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ESTIMATION AND TESTS WITH BIVARIATE CENSORED DATA

M. BOUKELOUA1∗, §

Abstract. In this work, we study the asymptotic properties of the maximum likelihood
estimator, for bivariate right censored data. We also propose a generalization of the
likelihood ratio test and the chi-square test of fit, for this type of data. Finally, we
illustrate the performances of our proposed tests through a simulation study and a real
data application.
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1. Introduction

In survival analysis, a phenomenon of censorship often prevents the observation of
the lifetime of interest, and provides only a partial information about it. There exist
several kinds of censorship, but we focus on bivariate right censored data. Many practical
situations require the study of a bivariate lifetime. For instance, the study of the lifetime
of twins, the lifetime of spouses having subscribed to a pension contract and the operating
time of a system comprised of pairs of components. Concerning matched data, we quote for
example, the study of the recovery time for diseases affecting eyes, lungs, ears and kidneys.
This field of research is very active, the nonparametric approaches have been developed by
many authors. [1] introduced three estimates of the bivariate survival function, under right
censoring and they established a law of the iterated logarithm for theses estimates. They
also showed that they are asymptotically equivalent in the sense that their difference is
o(n−1) almost surely (a.s.). [2] established their weak convergence to a centered Gaussian
process. Otherwise, [3] used one of these estimates to construct a kernel estimator for
the density function. Other estimators of the survival function have been proposed in

1 Laboratoire de Génie des Procédés pour le Développement Durable et les Produits de Santé
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the literature, let us cite for example the works of [4, 5], [6], [7] and [8]. Other authors
have been interested in semiparametric models, copula models and statistical tests with
bivariate censored data, such as [9], [10], [11] and [12].

In the present paper, we study a parametric model with bivariate censored data. In
particular, we are interested in the estimation of the parameter of the model, by the max-
imum likelihood method. At first, we give the explicit form of the likelihood function
for the considered model. Then, we establish the weak consistency and the asymptotic
normality of the maximum likelihood estimator. This asymptotic study leads to the gen-
eralization of the likelihood ratio test to the case of bivariate censored data. We conclude
our theoretical study by proposing a chi-square goodness-of-fit test, for bivariate censored
data. For that, we were inspired by the paper of [13], who investigated the same test in
the univariate case. The performances of our tests is then assessed using a simulation
study and an application on a real dataset.

2. The likelihood function for bivariate censored data

Let (Ω,A, P ) be a probability space and (X,Y ) be a pair of positive random variables,
with distribution function F , survival function S and continuous density function fX,Y . We
consider the case of bivariate censored data, this means that instead of observing (X,Y ),
one can only observe the vector (U, V,∆1,∆2), where U = min(X,C), V = min(Y,D),
∆1 = 1{X≤C} and ∆2 = 1{Y≤D}, (1{.} denotes the indicator function). The positive pair
(C,D) represents the censoring variables and it is independent from the pair (X,Y ). We
denote its distribution function by G, its survival function by G and its density function
(assumed to be continuous) by fC,D. We assume that the survival function S belongs

to a parametric family {S(·, ·; θ)/θ ∈ Θ}, where Θ is a compact set of Rd. The function
S(·, ·; θ) can be seen as the survival function of the pushforward measure under (X,Y ),
of a probability measure Pθ defined on the measurable space (Ω,A). We assume that the
model is identifiable, in other words

∀ θ1, θ2 ∈ Θ : θ1 ̸= θ2 ⇒ S(·, ·; θ1) ̸= S(·, ·; θ2)

and that G does not depend on θ. We denote by θT the true value of θ.
In the sequel, for any random variable T , fT denotes the probability density of T . We

also denote by
P−→ (resp.

D−→) the convergence in probability (resp. in distribution).
Let (Ui, Vi,∆1i,∆2i)1≤i≤n be a sample of independent copies of the vector (U, V,∆1,∆2).
The likelihood function of (U, V,∆1,∆2) is given by

L(θ) =

n∏
i=1

fU,V,∆1,∆2(ui, vi, δ1i, δ2i; θ),

where fU,V,∆1,∆2 is the density of (U, V,∆1,∆2) with respect to the measure λ⊗2 ⊗ µ⊗2, λ
(resp. µ) being the Lebesgue measure (resp. the counting measure) on R (resp. on {0, 1})
and (ui, vi, δ1i, δ2i) is a realization of (Ui, Vi,∆1i,∆2i).
Studying the different possible cases corresponding to the values assumed by the pair
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(δ1i, δ2i), we get

L(θ) =

n∏
i=1

(
fX,Y (ui, vi; θ)G(ui, vi)

)δ1iδ2i (fX(ui; θ)−
∂

∂u
F (ui, vi; θ)

)δ1i(1−δ2i)

×
(
fD(vi)−

∂

∂v
G(ui, vi)

)δ1i(1−δ2i)(
fY (vi; θ)−

∂

∂v
F (ui, vi; θ)

)δ2i(1−δ1i)

×
(
fC(ui)−

∂

∂u
G(ui, vi)

)δ2i(1−δ1i)

(S(ui, vi; θ)fC,D(ui, vi))
(1−δ1i)(1−δ2i) .

