential and Weibull distributions based on a linear random decision function.

In this paper, we develop a variable sampling plan using maximum likelihood and
Bayesian estimates for the exponential distribution under type II hybrid censoring and
based on a two-sided decision function with a quadratic doubt zone, such that the tran-
sition from d1 to d0 is done by a quadratic random function, as shown in Figure 2: The
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T0T1

d0

d1

Figure 2. Schematic representation of a decision function with quadratic
doubt zone

doubt zone is a new contribution essentially with the quadratic form, which moves towards
acceptance in a smooth manner compared to the linear situation as given in Belbachir and
Benahmed (2022a, 2022b). Furthermore, in this model, we will use two forms of estima-
tors, one of which is Bayesian with the Linex loss function.

The rest of this paper is organized in the following way. In Section 2, the proposed model
and all necessary computation of the different estimators for type II hybrid censoring are
described. In Section 3, an explicit expressions for the Bayes risk based on the proposed
decision function is obtained. In Section 4, an approximation method is suggested along
with a finite algorithm for finding an optimal sampling plan. In Section 5, an illustrative
example for the quadratic loss function is provided. In addition, some numerical results
are introduced followed by a comparison of performance between the proposed sampling
plan and the one of Yang et al. (2017). Finally, concluding remarks are given in Section
6.

2. Formulation of the model

Suppose that we have a batch of items prepared for inspection. The lifetime of each
item is a random variable X which follows an exponential distribution Exp(λ) with the
following pdf:

f(x|λ) =

{
λ exp(−λx), for x ≥ 0,

0, otherwise,

where the scale parameter λ is unknown. We suppose that λ has a conjugate prior gamma
distribution, α and β are known, with the pdf:

g(λ;α, β) =

{
λα−1 exp(−βλ)βα/Γ(α), for λ > 0,

0, otherwise,

Let (X1, X2, ..., Xn) be a sample of size n selected from a batch for life testing. Let
(X(1), X(2), ..., X(n)) be the corresponding order statistics. Here, we use the type II hybrid
censored in this instance, and the observed data we obtain can be classified as either of
the following two cases:

Data:{
Case I:

{
X(1) < X(2) < · · · < X(m)

}
if X(m) ≥ t,

Case II:
{
X(1) < X(2) < · · · < X(D)

}
if X(m) < t,where m < D < n,X(D) ≤ t < X(D+1)

Thus, the life test is terminated at the random time τ = min
{
max

(
X(m), t

)
, X(n)

}
where

X(m) be the time of m(≤ n)-th failure, and D is the observed failures before time t.
Using the type II hybrid censored life testing, the likelihood function can be represented

as:

l (Data|λ) =


n!

(n−m)!
λme−λ[

∑m
i=1 X(i)+(n−m)X(m)] for D = 0, 1, ...,m,

n!

(n−D)!
λDe−λ[

∑D
i=1 X(i)+(n−D)t] for D = m+ 1,m+ 2, ..., n

(1)
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Hence, the MLE of the expected lifetime θ = 1/λ is obtained as:

θ̂ML =

{
1
m

(∑m
i=1X(i) + (n−m)X(m)

)
for D = 0, 1, ...,m,

1
D

(∑D
i=1X(i) + (n−D)t

)
for D = m+ 1,m+ 2, ..., n.

(2)

The distribution of θ̂ML:

fθ̂ML (y) =
n∑

d=0

d∑
j=0

(−1)j
(
n

d

)(
d

j

)
e−λt(n−d+j)g (y − aj,M ;M,λM) , (3)

where aj,M = (n − d + j)t/M and M = max {d,m}. For more details see Childs et al.
(2003).

In order to obtain a Bayesian estimation for the expected lifetime θ, we use the Linex
loss function, that is, an extension of the squared loss function. The Linex loss function
is applied as follows:

L (δ) = exp(aδ)− aδ − 1; δ = θ̂ − θ, with a ̸= 0. (4)

Here, we use the loss function L (δ); with δ = θ̂
θ − 1; this loss function has been used by

several authors, e.g. see Boudjerda et al. (2017).
To compute the Bayes estimator, we shall minimize the posterior expected loss.

