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DESIGNS ARISING FROM PRODUCTS OF HYPERGRAPHS OF CYCLES

M. I. HUILGOL1�, S. ASOK2, §

ABSTRACT. In this paper, we have considered many standard graph products viz. cartesian prod-
uct, direct product, strong product and lexicographic product, and extended these graph products to
hypergraphs which are natural generalizations of ususal graphs where edges may consist of more
than two vertices. We have constructed a hypergraph of a graph by considering hyperedges as
closed neighbourhood of each vertex in the graph. As the product of any two hypergraphs is again
a hypergraph, we have obtained designs arising from products of hypergraphs where blocks are
hyperedges of a hypergraph obtained by taking standard products of hypergraphs of cycles.

Keywords: PBIB-designs, Hypergraphs, Cartesian product, Direct product, Strong product, Lexi-
cographic product.
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1. INTRODUCTION

Combinatorial design theory is a part of combinatorics that deals with existence, construction
and properties of systems of finite sets whose arrangements satisfy certain conditions. Balanced
incomplete block (BIB)-designs and partially balanced incomplete block (PBIB)-designs are two
major subfields finding a wide range of applications in various fields of studies and experimen-
tations. Balanced incomplete block designs are connected and efficiency balanced, in the sense
that all treatment differences are estimated with the same accuracy. But they exist only for certain
parameters and a major disadvantange of using BIB-designs in experimentation is that it requires
a large number of replication of treatments. PBIB-designs help in reducing the number of repli-
cations by compromising on the property of balanced efficiency. Therefore, PBIB-designs are not
balanced but partially balanced although they are connected. Thus, they find more applications in
real world problems than BIB-designs. Various designs have been constructed from graphs taking
blocks to be certain subsets of the vertex set in [14], [15], [16], [29] etc.

Hypergraph theory was introduced in 1960s as a generalization of graph theory. The expos-
itory text, ‘Graphs and Hypergraphs’ by Berge [2] in 1973 introduces the concept lucidly. The
generalization of graph problems to hypergraphs brings a number of new perspectives to the field
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of graph theory. Research into the theories of set systems and hypergraphs provide a valuable
basis to various fields of mathematics such as matroids, designs, combinatorial probability and
Ramsey theory for infinite sets. Hypergraph theory studies a mathematical structure on a set of
elements with a relation, as a recognised discipline in a relatively new era. In recent years, theory
of hypergraphs have proved to be of major interest in applications to real world problems. Recent
developments in this comparatively younger theory have played a major part in revealing hyper-
graphs as a prominent mathematical tool in a variety of applications in the fields of engineering,
particularly in computer science, software engineering, image processing, molecular biology, and
related businesses and industries, chemistry and so on [4], [19], [20], [21], etc. Hypergraphs can
represent group relationships and thus have many uses in solving technical problems. Real world
examples of hypergraphs are social networks like Facebook or Linkedin wherein each user is a
vertex that could be a part of a group which is the hyperedge.

Every branch of mathematics employs one notion of a product that enables the combination
or decomposition of its elemental structures. In graph theory, we can find four main products
each with their own sets of applications and theoretical interpretations. Graph products are nat-
ural structures in discrete mathematics that arise in a variety of different contexts from computer
science, computational engineering to theoretical biology [1], [10]. They are viewed as a conve-
nient language which is used to describe various structures. Computer science is one of the many
fields in which graph products is prevalent and one of its application is load balancing for mas-
sively parallel computer architectures. Besides, it finds applications in chemical graph theory and
dynamic location problem. The applications of median graphs in human genetics and powers of
direct products to model large networks are in use owing to its significance. Detailed literature and
applications of products of graphs has been given in monograph ‘Handbook of Product Graphs’
by Hammack et al. [11]. Many researchers have extended the concepts and algorithms developed
in graphs analogously to hypergraps. Products of hypergraphs is one such captivating topic having
wide applications in network theory. A survey on hypergraph products by Hellmuth et al. [13] has
described briefly different graph products that can be extended to hypergraphs and the properties
associated with them. Bretto et al. [5] deduced new properties and algorithms concerning aspects
of cartesian product of hypergraphs. They also extended a classical prime factorization algorithm
initially designed for graphs to connect conformal hypergraphs using 2-sections of hypergraphs.
This concept was further generalized for directed hypergraphs by Ostermeier [22] by showing that
every simple (weakly) connected, possibly directed and infinite hypergraph has a unique prime
factor decomposition with respect to the (weak) cartesian product even if it has infinitely many fac-
tors. Bruce et al. [7] extended the properties of lexicographic products to lexicographic products
of r-uniform hypergraphs and gave a generalization for new multicolor inequality for hypergraph
Ramsey numbers. Bounds on chromatic number of direct product of hypergraphs is due to Ster-
boul [27]. Bretto et al. [6] developed an algorithm which factorizes any hypergraph into its prime
factors in O�nm� time where n and m are order and size of hypergraph, respectively. Later on,
Hellmuth et al. [12] have showed that every connected hypergraph has a unique prime factorization
with respect to the normal and strong hypergraph products using cartesian skeleton of hypergraph.
They have also developed algorithms in order to prove their results. Also, a lot of research has
been carried out in perfect matchings in hypergraphs. Keevash [18] gave a link between perfect
matching and designs arising from hypergraphs. Here, the author developed necessary and suffi-
cient conditions for the existence of a perfect matching in block designs. The designs considered
are Steiner systems and �n, q, r, λ� design which can be thought of as q-uniform hypergraphs.