Given that we are interested in the estimation of the parameter θ, we will consider only
the functions that depend on θ. So, we study the following pseudo-likelihood function

L(θ) =
n∏

i=1

h(ui, vi, δ1i, δ2i; θ),

where

h(ui, vi, δ1i, δ2i; θ) = (fX,Y (ui, vi; θ))
δ1iδ2i

(
fX(ui; θ)−

∂

∂u
F (ui, vi; θ)

)δ1i(1−δ2i)

×
(
fY (vi; θ)−

∂

∂v
F (ui, vi; θ)

)δ2i(1−δ1i)

S(ui, vi; θ)
(1−δ1i)(1−δ2i),

with support A = {(u, v, δ1, δ2) ∈ R2 × {0, 1}2/h(u, v, δ1, δ2; θ) > 0} assumed to be inde-
pendent of θ.
We estimate θ by the maximum likelihood estimator, defined by

θ̂n = argmax
θ∈Θ

l(θ),

where l(θ) = log(L(θ)).
Note that the maximum likelihood method exhibits sometimes some computational com-
plications. [14] proposed some solutions to overcome these complications for the Dirichlet
distribution, which can be used for other distributions. Among these solutions, we cite
the methods of the choice of the starting values in the numerical calculations such as
the method of moments, the method of Ronning ([15]), the method of Dishon ([16]) and
the method of Wicker ([17]). [14] also proposed other solutions such as the method of
re-parametrization and a stable algorithm based on the Levenberg-Marquardt algorithm
(see [18] and [19]) with a damping parameter.

3. Asymptotic study of the maximum likelihood estimator

In this section, we establish the weak consistency and the asymptotic normality of θ̂n,
under the following hypotheses.

H1: The function h(u, v, δ1, δ2; .) is continuous on Θ for all (u, v, δ1, δ2) ∈ A.
H2: There exists a function ψ : R2 × {0, 1}2−→R, such that

∀θ ∈ Θ, |log h(U, V,∆1,∆2; θ)| ≤ ψ(U, V,∆1,∆2) a.s. and
EθT (ψ(U, V,∆1,∆2)) <∞, where EθT (.) denotes the expectation under PθT .

H3: There exists a compact neighborhood N of θT , included in Θ, such that the func-
tion h(u, v, δ1, δ2; .) is twice continuously differentiable onN , for every (u, v, δ1, δ2) ∈
A.

H4: ∀θ ∈ N, ∀i, j ∈ {1, ..., d}, we have
∣∣∣ ∂
∂θi

log h(U, V,∆1,∆2; θ)
∣∣∣ ≤ ψ(U, V,∆1,∆2) a.s.

and
∣∣∣ ∂2

∂θi∂θj
log h(U, V,∆1,∆2; θ)

∣∣∣ ≤ ψ(U, V,∆1,∆2) a.s.



M. BOUKELOUA: ESTIMATION AND TESTS WITH BIVARIATE CENSORED DATA 1103

H5: The Fisher information matrix I(θT ) = (Ii,j(θT ))1≤i,j≤d exists, where

Ii,j(θT ) = EθT

(
∂
∂θi

log h(U, V,∆1,∆2; θ)
∣∣∣
θ=θT

× ∂
∂θj

log h(U, V,∆1,∆2; θ)
∣∣∣
θ=θT

)
.

H6: The matrix J(θT ) in nonsingular, where J(θ) = (Ji,j(θ))1≤i,j≤d with

Ji,j(θ) = EθT

(
∂2

∂θi∂θj
log h(U, V,∆1,∆2; θ)

)
, ∀θ ∈ N.

Before stating our results, we will give some examples of models that satisfy these hy-
potheses.

Example 3.1. We assume that X has an exponential distribution with parameter a (de-
noted by E(a)) and that given X = x, Y has an E(bx) distribution, where a ∈ Θ1 and
b ∈ Θ2, Θ1 and Θ2 being two compact sets included in ]0,+∞[. The parameter of interest
is θ = (a, b)⊤ ∈ Θ = Θ1 ×Θ2. The density function of (X,Y ) is then given by

fX,Y (x, y; θ) = abxe−ax−bxy, ∀(x, y) ∈]0,+∞[×]0,+∞[. (1)

Concerning the censoring variables, we assume that C has an E(aC) distribution and that
given C = x, D has an E(bC,Dx) distribution, where aC ∈ Θ1 and bC,D ∈ Θ2.
We can check that this model satisfies the assumptions H1–H6 above.

Example 3.2. We assume that X (resp. Y ) has an E(a) (resp. E(b)) distribution and
that they are related by a Clayton copula with parameter γ, where a ∈ Θ1, b ∈ Θ2 and
γ ∈ Θ3, Θ1, Θ2 and Θ3 being three compact sets included in ]0,+∞[. Recall that the
Clayton copula with parameter γ is defined by

Cγ(t1, t2) =
(
t−γ
1 + t−γ

2 − 1
)−1/γ

, ∀(t1, t2) ∈]0, 1[×]0, 1[.