The posterior density function under the conjugate prior g(λ;α, β) is:

π(λ|Data) =
l (Data|λ) g(λ;α, β)∫∞

0 l (Data|λ) g(λ;α, β)dλ

Thus, for Case I

π(λ|Data) = g

(
λ;α+m,β +

m∑
i=1

X(i) + (n−m)X(m)

)
,

and for Case II

π(λ|Data) = g

(
λ;α+D,β +

D∑
i=1

X(i) + (n−D)t

)
,

Hence, the posterior expected loss is given by:

ρ =

∫ ∞

0
[exp(aδ)− aδ − 1]π(λ|Data)dλ

Substituting δ = θ̂/θ − 1, θ = 1/λ and θ̂ = 1/λ̂ we obtain:
For Case I

ρ =

∫ ∞

0

[
exp

(
aλ
λ̂
− a
)
− aλ

λ̂
+ a− 1

]
λα+m−1e−λ(β+Ym)(β + Ym)α+m/Γ(α+m)dλ

= e−a
(

β+Ym

β+Ym−a/λ̂

)α+m
− a

λ̂
α+m
β+Ym

+ a− 1,

where Ym = β +
∑m

i=1X(i) + (n−m)X(m).

Derivating ρ with respect to λ̂, we get:

∂ρ

∂λ̂
= −a(β + Ym)e−a (β+Ym)/λ̂2

(β+Ym−a/λ̂)2

(
β+Ym

β+Ym−a/λ̂

)α+m−1
− a

λ̂2

α+m
β+Ym

.
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By solving ∂ρ

∂λ̂
= 0, we obtain the Bayes estimator for θ as:

θ̂BL =
1

λ̂
=

β +
∑m

i=1X(i) + (n−m)X(m)

a

[
1− e

−a
α+m+1

]
.

Similarly, for the Case II:

θ̂BL =
1

λ̂
=

β +
∑D

i=1X(i) + (n−D)t

a

[
1− e

−a
α+D+1

]
.

Hence

θ̂BL =


β+

∑m
i=1 X(i)+(n−m)X(m)

a

[
1− e

−a
α+m+1

]
for D = 0, 1, ...,m,

β+
∑D

i=1 X(i)+(n−D)t

a

[
1− e

−a
α+D+1

]
for D = m+ 1,m+ 2, ..., n.

(5)

Note that, θ̂BL can be written as:

θ̂BL =
β +Mθ̂ML

a

[
1− e

−a
α+M+1

]
(6)

Using the linear transformation of random variables, the distribution of θ̂BL can be easily
constructed as:

fθ̂BL (y) =

n∑
d=0

d∑
j=0

(−1)j
(
n

d

)(
d

j

)
e−λt(n−d+j)g (y − aj,A,β;M,λA) , (7)

with aj,A,β = ((n− d+ j)t+ β)/A and A = a

[
1− e

−a
α+M+1

]−1

.

2.1. Random decision function and loss function. Based on the observed data x =
(x(1), x(2), ..., x(n)), a decision function δ(x) is made. We consider the following quadratic
two-sided decision function:

δ(x) =


d0, for θ̂ ≥ T0,{
d1, with probability pθ̂
d0, with probability 1− pθ̂

for T1 ≤ θ̂ < T0,

d1, for θ̂ < T1,

(8)

where pθ̂ =
(

T0−θ̂
T0−T1

)2
, and T1 < T0.