The use of 2-associate class of PBIB-design is common in experimental work. However, PBIB-
designs with more than two or three associate classes are not widely used because of the com-
plicated nature of analysis and construction involved. In literature, several papers are available
on construction of various block designs with two and three class association schemes from other
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existing designs and from graphs, but very few on construction of designs with more than 4-class
association schemes [24], [25], [28]. Therefore, in this paper, we have constructed a few class of
PBIB-designs with more than four associate classes arising from hypergraphs. The entire paper is
split into four sections. First section deals with introduction to hypergraph products, combinatorial
design theory and some of its applications. Preliminary definitions and some known results are
listed in second section. In the third section, we construct PBIB-designs arising from hypergraph
products of neighbourhood hypergraphs of cycles. We have also defined different association
schemes for each of the products, followed by conclusion in the fourth section.

2. PRELIMINARIES

Undefined graph theoretical terms are used in the sense of Buckley and Harary [8] and unde-
fined design theoretical terms are in the sense of Colbourn et al. [9].

Definition 2.1. [23] Given a set �1,2,3, . . . , v� of v elements, a relation satisfying the following
conditions is said to be an association scheme with m classes.
(i) Any two elements α and β are ith associates for some i with 1 B i B m and this relation of
being ith associates is symmetric.
(ii) The number of ith associates of each element is ni.
(iii) If α and β are two elements which are ith associates, then the number of elements which are
jth associates of α and kth associates of β is pijk and is independent of the pair of ith associates
α and β.

Definition 2.2. [29] [3] Consider a set V � �1,2, . . . , v� and an association scheme with m
classes on V . A partially balanced incomplete block (PBIB)-design represented as �v, b, r, k, λ1,
. . . , λm� is a collection of b subsets of V called blocks, each of them containing k elements �k @ v�
such that every element occurs in r blocks and any two elements α and β which are ith associates
occur together in λi blocks, the number λi being independent of the choice of the pair α and β.

The numbers v, b, r, k, λi �i � 1,2, . . . ,m� are called the parameters of first kind and n�is and
pijk are called the parameters of second kind.

Hypergraphs are natural generalization of undirected graphs in which edges may consist of
more than two vertices.

Definition 2.3. [13] A (finite) hypergraph H � �V,E� consists of a (finite) set V and a collection
E of non-empty subsets of V .
The elements of V are called vertices and elements of E are called hyperedges.
A hypergraph H � �V,E� is simple if no hyperedge is contained in any other hyperedge and SeS C 2
for all e > E.
Two vertices u and v are adjacent in H � �V,E� if there is a hyperedge e > E such that u, v > e.
Two hyperedges e, f > E are adjacent if e 9 f x ϕ.
A vertex v and a hyperedge e of H are incident if v > e.
The degree deg�v� of a vertex v > V is the number of hyperedges incident to v.
The rank of a hypergraph H � �V,E� is r�H� � max�SeS� and the antirank is s�H� � min�SeS�
where e > E.
A hypergraph is said to be uniform if r�H� � s�H�.
A simple uniform hypergraph of rank r is called r-uniform hypergraph. A 2-uniform hypergraph
is the ordinary graph.

Remark 2.1. Product of two r-uniform hypergraphs is again a r-uniform hypergraph.

Definition 2.4. [26] Let G � �V �G�,E�G�� be a graph with n vertices numbered arbitrarily by
numbers 1,2,3, . . . , n, then the hypergraph Hk � �V �Hk�,E�Hk��, k C 1 is such that V �Hk� �
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V �G� and E�Hk� � �e1, e2, e3, . . . , ep�, ei �{set of vertices j: d�i, j� B k} where d�i, j� is the
distance between vertices i and j in G.

Remark 2.2. Hk is basically a neighbourhood hypergraph of order k. When k � 1, it is called
simply as a neighbouhood hypergraph.

Now we define four graph products known as the standard graph products, viz., cartesian prod-
uct 2, direct product �, strong product u and lexicographic product X, which are extendible to
hypergraphs as well.

Definition 2.5. [13] Let en
i�1Hi � �V,E� = ��n

i�1V �Hi�,E�en
i�1Hi�� be an arbitrary hyper-

graph product. The projection pj � V � V �Hj� is defined by �v � v1, v2, . . . vn�( vj . vj is called
the jth coordinate of the vertex v > V . Products of simple hypergraphs are simple.

Definition 2.6. [13] Cartesian product H � H12H2 of two hypergraphs H1 and H2 has vertex
set V �H� � V �H1� � V �H2� and the edge set
E�H� � ��x� � f � x > V �H1�, f > E�H2�� 8 �e � �y� � e > E�H1�, y > V �H2��.
Cartesian product of hypergraphs can be described in terms of projections as follows:
For H � H12H2, with Hi � �Vi,Ei� for i � 1,2 and e ` V �H�, we have e > E�H� if and only if
there is an i > �1,2�, such that
(i) pi�e� > Ei (ii) Spj�e�S � 1 for i x j.

Furthermore, Spi�e�S � SeS.
Definition 2.7. [13] Direct product H � H1 �H2 of two hypergraphs H1 and H2 has vertex set
V �H� � V �H1� � V �H2� and the edge set
E�H� � �e > V �H1��V �H2� � p1�e� > E�H1�, p2�e� > E�H2� and S e S �max �Sp1�e�S, Sp2�e�S��.
For r-uniform hypergraphs H1 and H2, ��x1, y1�, �x2, y2�, . . . , �xr, yr�� > E�H� if and only if

(i) �x1, x2, . . . , xr� > E�H1� and there exist a hyperedge e1 > E�H2� such that �y1, y2, . . . , yr�
is a family of all elements of e1 or

(ii) �y1, y2, . . . , yr� > E�H2� and there exist a hyperedge e2 > E�H1� such that �x1, x2, . . . , xr�
is a family of all elements of e2.