So, denoting by FX(x; a) (resp. FY (y; b)) the distribution function of X (resp. Y ), we get

fX,Y (x, y; θ) = fX(x; a)fY (y; b)cγ(FX(x; a), FY (y; b)), ∀(x, y) ∈]0,+∞[×]0,+∞[, (2)

where θ = (a, b, γ)⊤ ∈ Θ = Θ1 ×Θ2 ×Θ3 is the parameter of interest and

cγ(t1, t2) =
∂2Cγ

∂t1∂t2
(t1, t2) = (1 + γ)t−γ−1

1 t−γ−1
2

(
t−γ
1 + t−γ

2 − 1
)−1/γ−2

is the density of Cγ with respect to the Lebesgue measure on [0, 1]2.
Furthermore, we assume that C (resp. D) has an E(aC) (resp. E(bD)) distribution and
that they are related by a Clayton copula with parameter γC,D, where aC ∈ Θ1, bD ∈ Θ2

and γC,D ∈ Θ3.
We can check that this model satisfies the assumptions H1–H6 above.

Now, we are in a position to state the results we seek.

Theorem 3.1. Under hypotheses H1 and H2, we have

θ̂n
P−→ θT .

Proof. Set
M(θ) = EθT (log h(U, V,∆1,∆2; θ))

and

Mn(θ) =
1

n

n∑
i=1

log h(Ui, Vi,∆1i,∆2i; θ).

Since θ̂n maximizeMn(θ), we can apply Theorem 5.7 of [20]. To this end, we have to verify

that supθ∈Θ |Mn(θ)−M(θ)| P−→ 0 and sup{M(θ)/θ ∈ Θ, ||θ−θT || ≥ ε} < M(θT ), ∀ ε > 0.
Under H1 and H2, Lemma 2.4 of [21] implies the first relation as well as the continuity of
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M(θ). It remains to prove the second relation. Let us first show that θT maximize M(θ).
Jensen inequality (see [22]) permits to write

M(θ)−M(θT ) = EθT

(
log

h(U, V,∆1,∆2; θ)

h(U, V,∆1,∆2; θT )

)
≤ logEθT

(
h(U, V,∆1,∆2; θ)

h(U, V,∆1,∆2; θT )

)
= log

(∫
h(U, V,∆1,∆2; θ)

h(U, V,∆1,∆2; θT )
1{∆1=1,∆2=1}dPθT

+

∫
h(U, V,∆1,∆2; θ)

h(U, V,∆1,∆2; θT )
1{∆1=1,∆2=0}dPθT

+

∫
h(U, V,∆1,∆2; θ)

h(U, V,∆1,∆2; θT )
1{∆1=0,∆2=1}dPθT

+

∫
h(U, V,∆1,∆2; θ)

h(U, V,∆1,∆2; θT )
1{∆1=0,∆2=0}dPθT

)
= log

(∫ ∫
fU,V,∆1,∆2(u, v, 1, 1; θ)dudv

+

∫ ∫
fU,V,∆1,∆2(u, v, 1, 0; θ)dudv

+

∫ ∫
fU,V,∆1,∆2(u, v, 0, 1; θ)dudv

+

∫ ∫
fU,V,∆1,∆2(u, v, 0, 0; θ)dudv

)
= log(φ1,1(θ) + φ1,0(θ) + φ0,1(θ) + φ0,0(θ))

= log(1)

= 0,

where φi,j(θ) = Pθ(∆1 = i,∆2 = j), i, j ∈ {0, 1}. Therefore

M(θ) ≤M(θT ), ∀θ ∈ Θ. (3)

Furthermore, for any ε > 0, the continuity of M(θ) on the compact set Γ = {θ ∈ Θ/||θ −
θT || ≥ ε} ensures the existence of θ̃ ∈ Γ such that

sup
θ∈Γ

M(θ) =M(θ̃) < M(θT ),

in view of the identifiability of the model and the strict concavity of the logarithmic
function. □

Let us now move on to the asymptotic normality of θ̂n.

Theorem 3.2. Under hypotheses H1–H6, we have

√
n(θ̂n − θT )

D−→ N (0, J(θT )
−1I(θT )J(θT )

−1).