In order to construct the sampling plan (n,m, t, T0, T1), the following loss function is
considered:

L(λ, δ(x)) =

nCs − (n−Dn,m,t)vs + Ctτn,m,t +
k∑

i=0
aiλ

i, for δ(x) = d0,

nCs − (n−Dn,m,t)vs + Ctτn,m,t + Cr, for δ(x) = d1,

(9)

where, the random variable τn,m,t = min
{
max

(
X(m), t

)
, X(n)

}
is the censoring time

and the random variable Dn,m,t is the number of observed failures at the time τn,m,t.
The parameters Cs, Ct and Cr are positive constants and represent respectively the unit
inspection cost, the cost per unit of time used for the test and the loss due to rejection of
the batch, the quantity a0 + a1λ+ · · ·+ akλ

k denotes the loss of accepting the batch and
be positive and increasing in λ. When the life test was finished, the unfailure items can
be reused and therefore have the salvage value vs, where vs < Cs.
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3. Computation of the Bayes risk

With the loss function in (4), the Bayes risk of a sampling plan R(n,m, t, T0, T1) can
be computed as follows:

R(n,m, t, T0, T1) = E{E [L(λ, δ(x))]}

= E

{
E

[
nCs − (n−Dn,m,t)vs + Ctτn,m,t + d1Cr + (1− d1)

k∑
i=0

aiλ
i|λ
]}

= n (Cs − vs) + vsE [E (Dn,m,t|λ)] + CtE [E (τn,m,t|λ)] +
k∑

i=0
aiγ

i

+
k∑

i=0
E
{
Ciλ

iE
[
1{θ̂<T1} + pθ̂1{T1≤θ̂<T0}|λ

]}
= n (Cs − vs) + vsE [E (Dn,m,t|λ)] + CtE [E (τn,m,t|λ)] +

k∑
i=0

aiγi + r(n,m|d1),

where C0 = Cr − a0, Ci = −ai, for i = 1, ..., k, and γi represents the i-th moment of λ.

3.1. Bayes risk under ML estimator. The expression of RML(n,m, t, T0, T1) under
ML estimation can be described in the following way:

R(n,m, t, T0, T1) = E{E [L(λ, δ(x))]}

= n (Cs − vs) + vsE [E (Dn,m,t|λ)] + CtE [E (τn,m,t|λ)] +
k∑

i=0
aiγi + rML(n,m|d1),

such that

rML(n,m|d1) =
k∑

i=0
E
{
Ciλ

iE
[
1{θ̂<T1} + pθ̂1{T1≤θ̂<T0}|λ

]}
=

k∑
i=0

Ci
βα

Γ(α)

∞∫
0

e−βλλα+i−1

[
T1∫
0

fθ̂ (y) dy +
T0∫
T1

(
T0−y
T0−T1

)2
fθ̂ (y) dy

]
dλ

=
n∑

d=0

d∑
j=0

k∑
i=0

(−1)jCi

(
n
d

)(
d
j

) βαMM

Γ(α)Γ(M)

∞∫
0

[
T1∫

aj,M

(y − aj,M )M−1 e−(β+My)λλα+M+i−1dy

+
T0∫
T1

(
T0−y
T0−T1

)2
(y − aj,M )M−1 e−(β+My)λλα+M+i−1dy

]
dλ

=
n∑

d=0

d∑
j=0

k∑
i=0

(−1)jCi

(
n
d

)(
d
j

) βαMM

Γ(α)Γ(M)

∞∫
0

[
T1−aj,M∫

0

yM−1e−(β+My+Maj,M)λλα+M+i−1dy

+
T0−aj,M∫
T1−aj,M

(
T0−aj,M−y

T0−T1

)2
yM−1e−(β+My+Maj,M)λλα+M+i−1dy

]
dλ

=
n∑

d=0

d∑
j=0

k∑
i=0

(−1)jCi

(
n
d

)(
d
j

)βαMMΓ(M+α+i)
Γ(α)Γ(M)

[
T1−aj,M∫

0

yM−1

(β+Maj,M+My)
α+M+idy

+
T0−aj,M∫
T1−aj,M

(
T0−aj,M−y

T0−T1

)2
yM−1

(β+Maj,M+My)
α+M+idy

]
,
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using the transformation z = My
My+β+Maj,M