Definition 2.8. [13] Strong product of hypergraphs can be interpreted as a superposition of edges
of cartesian product and direct product.
Strong product H � H1 uH2 of two hypergraphs H1 and H2 has vertex set V �H� � V �H1� �
V �H2� and the edge set E�H� � E�H12H2� 8E�H1 �H2�.

Definition 2.9. [13] Lexicographic product H � H1 X H2 of two hypergraphs H1 and H2 has
vertex set V �H� � V �H1� � V �H2� and edge set
E�H� � �e b V �H� � p1�e� > E�H1�, Sp1�e�S � SeS� 8 ��x� � e2 � x > V �H1�, e2 > E�H2��.
Since Sp1�e�S � SeS, there are SeS vertices of e that have pairwise different first coordinates.
Lexicographic product of two r-uniform hypergraphs H1 and H2 is again a r-uniform hypergraph
H with vertex set V �H� � V �H1� � V �H2� and edge set ��x1, y1�, �x2, y2�, . . . , �xr, yr� �

�x1, x2, . . . , xr� > E�H1� or x1 � x2 � � � � � xr and �y1, y2, . . . , yr� > E�H2��.

Remark 2.3. A simple graph is a 2-uniform hypergraph. Consequently, the products defined
above are appropriate for graphs as well.

Definition 2.10. [8] A cycle is a closed path. Therefore, cycle is 2-regular. A cycle on n vertices
is denoted as Cn.

There are several definitions for hypergraph cycle. Below, we define hypergraph cycle C for a
3-uniform hypergraph.



M. I. HUILGOL, A. SREEPRIYA: DESIGNS ARISING FROM PRODUCTS OF HYPERGRAPHS OF CYCLES 1127

Definition 2.11. [17] A hypergraph cycle of length n, denoted as Cn, is called a loose cycle if it
has vertices �v1, v2, . . . , vn� and hyperedges ��v1, v2, v3�,�v3, v4, v5�, . . . ,�vn�1, vn, v1�� when
n is even.

v1 v2

v3

v4

v5v6

v7

v8

FIGURE 1. Cycle graph
C8

v1

v2

v3
v4

v5

v6
v7

v8
e1

e2
e3

e4

FIGURE 2. Loose cycle
hypergraph C8

Next section deals with main results of the paper.

3. RESULTS

Consider any graph G. Let H1�G� be the hypergraph obtained from G by taking each hyper-
edge to be closed neighbourhood of each vertex of G, then the number of distinct hyperedges in
hypergraph H1 of G is atmost equal to order of G. Note that for cycle on three vertices, C3 with
vertex set �a1, a2, a3�, its hypergraph H1 has a single hyperedge �a1, a2, a3�.

In all four subsections below, we have considered hypergraphs of cycles. Cycles being 2-
regular, closed neighbourhood of each vertex will have 3 elements. Thus, their hypergraphs H1

are 3-uniform as all hyperedges are of size 3 and hence the product of 3-regular hypergraphs is
again a 3-regular hypergraph.

3.1. Cartesian product of hypergraphs. In this subsection we consider cartesian product. Be-
low we give an illustration for cartesian product of hypergraph H1 of cycles C3 and C4.
Illustration: Consider two cycles C3 and C4.

a2 a3

a1

FIGURE 3. Cycle C3

b2 b3

b4b1

FIGURE 4. Cycle C4

Let H1�C3� be hypergraph of cycle C3 and H1�C4� be hypergraph of cycle C4. Vertex sets
of H1�C3� and H1�C4� are �a1, a2, a3� and �b1, b2, b3, b4�, respectively, and hyperedge sets are
�a1, a2, a3� and ��b1, b2, b3�,�b2, b3, b4�,�b1, b3, b4�,�b1, b2, b4��, respectively.
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Consider hypergraph H , where H � H1�C3� 2 H1�C4�. In H , we represent a vertex �ai, bj�
such that ai > V �C3� and bj > V �C4� by aibj . Then from Definition 2.6 [13],
V �H� � �a1b1, a1b2, a1b3, a1b4, a2b1, a2b2, a2b3, a2b4, a3b1, a3b2, a3b3, a3b4� and
E�H� � ��a1b1, a1b2, a1b3�,�a1b2, a1b3, a1b4�,�a1b1, a1b3, a1b4�,�a1b1, a1b2, a1b4�,
�a2b1, a2b2, a2b3�,�a2b2, a2b3, a2b4�,�a2b1, a2b3, a2b4�,�a2b1, a2b2, a2b4�,�a3b1, a3b2, a3b3�,
�a3b2, a3b3, a3b4�,�a3b1, a3b3, a3b4�,�a3b1, a3b2, a3b4�,�a1b1, a2b1, a3b1�,�a1b2, a2b2, a3b2�,
�a1b3, a2b3, a3b3�,�a1b4, a2b4, a3b4��.
The hypergraphs H1�C3�, H1�C4� and H � H1�C3�2H1�C4� are given in Figures 5, 6 and 7
respectively.