Proof. Set for all θ ∈ N

D(U, V,∆1,∆2; θ) =

(
∂

∂θ1
log h(U, V,∆1,∆2; θ), ...,

∂

∂θd
log h(U, V,∆1,∆2; θ)

)⊤
. (4)
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Under H4, we have for all j ∈ {1, ..., d}

EθT

(
∂

∂θj
log h(U, V,∆1,∆2; θ)

∣∣∣∣
θ=θT

)
=

∂

∂θj
M(θ)

∣∣∣∣
θ=θT

= 0,

since θT maximize M(θ) (see (3)). Thus, the central limit theorem gives us

1√
n

n∑
i=1

D(Ui, Vi,∆1i,∆2i; θT )
D−→ N (0, I(θT )). (5)

Otherwise, using a Taylor expansion, there exists θ̄ inside the segment that links θ̂n and
θT such that

0 =
1√
n

n∑
i=1

D(Ui, Vi,∆1i,∆2i; θ̂n)

=
1√
n

n∑
i=1

D(Ui, Vi,∆1i,∆2i; θT )

+ Jn(θ̄)
√
n(θ̂n − θT ), (6)

where Jn(θ) = (J j,k
n (θ))1≤j,k≤d and

J j,k
n (θ) =

1

n

n∑
i=1

∂2

∂θj∂θk
log h(Ui, Vi,∆1i,∆2i; θ).

Consider now the following decomposition

||Jn(θ̄)− J(θT )|| ≤ ||Jn(θ̄)− J(θ̄)||+ ||J(θ̄)− J(θT )||.

Under H3 and H4, we get in view of Lemma 2.4 of [21]

sup
θ∈N

||Jn(θ)− J(θ)|| P−→ 0

as well as the continuity of J(θ). This latter combined with Theorem 3.1, gives us

||J(θ̄)− J(θT )||
P−→ 0.

Hence Jn(θ̄)
P−→ J(θT ), and consequently Jn(θ̄) is nonsingular with probability approach-

ing one. Therefore relation (6) entails

√
n(θ̂n − θT ) = −(Jn(θ̄))

−1 1√
n

n∑
i=1

D(Ui, Vi,∆1i,∆2i; θT )

= −(J(θT ))
−1 1√

n

n∑
i=1

D(Ui, Vi,∆1i,∆2i; θT ) + op(1) (7)

and the claimed result follows readily from relation (5). □

Remark 1. Under the hypothesis
H7 For all i, j ∈ {1, . . . , d}∫ ∫

∂2

∂θi∂θj
fU,V,∆1,∆2(U, V,∆1,∆2; θ)

∣∣∣∣
θ=θT

dλ⊗2(u, v)dµ⊗2(δ1, δ2) = 0,
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we have

I(θT ) = −J(θT ).

Indeed, it suffices to take the expectation under PθT , of both sides of the following expression

∂2

∂θi∂θj
log h(U, V,∆1,∆2; θ)

∣∣∣∣
θ=θT

=

∂2

∂θi∂θj
fU,V,∆1,∆2(U, V,∆1,∆2; θ)

∣∣∣
θ=θT

fU,V,∆1,∆2(U, V,∆1,∆2; θT )

−
∂
∂θi
h(U, V,∆1,∆2; θ)

∣∣∣
θ=θT

h(U, V,∆1,∆2; θT )

×
∂
∂θj
h(U, V,∆1,∆2; θ)

∣∣∣
θ=θT

h(U, V,∆1,∆2; θT )
.

Note that the models given in examples 3.1 and 3.2 above satisfy the hypothesis H7.

4. Hypothesis tests

In the same context developed previously, we study in this section two statistical tests,
namely a likelihood ratio test and a chi-square test of fit. In the first one, we test the
value of the parameter and in the second one, we test the model.

4.1. Likelihood ratio test. For a given value θ0 ∈ Θ, consider the test problem of the
hypothesis

H0 : θT = θ0 against H1 : θT ̸= θ0.

By analogy with the usual case of complete data, we propose the following test statistic.

Φn = 2 log

(
L(θ̂n)
L(θ0)

)
= 2(l(θ̂n)− l(θ0)) (8)

whose limiting distribution is given by the next theorem.

Theorem 4.1. Under H0 and hypotheses H1–H7, we have

2(l(θ̂n)− l(θ0))
D−→ χ2(d).

Let α be an asymptotic level. According to this theorem, the critical region of our test
is {

2(l(θ̂n)− l(θ0)) > q1−α

}
,

where q1−α is the (1− α)−quantile of the χ2(d) distribution.

Proof. By a Taylor expansion, there exists θ̄ inside the segment that links θ̂n and θ0 such
that

l(θ0) = l(θ̂n) +
1√
n

n∑
i=1

D(Ui, Vi,∆1i,∆2i; θ̂n)
⊤√n(θ0 − θ̂n)

+
n

2
(θ0 − θ̂n)

⊤Jn(θ̄)(θ0 − θ̂n).
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Taking into account the fact that Jn(θ̄) = J(θ0)+ op(1) ,
√
n(θ̂n− θ0) = Op(1) (under H0)

and that θ̂n maximize l(θ), we obtain under the hypothesis H7

2(l(θ̂n)− l(θ0)) = −n(θ̂n − θ0)
⊤J(θ0)(θ̂n − θ0) + op(1)

= n(θ̂n − θ0)
⊤I(θ0)(θ̂n − θ0) + op(1)

=
√
n(θ̂n − θ0)

⊤BB⊤√n(θ̂n − θ0) + op(1)

=
√
n(B⊤(θ̂n − θ0))

⊤√nB⊤(θ̂n − θ0) + op(1),

where I(θ0) = BB⊤ is the Cholesky decomposition of I(θ0) (see [23]). Combining this
with Theorem 3.2, we obtain the claimed result. □

Remark 2. using this theorem, the set{
θ ∈ Θ : 2(l(θ̂n)− l(θ)) ≤ q1−α

}
is an asymptotic confidence region for θT .