, with My + β + Maj,M =
β+Maj,M

1−z and y =
(β+Maj,M )z

M(1−z) . We get:

rML(n,m|d1) =
n∑

d=0

d∑
j=0

k∑
i=0

Ci

(
n
d

)(
d
j

) (−1)jβαΓ(M+α+i)

Γ(α)Γ(M)(β+Maj,M)
α+i

[q1∫
0

zM−1 (1− z)α+i−1 dz

+
(
T0−aj,M
T0−T1

)2 q0∫
q1

zM−1 (1− z)α+i−1 dz − 2
(β+Maj,M)(T0−aj,M)

M(T0−T1)
2

×
q0∫
q1

zM (1− z)α+i−2 dz +
(

β+Maj,M
M(T0−T1)

)2 q0∫
q1

zM+1 (1− z)α+i−3 dz

]

=
n∑

d=0

d∑
j=0

k∑
i=0

Ci

(
n
d

)(
d
j

) (−1)jβαΓ(M+α+i)

Γ(α)Γ(M)(β+Maj,M)
α+i

[
B1 (M,α+ i) Iq1 (M,α+ i) +

(
T0−aj,M
T0−T1

)2
×B1 (M,α+ i) {Iq0 (M,α+ i)− Iq1 (M,α+ i)} − 2

(β+Maj,M)(T0−aj,M)B1(M+1,α+i−1)

M(T0−T1)
2 ×

{Iq0 (M + 1, α+ i− 1)− Iq1 (M + 1, α+ i− 1)}+
(

β+Maj,M
M(T0−T1)

)2
B1 (M + 2, α+ i− 2)

×{Iq0 (M + 2, α+ i− 2)− Iq1 (M + 2, α+ i− 2)}] ,

where Bx (a, b) =
x∫
0

ta−1(1 − t)b−1dt, Ix (a, b) = Bx (a, b) /B1 (a, b), denote the incomplete

Beta function and Beta ratio respectively. Hence:

rML(n,m|d1) =
n∑

d=0

d∑
j=0

k∑
i=0

(−1)jCi

(
n
d

)(
d
j

) βαΓ(α+i)

Γ(α)(β+Maj,M)
α+i

{
Iq1 (M,α+ i) +

(
T0−aj,M
T0−T1

)2
× [Iq0(M,α+ i)− Iq1(M,α+ i)]− 2

(β+Maj,M)(T0−aj,M)
(α+i−1)(T0−T1)

2

[Iq0(M + 1, α+ i− 1)− Iq1(M + 1, α+ i− 1)] +
(M+1)(β+Maj,M)

2

M(α+i−1)(α+i−2)(T0−T1)
2

× [Iq0(M + 2, α+ i− 2)− Iq1(M + 2, α+ i− 2)]} . (10)

While

E [E (Dn,m,t|λ)] =
n∑

d=0

d∑
j=0

(−1)d−jM
(
n
d

)(
d
j

) ( β
β+(n−j)t

)α
. (11)

Therefore, the Bayes risk RML (n,m, t, T0, T1) is given by:

RML(n,m, t, T0, T1) =

n (Cs − vs) + vs
n∑

d=0

d∑
j=0

(−1)d−jM
(
n
d

)(
d
j

) ( β
β+(n−j)tµ

)α
+

k∑
i=0

aiγi + τ∗Ct

+
n∑

d=0

d∑
j=0

k∑
i=0

(−1)jCi

(
n
d

)(
d
j

) βαΓ(α+i)

Γ(α)(β+Maj,M)
α+i

{
Iq1 (M,α+ i) +

(
T0−aj,M
T0−T1

)2
× [Iq0(M,α+ i)− Iq1(M,α+ i)]− 2

(β+Maj,M)(T0−aj,M)
(α+i−1)(T0−T1)

2

[Iq0(M + 1, α+ i− 1)− Iq1(M + 1, α+ i− 1)] +
(M+1)(β+Maj,M)