FIGURE 5. H1�C3� FIGURE 6. H1�C4�

FIGURE 7. H1�C3�2H1�C4�

Below we give the association scheme for design arising from cartesian product of hypergraphs
H1 of two cycles Cm and Cn.
The number of blocks containing a pair of vertices whose
�i� first coordinates are same and second coordinates are at distance 1 in Cn is λ1.
�ii� first coordinates are same and second coordinates are at distance 2 in Cn is λ2.
�iii� first coordinates are at distance 1 in Cm and second coordiantes are same is λ3.
�iv� first coordinates are at distance 2 in Cm and second coordinates are same is λ4.
�v� one of the coordinates are same and the other is at distance greater than or equal to three in
their respective graphs or both the coordinates are different is λ�5 .

Using the above association scheme, we construct a design arising from cartesian product of
hypergraphs of two cycles where hyperedges are considered as blocks.

Theorem 3.1. The collection of all hyperedges of cartesian product, H �H1�Cm� 2H1�Cn�, of
hypergraphs H1 of two cycles Cm and Cn forms a partially balanced incomplete block (PBIB)-
design with 5-class association scheme having parameters �v, b, r, k, λi� for 1 B i B 5 as follows:

(i) �9,6,2,3,1,0,1,0,0� when m � 3 and n � 3.
(ii) �12,16,4,3,2,2,1,0,0� when m � 3 and n � 4.
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(iii) �3n,4n,4,3,2,1,1,0,0� when m � 3 and n C 5.
(iv) �12,16,4,3,1,0,2,2,0� when m � 4 and n � 3.
(v) �3m,4m,4,3,1,0,2,1,0� when m C 5 and n � 3.
(vi) �16,32,6,3,2,2,2,2,0� when m � 4 and n � 4.
(vii) �4n,8n,6,3,2,1,2,2,0� when m � 4 and n C 5.
(viii) �4m,8m,6,3,2,2,2,1,0� when m C 5 and n � 4.
(ix) �mn,2mn,6,3,2,1,2,1,0� when m C 5 and n C 5.

Proof. Consider two cycles Cm and Cn where m and n are greater than 3. Clearly, H1�Cm�
and H1�Cn� has m and n distinct hyperedges respectively. For a cycle on 3 vertices, C3, closed
neighbourhood of all its vertices are same. Hence H1�C3� has a unique hyperedge.

Let H � H1�Cm� 2 H1�Cn�. It is well known from hypergraph theory that vertices of H are
cartesian product of vertex set ofH1�Cm� andH1�Cn�. Hence, the order of hypergraph H is mn.

Now, let us count the number of hyperedges SE�H�S in H . For this, we partition the hyperedges
of H into two subsets E1 and E2 where
E1 � ��x� � e � x > V �H1�Cm��, e > E�H1�Cn��� and
E2 � �e � �u� � e > E�H1�Cm��, u > V �H1�Cn���.
Clearly, SE1S � SV �H1�Cm��S�SE�H1�Cn��S and SE2S � SE�H1�Cm��S�SV �H1�Cn��S. Therefore,
SE�H�S � SE1S � SE2S as E1 and E2 are disjoint, that is,
SE�H�S � �SV �H1�Cm��S � SE�H1�Cn��S� � �SE�H1�Cm��S � SV �H1�Cn��S�.
For m C 4 and n C 4, SE�H�S � 2mn.
When m � 3 and n C 4, SE�H�S � 4n and for m C 4 and n � 3, SE�H�S � 4m.
When m � 3 and n � 3, SE�H�S � 6.

Taking each hyperedge of H to be a block of a design, we now find parameters of the design
obtained. From Remark 2.1, we see that H � H1�Cm� 2 H1�Cn� is a 3-uniform hypergraph.
Hence, block size k is 3. Each vertex in H is a 2-tuple where first element is a vertex of H1�Cm�
and second element is a vertex ofH1�Cn�. To find repetition number of the design, let us consider
a vertex, say, ab in H . From the compositions of hyperedges in subsets E1 and E2, it is clear that
vertex ab appears atmost thrice in E1 as vertex b is present in atmost 3 hyperedges in H1�Cn�.
Similarly, vertex ab appears atmost 3 times in E2 as vertex a appears thrice in E�H1�Cm��.
Hence, ab appears atmost in 6 hyperedges of H. If m � 3 and n C 4 (or m C 4 and n � 3),
repetition number of the design becomes 4 and when both m and n are equal to 3, repetition
number reduces to 2.

To obtain the values of λi, for 1 B i B 5, we consider different cases. Let ai > V �H1�Cm��
and bi > V �H1�Cn��. λ1 gives the number of blocks in H containing a pair of vertices ab1
and ab2 where vertices b1 and b2 are at distance 1 in Cn. If b1 and b3 are vertices at distance 2
in Cn, then the number of blocks containing pair of vertices ab1 and ab3 gives the value of λ2.
Clearly, hyperedges containing the pairs of vertices �ab1, ab2� and �ab1, ab3� belong to set E1.
Similarly, λ3 is the number of blocks containing a pair of vertices a1b and a2b in H where vertices
a1 and a2 are at distance 1 in Cm and λ4 gives the number of blocks containing vertices a1b and
a3b where vertices a1 and a3 are at distance 2 in Cm. Clearly, hyperedges containing pairs of
vertices �a1b, a2b� and �a1b, a3b� belong to set E2. It is obvious that λ�5 is always 0 as there is
no hyperedge in hypergraph H1 of cycles containing a pair of vertices at distance greater than 2
contained in cycle or vertices in H wherein both the coordinates are differnt.

Case i) : m � 3 and n � 3.
AsH1 of cycle C3 has a single hyperedge and all vertices are at distance 1 in C3, we get the design
parameters as (9, 6, 2, 3, 1, 0, 1, 0, 0).