4.2. Chi-square goodness-of-fit test. In this subsection, we test the hypothesis

H0 : S(x, y) ∈ {S(x, y; θ), θ ∈ Θ} against H1 : S(x, y) /∈ {S(x, y; θ), θ ∈ Θ}. (9)

[13] studied a chi-square test of fit, for right censored data, in the univariate context. In
the sequel, we propose a generalization of this test to the bivariate context. For that, we
make use of the nonparametric estimator of S, introduced by [1] and given by

Sn(s, t) =

{ ∏n
i=1

(
N(Ui,0)

N(Ui,0)+1

)α1i(s,0)∏n
i=1

(
N(s,Vi)

N(s,Vi)+1

)α2i(s,t)
if N(s, t) > 0

0 otherwise,

where N(s, t) =
∑n

i=1 1{Ui>s,Vi>t}, α1i = 1{Ui≤s,Vi>t,∆1i=1} and α2i = 1{Ui>s,Vi≤t,∆2i=1}.

Let T1 and T2 be two positive real numbers satisfying H(T1, T2) > 0, where H is the
survival function of (U, V ). We define the empirical process associated with Sn(s, t) on
[0, T1]× [0, T2], by

Zn(s, t) =
√
n(Sn(s, t)− S(s, t; θT ))

and set

Ẑn(s, t) =
√
n(Sn(s, t)− S(s, t; θ̂n)).

In order to define the statistic of the studied test, we need the following theorem, that

gives the weak convergence of the process Ẑn(s, t). This latter results from the fact that
the process Zn(s, t) converges to a centered Gaussian process, denoted by Z(s, t) (see [2]).

Theorem 4.2. Under hypotheses H1– H7, the process Ẑn(s, t), for 0 < s, s′ < T1 and

0 < t, t′ < T2 converges weakly to a centered Gaussian process Ẑ(s, t), with covariance
function

cov(Ẑ(s, t), Ẑ(s′, t′)) = cov(Z(s, t), Z(s′, t′))−∇θS(s, t; θT )
⊤I−1(θT )∇θS(s

′, t′; θT ),

where ∇θS(·, ·; θ) is the gradient of S(·, ·; θ).

Proof. Applying Theorem 2 of [2], the proof can be carried out in the same way as that
of Theorem 1 of [13]. Remark that hypotheses (A.1) and (A.2) of [13] are satisfied in our
case, by virtue of hypotheses H3, H6 and H7 and the continuity of J(θ) follows from
Lemma 2.4 of [21]. As for hypothesis (A.3), it follows from relation (7). □
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We are now ready to define the statistic of the test (9). Let 0 < s1 < s2 < ... < sp < T1
be a partition of [0, T1] , 0 < t1 < t2 < ... < tq < T2 be a partition of [0, T2] and set

Ẑn =
(
Ẑn(s1, t1), Ẑn(s1, t2), . . . , Ẑn(s1, tq), Ẑn(s2, t1), . . . ,

Ẑn(s2, tq), . . . , Ẑn(sp, t1), . . . Ẑn(sp, tq)
)⊤

.

By Theorem 4.2, the vector Ẑn converges in distribution to a centered Gaussian vector

Ẑ, whose covariance matrix will be denoted by Σ. We define the statistic of our test as
follows

Q̂n = Ẑ⊤
n Σ̂−1

n Ẑn,

where Σ̂n is the estimate of Σ, obtained by replacing θT by θ̂n, S by Sn and in the covari-
ance function of the process W (s, t) defined on page 250 of [2], we replace the different
terms by their empirical counterparts.

The statistic Q̂n generalizes the modified Pearson statistic, introduced by [13]. Its asymp-
totic distribution is given by the following theorem.

Theorem 4.3. Under H0 and hypotheses H1–H7, and if Σ is nonsingular, we get

Q̂n
D−→ χ2(pq).

Proof. This theorem can be proved in the same way as Theorem 2 of [13]. □

According to this theorem, the critical region of the test (9) is given by{
Q̂n > q1−α

}
,

where q1−α is the (1− α)−quantile of the χ2(pq) distribution.

It may happen that the matrix Σ̂n is singular or near-singular. To overcome this problem,
we can add, as in the ridge regression, the identity matrix I multiplied by a positive
parameter a, so the test statistic becomes

Q̂n = Ẑ⊤
n

(
Σ̂n + aI

)−1
Ẑn.

Remark 3. To carry out this test, we have used one of the three estimators of S, introduced
by [1]. The same estimator has been used by [3] in the estimation of the density function.
Notice that our Theorems 4.2 and 4.3 still hold for the two other estimators of S, since
the difference between these estimators is o(n−1) a.s., uniformly on (s, t) (see [1]).