2

M(α+i−1)(α+i−2)(T0−T1)
2

× [Iq0(M + 2, α+ i− 2)− Iq1(M + 2, α+ i− 2)]} ,
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where, for m < n

τ∗ = E [E (τn,m,t|λ)] = m

(
n

m

)
m−1∑
j=0

(−1)m−j−1
(
m−1
j

) αβ

(n−j)2
B1−q∗ (2, α− 1)

+ tn!
(m−1)!(n−m−1)!

m−1∑
i=0

n−m−1∑
j=0

[
(−1)n−i−j

(
m−1
i

)(
n−m−1

j

)
× βα

(m+j−i)(n−m−j)

(
1

((n−m−j)t+β)α
− 1

((n−i)t+β)α

)]
+ n

n−1∑
j=0

(−1)n−j−1
(
n−1
j

) αβ

(n−j)2
Bq∗ (2, α− 1) ,

and, for n = m

τ∗ = E [E (τn,m,t|λ)] = nβ
α−1

n−1∑
j=0

(−1)n−j−1
(
n−1
j

)
1

(n−j)2
,

q∗ = (n−j)t
β+(n−j)t , qi =

M(Ti−aj,M)
β+M(T−aj,M)+Maj,M

.

For the computation of E {E (τn,m,t|λ)} and E {E (Dn,m,t|λ)} See Belbachir and Be-
nahmed (2022b).

3.2. Bayes risk under Bayes estimator. In this section, a Bayesian sampling plan
is designed using the Bayes estimator of θ under the Linex loss. The expression of
RBL(n,m, t, T0, T1) given by:

RBL(n,m, t, T0, T1) = E{E [L(λ, δ(x))]}

= n (Cs − vs) + vsE [E (Dn,m,t|λ)] + CtE [E (τn,m,t|λ)] +
k∑

i=0
aiγi + rBL(n,m|d1),

Similarly

RBL(n,m, t, T0, T1) =

n (Cs − vr) + vs
n∑

d=0

d∑
j=0

(−1)d−jM
(
n
d

)(
d
j

) ( β
β+(n−j)tµ

)α
+

k∑
i=0

aiγi + τ∗Ct

+
n∑

d=0

d∑
j=0

k∑
i=0

(
n
d

)(
d
j

) (−1)jCiβ
αΓ(α+i)

Γ(α)(β+(n−d+j)t)α+i

{
Iq′1 (M,α+ i) +

(
T0−aj,A,β

T0−T1

)2
×
[
Iq′0(M,α+ i)− Iq′1(M,α+ i)

]
− 2

M(β+(n−d+j)t)(T0−aj,A,β)
A(α+i−1)(T0−T1)

2[
Iq′0(M + 1, α+ i− 1)− Iq′1(M + 1, α+ i− 1)

]
+ M(M+1)(β+(n−d+j)t)2

A2(α+i−1)(α+i−2)(T0−T1)
2

×
[
Iq′0(M + 2, α+ i− 2)− Iq′1(M + 2, α+ i− 2)

]}
,

with, q′i =
A(Ti−aj,A,β)

β+A(T−aj,A,β)+(n−d+j)t
.

4. Computation of the optimal sammling plan

For finding an optimal sampling plan, we suggest finite algorithm which is presented
below. Furthermore, the optimal size of the sample is bounded by:

N = min

{[
Cr

Cs − vs

]
,

[∑k
i=0 aiγi

Cs − vs

]}
. (12)
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where [x] is the integer part of x. For the proof see Belbachir and Benahmed (2022a).

The expression R (n,m, t, T0, T1) is quite complicated. So, as given by prajapati et
al. (2020), we assume T0 has an upper bound since 0 < T0 < T ∗

0 , and for t, we obtain a
confidence interval [tL, tU ] where P (X > tU ) = η/2, P (X < tL) = η/2, with η = 0.05. For
searching the optimal sampling plan (n,m, t, T0, T1), we consider the following algorithm:

(1) Start with (n,m, t) = (0, 0, 0), compute N from Equation (9) and compute

R
(
0, 0, 0, T ′

0,(n,m,t), T
′
1,(n,m,t)

)
= min

{
R (0, 0, 0,∞,∞) = Cr, R (0, 0, 0, 0, 0) =

∑k
i=0 aiγi

}
.