Case ii) : m � 3 and n � 4.
H1�C4� has four hyperedges such that a pair of vertices at distance 1 as well as a pair of vertices
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at distance 2 in C4 appear twice in E�H1�C4��. Thus we get the values of λ1 and λ2 as 2. Thus,
the design parameters are (12, 16, 4, 3, 2, 2, 1, 0, 0).

Case iii) : m � 3 and n C 5.
There are two hyperedges in H1�Cn� containing a pair of vertices which are at distance 1 in Cn

and one hyperedge in H1�Cn� wherein a pair of vertices at distance 2 in Cn occurs together.
Hence λ1 � 2 and λ2 � 1. Thus, design parameters are �3n,4n,4,3,2,1,1,0,0�.

Case iv) : m � 4 and n � 3.
Clearly, values of v, b, r, k remains same as in Case ii�, only values of λi interchanges with
respect to m and n values. Thus, parameters of design are (12, 16, 4, 3, 1, 0, 2, 2, 0).

Case v) : m C 5 and n � 3.
The values of λ1, λ2 interchanges with the values of λ3, λ4, respectively, as m and n is inter-
changed from that in Case iii�. Thus, design parameters are �3m,4m,4,3,1,0,2,1,0�.

Case vi) : m � 4 and n � 4.
There are two hyperedges each in H containing a pair of vertices which are distance 1 as well as a
pair of vertices at distance 2 in C4. Hence, we get the values of λi for 1 B i B 4 as 2. Thus, design
parameters are (16, 32, 6, 3, 2, 2, 2, 2, 0).

Case vii) : m � 4 and n C 5.
Any pair of vertices at distance 1 in Cn occur together twice in E�H1�Cn��. Similarly, a pair of
vetices at distance 2 in Cn occur together exactly once in E�H1�Cn��. Thus λ1 � 2 and λ2 � 1.
Since m � 4, values of λ3 and λ4 are 2. Thus, design parameters are �4n,8n,6,3,2,1,2,2,0�.

Case viii) : m C 5 and n � 4.
Parameters of the design obtained in this case is similar to that in Case vii� where values of λ1,
λ2 interchanges with the values of λ3, λ4, respectively, as values of m and n are interchanged.
Thus, we get the parameters of design as �4m,8m,6,3,2,2,2,1,0�.

Case ix) : m C 5 and n C 5.
This is the general case for cartesian product of hypergraph H1 of cycles of order greater 4.
Clearly, design parameters obtained are �mn,2mn,6,3,2,1,2,1,0�. □

In proof of Theorem 3.1, we have given parameters of first kind of the PBIB-designs con-
structed. Let us now see parameters of second kind.

Remark 3.1. In the association scheme discussed above, we can split λ�5 into various cases which
include all other remaining pairs of vertices not applicable in first four cases, such as pairs of
vertices whose first coordinates are same and second coordinates are at distances 3, 4 and so on
upto diameter of Cn which is 
n~2�, first coordinates at distances 1, 2, and so on upto 
m~2� and
second coordinate same, both the coordinates different and at varying distances in their respective
graphs with atleast one of the distances greater than 2. Thus we get a total of �
m~2� � 
n~2�� �
�
m~2� � 
n~2�� associate classes. Hence parameters of second kind is different for each design
depending on the values of m and n.

Illustration : Below we give an illustration taking the example of cartesian product of hyper-
graph H1 of cycles C4 and C6. The vertex sets of H1�C4� and H1�C6� are �a1, a2, a3, a4� and
�b1, b2, b3, b4�, respectively, and hyperedge sets are ��a1, a2, a3�, �a1, a2, a4�, �a2, a3, a4�,

�a1, a3, a4�� and ��b1, b2, b3�, �b2, b3, b4�, �b3, b4,b5�, �b4, b5, b6�, �b1, b5, b6�, �b1, b2, b6��, re-
spectively.

Consider hypergraph H , where H �H1�C4�2H1�C6�. Then from Definition 2.6,
V �H� � �a1b1, a1b2, a1b3, a1b4, a1b5, a1b6, a2b1, a2b2, a2b3, a2b4, a2b5, a2b6, a3b1, a3b2, a3b3,
a3b4, a3b5, a3b6, a4b1, a4b2, a4b3, a4b4, a4b5, a4b6� and
E�H� � ��a1b1, a1b2, a1b3�, �a1b2, a1b3, a1b4�, �a1b3, a1b4, a1b5�, �a1b4, a1b5, a1b6�,
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�a1b1, a1b5, a1b6�, �a1b1, a1b2, a1b6�, �a2b1, a2b2, a2b3�, �a2b2, a2b3, a2b4�, �a2b3, a2b4, a2b5�,
�a2b4, a2b5, a2b6�, �a2b1, a2b5, a2b6�, �a2b1, a2b2, a2b6�, �a3b1, a3b2, a3b3�, �a3b2, a3b3, a3b4�,
�a3b3, a3b4, a3b5�, �a3b4, a3b5, a3b6�, �a3b1, a3b5, a3b6�, �a3b1, a3b2, a3b6�, �a4b1, a4b2, a4b3�,
�a4b2, a4b3, a4b4�, �a4b3, a4b4, a4b5�, �a4b4, a4b5, a4b6�, �a4b1, a4b5, a4b6�, �a4b1, a4b2, a4b6�,
�a1b1, a2b1, a3b1�, �a1b1, a2b1, a4b1�, �a2b1, a3b1, a4b1�, �a1b1, a3b1, a4b1�, �a1b2, a2b2, a3b2�,
�a1b2, a2b2, a4b2�, �a2b2, a3b2, a4b2�, �a1b2, a3b2, a4b2�, �a1b3, a2b3, a3b3�, �a1b3, a2b3, a4b3�,
�a2b3, a3b3, a4b3�, �a1b3, a3b3, a4b3�, �a1b4, a2b4, a3b4�, �a1b4, a2b4, a4b4�, �a2b4, a3b4, a4b4�,
�a1b4, a3b4, a4b4�, �a1b5, a2b5, a3b5�, �a1b5, a2b5, a4b5�, �a2b5, a3b5, a4b5�, �a1b5, a3b5, a4b5�,
�a1b6, a2b6, a3b6�, �a1b6, a2b6, a4b6�, �a2b6, a3b6, a4b6�, �a1b6, a3b6, a4b6��.