5. Simulation study

In this section, we present the results of a simulation study aiming to illustrate the
performances of our tests proposed in Section 4 for finite size samples. This study is based
on the two models given in examples 3.1 and 3.2 above.
We start by presenting the results for the first model. In this model, X has an E(a)
distribution and given X = x, Y has an E(bx) distribution. The density of the couple
(X,Y ) is given in relation (1). Moreover, the variable C has an E(aC) distribution and
given C = x, D has an E(bC,Dx) distribution. We take different values of the parameters
a, b, aC and bC,D to get different values of the rate of censoring (RC). First, we deal
with the likelihood ratio test of the hypothesis H0 : θT = θ0 against H1 : θT ̸= θ0
(introduced in subsection 4.1). We consider two cases for the value of θ0: θ0 = (7, 4)⊤

and θ0 = (1, 3)⊤. In order to asses the type I error of this test at the asymptotic level
α = 0.05, we generate 1000 samples of size n of the latent variables from the distribution
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characterized by fX,Y (x, y; θT ) with θT = θ0 (i.e., under H0), then we calculate the values
of the test statistic Φn (given in relation (8)), corresponding to these 1000 samples. On
the basis of the obtained values, we compute the proportion of the rejection of H0 which
is an estimation of the type I error of the test. We take different values of the sample size
n to show its influence on the test. We also estimate the type I error of the Wald and the
Rao tests (see [24], pages 408-409). Recall that their statistics are respectively defined by

Wn = n
(
θ̂n − θ0

)⊤
I(θ̂n)

(
θ̂n − θ0

)
and

Rn =
1

n

(
n∑

i=1

D(Ui, Vi,∆1i,∆2i; θ0)

)⊤

I(θ0)
−1

(
n∑

i=1

D(Ui, Vi,∆1i,∆2i; θ0)

)
,

where D(U, V,∆1,∆2; θ) is defined in relation (4).
The results we obtain are given in Table 1, where the most accurate ones are written in
bold. We remark that in all cases, the likelihood ratio test is the best test. Not surprisingly,
the performance of the tests increases (resp. decreases) when the sample size (resp. the
rate of censoring) increases.

θT = θ0 = (7, 4)⊤, aC = 3, bC,D = 1/2,
RC ≈ 30%

θT = θ0 = (1, 3)⊤, aC = 1, bC,D = 3,
RC ≈ 50%

n = 100 n = 300 n = 100 n = 300
Likelihood
ratio test

0.061 0.055 0.066 0.060

Wald test 0.075 0.070 0.079 0.077
Rao test 0.035 0.039 0.072 0.070

Table 1. Type I error of the tests on the parameter for the first model.

To asses the power of the studied tests, we generate 1000 samples of size n of the latent
variables from the distribution characterized by fX,Y (x, y; θT ) with θT ̸= θ0 (i.e., under
H1), then we calculate the values of the tests statistics Φn, Wn and Rn corresponding to
these samples and we use them to estimate the power of the tests by the proportion of
the rejection of H0. The obtained results are given in Table 2 below. These results show
that the best tests are the Wald test and the likelihood ratio test. The power of the tests
increases when the sample size increases.

θ0 = (7, 4)⊤, θT = (8, 5)⊤, aC = 24/7,
bC,D = 3/5, RC ≈ 30%

θ0 = (7, 4)⊤, θT = (10, 8)⊤, aC = 30/7,
bC,D = 1, RC ≈ 30%

n = 100 n = 300 n = 100 n = 300
Likelihood
ratio test

0.538 0.889 0.916 0.991

Wald test 0.772 0.925 0.911 0.984
Rao test 0.413 0.456 0.478 0.981

Table 2. Power of the tests on the parameter for the first model.

Consider now the chi-square test of the hypothesis H0 : S(x, y) ∈ {S(x, y; θ), θ ∈
Θ} against H1 : S(x, y) /∈ {S(x, y; θ), θ ∈ Θ} (introduced in subsection 4.2). At the
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asymptotic level α = 0.05, we proceed as previously in order to estimate the type I error
of this test. We also estimate the type I error of the Kolmogorov-Smirnov and the Cramér-
Von-Mises tests (see [20] page 277). Recall that their statistics are respectively defined
by

KSn =
√
n sup

(x,y)∈R2

∣∣∣Sn(x, y)− S(x, y; θ̂n)
∣∣∣

and

CVMn = n

∫ (
Sn(x, y)− S(x, y; θ̂n)

)2
dSn(x, y).

The results we get are presented in Table 3 below. We remark that in all cases, the best
test is the chi-square goodness-of-fit test. The performance of the tests increases (resp.
decreases) when the sample size (resp. the rate of censoring) increases.