(2) For fixed (n,m, t), compute the optimal T ′
0,(n,m,t) and T ′

1,(n,m,t) using grid search

method, such that R
(
n,m, t, T ′

0,(n,m,t), T
′
1,(n,m,t)

)
= min

0<T1<T0≤T ∗
R (n,m, t, T1, T0), with the grid size 0.0125.

(3) For fixed (n,m), compute the optimal t′(n,m) using grid search method, such that

R
(
n,m, t′(n,m), T

′
0,(n,m,t), T

′
1,(n,m,t)

)
= min

tL≤t≤tU
R
(
n,m, t, T ′

0,(n,m,t), T
′
1,(n,m,t)

)
, with the grid size tU−tL

100 .

(4) For 0 ≤ m ≤ n ≤ N , choose (n′,m′, t′, T ′
0, T

′
1) which corresponds to the smallest

value of the Bayes risks R
(
n,m, t′(n,m), T

′
0,(n,m,t), T

′
1,(n,m,t)

)
.

5. Simulation study

To illustrate the proposed model, we assume that the loss function is a quadratic func-
tion with (k = 2), such that the calculations can be done in a similar way for higher
degree. The evaluation of the Bayes risk is done numerically based on the upper bound
of sample size and the grid search method, i.e. we can get an optimal sampling plan in
a finite number of search steps. Various numerical examples are tabulated in Tables 1-4,
in each table we denote the optimal plan under both estimators by SML

0 and SBL
0 , and

their Bayes risk by RML
0 and RBL

0 . Further, we indicate the expected number of failures
by E [D], and the expected censoring time by E [τ ].

The selection of parameters and coefficients of the loss function is the main factor that
controls the value of the minimum Bayes risk. To maintain the sensitivity analysis of the
risk function, we vary one(two) coefficient(s) or parameter(s) and we fix the others. As the
true values of parameters and coefficients of the model for which we made the calculations,
we choose α = 2.5, β = 0.8, a0 = a1 = a2 = 2, Cs = 0.5, vs = 0.3, Ct = 1, Cr = 30 and
a = −10. For the grid search method we take T ∗

0 = 2.
For the standard values mentioned above, the optimal sampling plan under ML estima-

tor is SML
0 = (4, 1, 0.1427, 0.8500, 0.3000), which means, we put 4 items for the test and

the life test terminates after the maximum between the fourth failure time and t = 0.1427.
the batch is accepted if the estimator of the average lifetime θ̂ is greater than or equal
0.8500. When θ̂ is between 0.3000 and 0.8500, the batch is accepted with probability
1− pθ̂, with the Bayes risk RML

0 = 25.1898.

Table 1 illustrates that, the Bayes risks RML
0 (resp. RBL

0 ) is decreasing when α fixed and
β increases, while the optimal sample size n′ decreases for both plans, while RBL

0 < RML
0 .

Furthermore, for the variations of (α, β), E [D] ≥ m′ and this is indicated that SML
0

(resp. SBL
0 ) can give a sufficient information about the lifetime of the items put in the life

testing. In addition, we observe that, RBL
0 < RML

0 for most variation of a2 and Cr, with
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E [D] ≥ m′. From Table 1, it can be seen that the optimal sampling plan SML
0 (resp. SBL

0 )
occurs at no sampling case for some selected values. For instance, when (α, β) = (3.5, 0.6),
SML
0 = SBL

0 = (0, 0, 0,∞,∞), which means that the decision made without takes a sample
and the batch is rejected without any sample cost. When Cr = 100, the optimal sampling
plans takes the form SML

0 = SBL
0 = (0, 0, 0, 0.0000, 0.0000), indicating that, we should

accept the batch with the Bayes risk RML
0 = RBL

0 = 35.5938.