The association scheme is given explicitly as follows.
The number of blocks containing a pair of vertices whose
�i� first coordinates are same and second coordinates are at distance 1 in C6 is λ1.
�ii� first coordinates are same and second coordinates are at distance 2 in C6 is λ2.
�iii� first coordinates are at distance 1 in C4 and second coordinates are same is λ3.
�iv� first coordinates are at distance 2 in C4 and second coordinates are same is λ4.
�v� first coordinates are same and second coordinates are at distance 3 in C6 is λ5.
�vi� first coordinates are at distance 1 in C4 and second coordinates are at distance 1 in C6 is λ6.
�vii� first coordinates are at distance 1 in C4 and second coordinates at distance 2 in C6 is λ7.
�viii� first coordinates are at distance 1 in C4 and second coordinates at distance 3 in C6 is λ8.
�ix� first coordinates are at distance 2 in C4 and second coordinates are at distance 1 in C6 is λ9.
�x� first coordinates are at distance 2 in C4 and second coordinates are at distance 2 in C6 is λ10.
�xi� first coordinates are at distance 2 in C4 and second coordinates at distance 3 in C6 is λ11.

Further, we give an algorithm to obtain the cartesian product of two hypergraphsH1�Cm�2H1�Cn�
along with the association scheme for design arising from it.

Algorithm to obtain cartesian product of two hypergraphs and the association scheme of
the design arising from it.
Input: Cycle graphs Cm and Cn.

Vertex sets V1, V2, and edge sets E1, E2 of graphs Cm and Cn, respectively.
Distance matrices D1 and D2 of graphs Cm and Cn, respectively.

Output: Cartesian product of hypergraphs, that is, H1�Cm�2H1�Cn�.
Associates of each vertex.

Algorithm 1
Step 1: Start
Step 2: Initialize G� �0,0� graph
Step 3: Define function H1�G� �� neighbourhood hypergraph�G�
Step 4: Call function H1��

add Cm to G. Return H1�Cm�
add Cn to G. Return H1�Cn�

Step 5: Initialize H1 � �0,0� hypergraph, H2 � �0,0� hypergraph
Step 6: Define function CP �H1,H2� �� cartesian product�H1,H2�
Step 7: Call function CP ��

add H1�Cm� to H1, add H1�Cn� to H2

Step 8: Return edge set E�CP �H1�Cm�,H1�Cn���
Step 9: For �ai, bj�, �al, bk� in E�CP �H1�Cm�,H1�Cn���, i, l � 1 to m,

j, k � 1 to n, s� 1 to �
m~2� � 
n~2�� � �
m~2� � 
n~2��
Step 10: Define λs � no of edges containing �ai, bj� and �al, bk� for varying values of i, l, j, k
Step 11: Return the values of λ1, λ2, . . . , λ�
m~2��
n~2����
m~2��
n~2��
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Step 12: Stop

Remark 3.2. Time complexity of the above Algorithm 1 can be proved in similar lines as in
[6]. The order and size of cartesian product hypergraph H � H1�Cm� 2 H1�Cn� is mn and
2mn, respectively. Therefore, time complexity of Algorithm 1 is O�mn � 2mn� which is equal to
O�m2n2�.

Output of the above algorithm when m � 4 and n � 6 can be verified from the table below.

TABLE 2. Table of association scheme for design arising from
H1�C4� 2H1�C6�

Vertex 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

associate associate associate associate associate associate associate associate associate associate associate

a1b1 a1b2, a1b3, a2b1, a3b1 a1b4 a2b2, a2b6, a2b3, a2b5, a2b4, a3b2, a3b3, a3b4
a1b6 a1b5 a4b1 a4b2, a4b6 a4b3, a4b5 a4b4 a3b6 a3b5

a1b2 a1b1, a1b4, a2b2, a3b2 a1b5 a2b1, a2b3, a2b4, a2b6, a2b5, a3b1, a3b4, a3b5
a1b3 a1b6 a4b2 a4b1, a4b3 a4b4, a4b6 a4b5 a3b3 a3b6

a1b3 a1b2, a1b1, a2b3, a3b3 a1b6 a2b2, a2b4, a2b1, a2b5, a2b6, a3b2, a3b1, a3b6
a1b4 a1b5 a4b3 a4b2, a4b4 a4b1, a4b5 a4b6 a3b4 a3b5

a1b4 a1b3, a1b2, a2b4, a3b4 a1b1 a2b3, a2b5, a2b2, a2b6, a2b1, a3b3, a3b2, a3b1
a1b5 a1b6 a4b4 a4b3, a4b5 a4b2, a4b6 a4b1 a3b5 a3b6