θT = (7, 4)⊤, aC = 3, bC,D = 1/2,
RC ≈ 30%

θT = (1, 3)⊤, aC = 1, bC,D = 3,
RC ≈ 50%

n = 100 n = 300 n = 100 n = 300
Chi-square
test

0.042 0.057 0.040 0.045

Kolmogorov-
Smirnov
test

0.040 0.042 0.035 0.041

Cramér-
Von-Mises
test

0.037 0.038 0.033 0.039

Table 3. Type I error of the goodness-of-fit tests for the first model.

To estimate the power of these tests, we proceed as previously, where we generate
the latent variables from other models than that defined by H0. These models and the
obtained results are given in Table 4, where Ray(σ) denotes the Rayleigh distribution with
parameter σ. These results show that the chi-square test is the best test.

X ∼ E(7), Y ∼ E(14), X and Y
independent, C ∼ E(3), D ∼ E(6), C

and D independent, RC = 30%

X ∼ Ray(
√
3), Y ∼ Ray(

√
6), X and

Y independent, C ∼ Ray(
√
7),

D ∼ Ray(
√
14), C and D

independent, RC = 30%
n = 100 n = 300 n = 100 n = 300

Chi-square
test

0.287 0.541 0.696 0.926

Kolmogorov-
Smirnov
test

0.115 0.337 0.127 0.579

Cramér-
Von-Mises
test

0.109 0.310 0.115 0.468

Table 4. Power of the goodness-of-fit tests for the first model.
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Now, we move on into the second model presented in example 3.2 above. In this
example, X has an E(a) distribution, Y has an E(b) distribution and X and Y are related
by a Clayton copula with parameter γ. The density of (X,Y ) is given in relation (2) above.
Moreover, C (resp. D) has an E(aC) (resp. E(bD)) distribution and they are related by
a Clayton copula with parameter γC,D. Following the same steps described above, we
obtain the results presented respectively in Tables 5 and 6 for the type I error and the
power of the tests on the parameter. Concerning the goodness-of-fit tests, we give our
obtained results in Tables 7 and 8 fro the type I error and the power, respectively. From
these results, we can deduce similar conclusions to those of the first model.

θT = θ0 = (7, 14)⊤, aC = 3, bD = 6,
γ = γC,D = 1, RC = 30%

θT = θ0 = (1, 3)⊤, aC = 1, bD = 3,
γ = γC,D = 1, RC = 50%

n = 100 n = 300 n = 100 n = 300
Likelihood
ratio test

0.059 0.057 0.072 0.060

Wald test 0.068 0.060 0.075 0.063
Rao test 0.062 0.058 0.073 0.061

Table 5. Type I error of the tests on the parameter for the second model.

θ0 = (7, 14)⊤, θT = (8, 15)⊤,
aC = 24/7, bD = 45/7, γ = γC,D = 1,

RC = 30%

θ0 = (7, 14)⊤, θT = (10, 18)⊤,
aC = 30/7, bD = 54/7, γ = γC,D = 1,

RC = 30%
n = 100 n = 300 n = 100 n = 300

Likelihood
ratio test

0.258 0.814 0.513 0.907

Wald test 0.217 0.714 0.452 0.877
Rao test 0.204 0.655 0.446 0.856

Table 6. Power of the tests on the parameter for the second model.

θT = (7, 14)⊤, aC = 3, bD = 6,
γ = γC,D = 1, RC = 30%

θT = (1, 3)⊤, aC = 1, bD = 3,
γ = γC,D = 1, RC = 50%

n = 100 n = 300 n = 100 n = 300
Chi-square
test

0.066 0.051 0.070 0.069

Kolmogorov-
Smirnov
test

0.060 0.053 0.078 0.071

Cramér-
Von-Mises
test

0.062 0.045 0.072 0.070

Table 7. Type I error of the goodness-of-fit tests for the second model.
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X ∼ E(7), Y ∼ E(14), C ∼ E(3),
D ∼ E(6), X and Y (resp. C and D)
have a Gumbel copula with parameter

2, RC = 30%

X ∼ Ray(
√
3), Y ∼ Ray(

√
6),

C ∼ Ray(
√
7), D ∼ Ray(

√
14), X and

Y (resp. C and D) have a Calyton
copula with parameter 1, RC = 30%

n = 100 n = 300 n = 100 n = 300
Chi-square
test

0.517 0.795 0.557 0.822

Kolmogorov-
Smirnov
test

0.114 0.441 0.236 0.502

Cramér-
Von-Mises
test

0.110 0.375 0.219 0.466

Table 8. Power of the goodness-of-fit tests for the second model.