5.1. Comparison with the sampling plan of Yang et al. (2017). In this Section,
we consider a comparison between our proposed sampling plan and the one of Yang et
al. (2017), we denote their sampling plan by SL ≡ (nL,mL, tL) and it’s related Bayes
risk by RL ≡ R (nL,mL, tL). We indicate the expected number of failures by E [DL] and
the expected time censoring by E [τL]. Various numerical results are tabulated in Table 2
under setting a0 = a1 = a2 = 2, Cs = 0.5, vs = 0.3 and Cr = 30 while α, β and Ct vary.

In Table 2, We observe that the Bayes risks RML
0 and RBL

0 are less than RL for the
most selected values of (α, β,Ct), especially, when Ct = 1, 5, 8 while (α, β) vary, where
SBL
0 get more samples than SML

0 with RBL
0 ≤ RML

0 , which indicates that, the optimal
sampling plan under the Bayesian estimator of LINEX loss is more efficient than the one
under the maximum likelihood estimator. Furthermore, the deference between the Bayes
risks RML

0 and RBL
0 of the proposed model and RL is increasing when Ct increases. On

the other hand, in most cases the expected number of failures E [D] and E [DL] close to
each other, where the sample nML ≥ nL(resp. n

BL ≥ nL) except the cases α = 3, β = 0.6
and Ct = 0.5 with nML = nBL = 2 and nL = 3.
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6. Conclusion

A number of variable sampling plans have been developed in the past few years. The
majority of the elaborations were produced by taking the one-sided decision function
into account. There are some industrial processes or the quality characteristic data may
originate from an unpredictable environment or from a complex production process (i.e.
the lowest acceptable and the maximum rejectable survival time are not equal). As such, it
is crucial to investigate the uncertainty zone and how it affects the best possible sampling
strategy. This paper’s goal is to illustrate the doubt zone’s characteristic using a different
strategy. We created Bayesian sampling strategies based on a two-sided decision function
with a quadratic random doubt zone. Also, we construct Bayesian sampling plans using
maximum likelihood and Bayesian estimates for mean lifetime of items that is follows an
exponential distribution. In addition, we found an explicit form for the Bayes risk using a
suitable polynomial loss function. It is observed that the resulting Bayesian risk expression
is very intricate. Therefore, in order to provide the performance of the Bayes risk, we have
presented a discretization method. The discretization method’s results demonstrate that
numerical techniques can effectively approximate the Bayes risk.

We realized a simulation study to examine the performance of the proposed model.
Based on the results, the plan based on the Bayesian estimate under the Linex loss can
give a minimum Bayes risk compared with the plan under maximum likelihood estimate.
Further, it can be concluded that, our proposed sampling plan as good as the one of Yang
et al. (2017) in terms of information obtained about the expected lifetime of the batch
items, with a preference to our model in terms of minimum Bayes risk.
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Table 1. Optimal sampling plans and it’s Bayes risk for α, β, a2 and Cr vary.

α β a2 Cr Plan n′ m′ t′ T ′
0 T ′

1 E [D] E [τ ] RML
0 (RBL

0 )