a1b5 a1b4, a1b1, a2b5, a3b5 a1b2 a2b4, a2b6, a2b1, a2b3, a2b2, a3b4, a3b1, a3b2
a1b6 a1b3 a4b5 a4b4, a4b6 a4b1, a4b3 a4b2 a3b6 a3b3

a1b6 a1b1, a1b2, a2b6, a3b6 a1b3 a2b1, a2b5, a2b2, a2b4, a2b3, a3b1, a3b2, a3b3
a1b5 a1b4 a4b6 a4b1, a4b5 a4b2, a4b4 a4b3 a3b5 a3b4

a2b1 a2b2, a2b3, a1b1, a4b1 a2b4 a1b2, a1b6, a1b3, a1b5, a1b4, a4b2, a4b3, a4b4
a2b6 a2b5 a3b1 a3b2, a3b6 a3b3, a3b5 a3b4 a4b6 a4b5

a2b2 a2b1, a2b4, a1b2, a4b2 a2b5 a1b1, a1b3, a1b4, a1b6, a1b5, a4b1, a4b4, a4b5
a2b3 a2b6 a3b2 a3b1, a3b3 a3b4, a3b6 a3b5 a4b3 a4b6

a2b3 a2b2, a2b1, a1b3, a4b3 a2b6 a1b2, a1b4, a1b1, a1b5, a1b6, a4b2, a4b1, a4b6
a2b4 a2b5 a3b3 a3b2, a3b4 a3b1, a3b5 a3b6 a4b4 a4b5

a2b4 a2b3, a2b2, a1b4, a4b4 a2b1 a1b3, a1b5, a1b2, a1b6, a1b1, a4b3, a4b2, a4b1
a2b5 a2b6 a3b4 a3b3, a3b5 a3b2, a3b6 a3b1 a4b5 a4b6

a2b5 a2b4, a2b1, a1b5, a4b5 a2b2 a1b4, a1b6, a1b1, a1b3, a1b2, a4b4, a4b1, a4b2
a2b6 a2b3 a3b5 a3b4, a3b6 a3b1, a3b3 a3b2 a4b6 a4b3

a2b6 a2b1, a2b2, a1b6, a4b6 a2b3 a1b1, a1b5, a1b2, a1b4, a1b3, a4b1, a4b2, a4b3
a2b5 a2b4 a3b6 a3b1, a3b5 a3b2, a3b4 a3b3 a4b5 a4b4

a3b1 a3b2, a3b3, a2b1, a1b1 a3b4 a2b2, a2b6, a2b3, a2b5, a2b4, a1b2, a1b3, a1b4
a3b6 a3b5 a4b1 a4b2, a4b6 a4b3, a4b5 a4b4 a1b6 a1b5

a3b2 a3b1, a3b4, a2b2, a1b2 a3b5 a2b1, a2b3, a2b4, a2b6, a2b5, a1b1, a1b4, a1b5
a3b3 a3b6 a4b2 a4b1, a4b3 a4b4, a4b6 a4b5 a1b3 a1b6

a3b3 a3b2, a3b1, a2b3, a1b3 a3b6 a2b2, a2b4, a2b1, a2b5, a2b6, a1b2, a1b1, a1b6
a3b4 a3b5 a4b3 a4b2, a4b4 a4b1, a4b5 a4b6 a1b4 a1b5

a3b4 a3b3, a3b2, a2b4, a1b4 a3b1 a2b3, a2b5, a2b2, a2b6, a2b1, a1b3, a1b2, a1b1
a3b5 a3b6 a4b4 a4b3, a4b5 a4b2, a4b6 a4b1 a1b5 a1b6

a3b5 a3b4, a3b1, a2b5, a1b5 a3b2 a2b4, a2b6, a2b1, a2b3, a2b2, a1b4, a1b1, a1b2
a3b6 a3b3 a4b5 a4b4, a4b6 a4b1, a4b3 a4b2 a1b6 a1b3

a3b6 a3b1, a3b2, a2b6, a1b6 a3b3 a2b1, a2b5, a2b2, a2b4, a2b3, a1b1, a1b2, a1b3
a3b5 a3b4 a4b6 a4b1, a4b5 a4b2, a4b4 a4b3 a1b5 a1b4

a4b1 a4b2, a4b3, a1b1, a2b1 a4b4 a1b2, a1b6, a1b3, a1b5, a1b4, a2b2, a2b3, a2b4
a4b6 a4b5 a3b1 a3b2, a3b6 a3b3, a3b5 a3b4 a2b6 a2b5

a4b2 a4b1, a4b4, a1b2, a2b2 a4b5 a1b1, a1b3, a1b4, a1b6, a1b5, a2b1, a2b4, a2b5
a4b3 a4b6 a3b2 a3b1, a3b3 a3b4, a3b6 a3b5 a2b3 a2b6

a4b3 a4b2, a4b1, a1b3, a2b3 a4b6 a1b2, a1b4, a1b1, a1b5, a1b6, a2b2, a2b1, a2b6
a4b4 a4b5 a3b3 a3b2, a3b4 a3b1, a3b5 a3b6 a2b4 a2b5

a4b4 a4b3, a4b2, a1b4, a2b4 a4b1 a1b3, a1b5, a1b2, a1b6, a1b1, a2b3, a2b2, a2b1
a4b5 a4b6 a3b4 a3b3, a3b5 a3b2, a3b6 a3b1 a2b5 a2b6

a4b5 a4b4, a4b1, a1b5, a2b5 a4b2 a1b4, a1b6, a1b1, a1b3, a1b2, a2b4, a2b1, a2b2
a4b6 a4b3 a3b5 a3b4, a3b6 a3b1, a3b3 a3b2 a2b6 a2b3