6. Real data application

[25] reported a study on the time to infection after the insertion of a catheter for 38
kidney patients. When an infection occurred, the catheter was removed and the time to
infection was recorded. If the catheter was removed by other reasons, then the infection
time is right censored. After removing the first catheter, an other one was inserted and
the second infection time was observed or censored. So, the variable of interest is (X,Y ),
where X is the first infection time and Y is the second infection time. In our study,
we use our proposed chi-square goodness-of-fit test to fit the bivariate model described
in example 3.1 above to this set of data. We also use the Kolmogorov-Smirnov and the
Cramér-Von-Mises tests. The infection times being recorded in days, we divide by 365 to
treat them in years. All the goodness-of-fit tests accept the theoretical model as a model
describing the data with the p-values given in Table 9 below. Having positive results for
these tests, we use the method of moments to estimate the parameters of the model. We
get values near to θ0 = (2.5, 6)⊤. So, we perform tests on the value of the parameter
using two values: θ0 = (2.5, 6)⊤ and θ0 = (7, 10)⊤. As in the simulation study, we use the
likelihood ratio, the Wald and the Rao tests. The p-values of these tests are presented in
Table 10 below. We remark that the likelihood ratio test accepts the value (2.5, 6)⊤ and
rejects the value (7, 10)⊤ of the parameter. However, the Wald test rejects both values
and the Rao test accepts both of them.

Test p-value
Chi-square test 0.803

Kolmogorov-Smirnov test 0.854
Cramér-Von-Mises test 0.858

Table 9. p-value of the goodness-of-fit tests for the infection times data.
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Test θ0 = (2.5, 6)⊤ θ0 = (7, 10)⊤

Likelihood ratio test 0.313 1.796× 10−13

Wald test 2.676× 10−5 0

Rao test 0.874 0.548

Table 10. p-value of the tests on the parameter for the infection times
data.

7. Conclusions

In this work, we have studied parametric statistical models in the presence of bivariate
right censored data. First, we studied the asymptotic properties of the maximum likelihood
estimator in this context, namely, we have established its weak consistency and asymptotic
normality. Then, we have proposed a likelihood ratio test for the value of the parameter as
well as a chi-squared goodness-of-fit test. We have determined the asymptotic distributions
of the two tests under the null hypothesis. The goodness-of-fit test is based on one of the
three estimators of the bivariate survival function proposed by [1]. However, the same
results hold immediately for the two other estimators. Comparison between the tests tht
result from each estimator, could be developed in further researches.
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Thesis, Université Pierre et Marie Curie, Paris.

[13] Habib, M. G. and Thomas, D. R., (1986), Chi-square goodness-of-fit tests for randomly censored data,
The Annals of Statistics, 14(2), pp. 759-765.

[14] Giordan, M. and Wehrens, R., (2015), A comparison of computational approaches for maximum
likelihood estimation of the Dirichlet parameters on high-dimensional data, SORT, 39(1), pp. 109-
126.



1114 TWMS J. APP. ENG. MATH. V.15, N.5, 2025

[15] Ronning, G., (1989), Maximum likelihood estimation of Dirichlet distributions, Journal of Statistical
Computation and Simulation, 32, pp. 215-221.

[16] Dishon, M. and Weiss, G., (1980), Small sample comparison of estimation methods for the beta
distribution, Journal of Statistical Computation and Simulation, 11, pp. 1-11.

[17] Wicker, N., Muller, J., Kalathur, R. K. R. and Poch, O., (2008), A maximum likelihood approximation
method for Dirichlet’s parameter estimation, Computational Statistics and Data Analysis, 52, pp.
1315-1322.

[18] Levenberg, K., (1944), A method for the solution of certain non-linear problems in least squares,
Quarterly of Applied Mathematics, 2, pp. 164-168.

[19] Marquardt, D., (1963), An algorithm for least-squares estimation of nonlinear parameters, SIAM
Journal on Applied Mathematics, 11, pp. 431-441.

[20] van der Vaart, A. W., (1998), Asymptotic Statistics, Dover publications, Cambridge Series in Statis-
tical and Probabilistic Mathematics. Cambridge University Press, Cambridge.

[21] Newey, W. K. and McFadden, D., (1994), Large sample estimation and hypothesis testing, Handbook
of Econometrics, Vol 4, ed. by R. Engle and D. McFadden. New York: North Holland.

[22] Billingsley, P., (1995), Probability and Measure, The University of Chicago, John Wiley & Sons.
[23] Lütkepohl, H., (1996), Handbook of matrices, Humboldt University of Berlin, John Wiley & Sons.
[24] Pardo, L., (2006), Statistical inference based on divergence measures, Chapman & Hall/CRC, Madrid.

John Wiley & Sons.
[25] McGilchrist, C. A. and Aisbett, C. W., (1991), Regression with frailty in survival analysis, Biometrics,

142, pp. 461-466.

Mohamed Boukeloua is currently an associate professor of mathematics in the Na-
tional Polytechnic Institute of Constantine, Algeria. He is a member of Laboratory
of Process Engineering for Sustainable Development and Health Products in the same
institute. He is also a member of Laboratory of Biostatistics, Bioinformatics and Math-
ematical Methodology Applied on Health Sciences, Faculty of Medicine, Salah Boub-
nider University of Constantine, Algeria. He holds a PhD in Mathematical Statistics
from Brothers Mentouri University of Constantine, Algeria. His research interests are
: Parametric and Non parametric Inference, Censored data, ϕ−divergences and their

applications, Copula models, Kernel estimation, Non parametric regression, Dependent data, Bayesian
inference.