2.5 0.6 2 30 SML 3 1 0.2483 1.1875 0.3125 1.8706 0.2623 28.2112
SBL 4 1 0.1877 1.4125 0.8125 2.1061 0.2102 28.2026

0.8 SML 4 1 0.1427 0.8500 0.3000 1.6064 0.2008 25.1898
SBL 7 2 0.1427 1.3500 0.5125 2.8315 0.2158 25.0944

1.0 SML 6 1 0.0774 0.6500 0.3000 1.4059 0.1401 21.6799
SBL 6 1 0.0774 1.3250 1.0875 1.4059 0.1401 21.5688

1.2 SML 7 1 0.0526 0.5000 0.2500 1.2239 0.1291 18.1699
SBL 7 1 0.0526 1.3875 1.2000 1.2239 0.1291 18.0978

3.0 0.6 2 30 SML 2 2 0.0485 0.5625 0.5125 2.0000 0.4500 29.9277
SBL 1 1 0.0196 0.9000 0.8500 1.0000 0.3000 29.8896

0.8 SML 4 1 0.1804 1.0625 0.3875 1.9721 0.2035 27.9927
SBL 4 1 0.1804 1.1875 0.7625 1.9721 0.2035 27.9961

1.0 SML 5 1 0.1290 0.8625 0.4375 1.7505 0.1657 25.2194
SBL 6 2 0.1532 1.1750 0.4750 2.6110 0.2321 25.0692

1.2 SML 5 1 0.0970 0.6625 0.3125 1.4011 0.1578 21.9093
SBL 5 1 0.0970 1.1875 0.9750 1.4011 0.1578 21.9717

3.5 0.6 2 30 SML 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
SBL 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000

0.8 SML 3 1 0.2739 1.3125 0.3375 2.0139 0.2571 29.7173
SBL 3 1 0.2441 1.0750 0.5125 1.9216 0.2392 29.6992

1.0 SML 4 1 0.1748 1.0125 0.3875 1.8804 0.1981 27.8107
SBL 6 2 0.1748 1.0500 0.4500 2.9270 0.2182 27.7605

1.2 SML 4 1 0.1428 0.8125 0.3375 1.5571 0.1872 25.2051
SBL 6 2 0.1428 1.0500 0.4625 2.5157 0.2179 25.0902

2.5 0.8 0.5 30 SML 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 15.0859
SBL 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 15.0859

1.0 SML 5 1 0.0620 0.4375 0.1875 1.2918 0.1272 20.4955
SML 5 1 0.0620 1.0125 0.8250 1.2918 0.1272 20.5576

1.5 SML 6 1 0.0889 0.7000 0.3750 1.6680 0.1301 23.3785
SBL 5 1 0.0889 1.1625 0.8875 1.4890 0.1438 23.3542

2.0 SML 4 1 0.1427 0.8500 0.3000 1.6064 0.2008 25.1898
SBL 7 2 0.1427 1.3500 0.5125 2.8315 0.2158 25.0944

3.0 SML 4 1 0.2234 1.2875 0.5125 1.9922 0.2602 27.2440
SBL 4 1 0.2234 1.7125 1.0750 1.9922 0.2602 27.2270

5.0 SML 3 1 0.4117 1.9625 0.5125 2.0344 0.3962 29.1198
SBL 3 1 0.3310 2.1250 0.8375 1.8706 0.34978 29.1211

8.0 SML 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
SBL 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000

2.5 0.8 2.0 20 SML 3 1 0.3041 1.4625 0.3625 1.8085 0.3335 19.2725
SBL 3 1 0.2772 1.8250 0.8625 1.7424 0.3169 19.2675

25 SML 4 1 0.1965 1.1375 0.4375 1.8707 0.2400 22.4705
SBL 4 1 0.1965 1.5875 1.0250 1.8707 0.2400 22.4690

30 SML 4 1 0.1427 0.8500 0.3000 1.6064 0.2008 25.1898
SBL 7 2 0.1427 1.3500 0.5125 2.8315 0.2158 25.0944

35 SML 6 1 0.0889 0.7125 0.3625 1.6680 0.1301 27.3293
SBL 7 2 0.1158 1.1875 0.4750 2.6046 0.1993 27.1533

40 SML 7 1 0.0620 0.5625 0.3125 1.5295 0.1017 29.1029
SBL 8 2 0.0889 1.1125 0.4500 2.5271 0.1662 28.9976

100 SML 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 35.5938
SBL 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 35.5938
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Table 2. Comparison of performance with the plan of Yang et al. (2017)
for a0 = a1 = a2 = 2, Cs = 0.5, vs = 0.3 and Cr = 30.
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