Continued on next page
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Table continued from previous page

Vertex 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

associate associate associate associate associate associate associate associate associate associate associate
a4b6 a4b1, a4b2, a1b6, a2b6 a4b3 a1b1, a1b5, a1b2, a1b4, a1b3, a2b1, a2b2, a2b3

a4b5 a4b4 a3b6 a3b1, a3b5 a3b2, a3b4 a3b3 a2b5 a2b4

Parameters of first kind are v � 24, b � 48, r � 6, k � 3, λ1 � 2, λ2 � 1, λ3 � 2, λ4 � 2, λi � 0
for 1 B i B 11 and parameters of second kind are n1 � 2, n2 � 2, n3 � 2, n4 � 1, n5 � 1, n6 � 4,
n7 � 4, n8 � 2, n9 � 2, n10 � 2 and n11 � 1 along with matrices P1 to P11, each of order 11 � 11
which can be obtained from Table 2 as explained in Definition 2.1.

Next we move on to another important standard product.

3.2. Direct product of hypergraphs. Let us start with an illustration which will give more clarity
of the concept.

Illustration: Consider cycles C3 and C4 given in Figures 3 and 4, respectively. Consider hy-
pergraph H , where H �H1�C3� �H1�C4�. Then from Definition 2.7 [13],
V �H� � �a1b1, a1b2, a1b3, a1b4, a2b1, a2b2, a2b3, a2b4, a3b1, a3b2, a3b3, a3b4� and
E�H� � ��a1b1, a2b2, a3b3�,�a1b1, a2b3, a3b2�,�a1b2, a2b1, a3b3�,�a1b2, a2b3, a3b1�,
�a1b3, a2b1, a3b2�,�a1b3, a2b2, a3b1�,�a1b2, a2b3, a3b4�,�a1b2, a2b4, a3b3�,�a1b3, a2b2, a3b4�,
�a1b3, a2b4, a3b2�,�a1b4, a2b2, a3b3�,�a1b4, a2b3, a3b2�,�a1b1, a2b3, a3b4�,�a1b1, a2b4, a3b3�,
�a1b3, a2b1, a3b4�,�a1b3, a2b4, a3b1�,�a1b4, a2b1, a3b3�,�a1b4, a2b3, a3b1�,�a1b1, a2b2, a3b4�,
�a1b1, a2b4, a3b2�,�a1b2, a2b1, a3b4�,�a1b2, a2b4, a3b1�,�a1b4, a2b1, a3b2�,�a1b4, a2b2, a3b1��.

Now, let us define association scheme for the design arising from direct product of hypergraphs
H1 of two cycles Cm and Cn.
The number of blocks containing a pair of vertices whose
�i� first coordinates are at distance 1 in Cm and second coordinates are at distance 1 in Cn is λ1.
�ii� first coordinates are at distance 1 in Cm and second coordinates are at distance 2 in Cn is λ2.
�iii� first coordinates are at distance 2 in Cm and second coordiantes are at distance 1 in Cn is λ3.
�iv� first coordinates are at distance 2 in Cm and second coordinates are at distance 2 in Cn is λ4.
�v� atleast one of the coordinates are at distance greater than or equal to 3 in their respective
graphs or one of the coodinates are same is λ�5 .

Using the above association scheme, we obtain following result.

Theorem 3.2. The collection of all hyperedges of direct product, H � H1�Cm� � H1�Cn�, of
hypergraphs H1 of two cycles Cm and Cn forms a partially balanced incomplete block (PBIB)-
design with 5-class association scheme having parameters �v, b, r, k, λi� for 1 B i B 5 as follows

(i) �9,6,2,3,1,0,0,0,0� when m � 3 and n � 3.
(ii) �12,24,6,3,2,2,0,0,0� when m � 3 and n � 4.
(iii) �3n,6n,6,3,2,1,0,0,0� when m � 3 and n C 5.
(iv) �12,24,6,3,2,0,2,0,0� when m � 4 and n � 3.
(v) �3m,6m,6,3,2,0,1,0,0� when m C 5 and n � 3.
(vi) �16,96,18,3,4,4,4,4,0� when m � 4 and n � 4.
(vii) �4n,24n,18,3,4,2,4,2,0� when m � 4 and n C 5.
(viii) �4m,24m,18,3,4,4,2,2,0� when m C 5 and n � 4.
(ix) �mn,6mn,18,3,4,2,2,1,0� when m C 5 and n C 5.

Proof. Let H �H1�Cm��H1�Cn� be the hypergraph obtained by taking direct product of hyper-
graphs H1 of two cycles Cm and Cn. Clearly, there are mn number of vertices in H .

Now, we count the number of hyperedges, SE�H�S, in hypergraph H . Vertices of H are
the set of 2-tuples where first element belongs to V �H1�Cm�� and second element belongs to
V �H1�Cn��. Vertices present in each hyperedge of H is such that the set of first elements form a
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hyperedge in H1�Cm� and the set of second elements form a hyperedge in H1�Cn�. Using com-
binatorics, we can easily prove that six distinct hyperedges in H can be obtained corresponding to
a pair of hyperedges each in H1�Cm� and H1�Cn�. There are SE�H1�Cm��S and SE�H1�Cn��S
number of hyperedges in H1�Cm� and H1�Cn�, respectively. Hence, total number of distinct
hyperedges SE�H�S in H is SE�H1�Cm��S � SE�H1�Cn��S � 6.
For m C 4 and n C 4, SE�H�S � 6mn.
When m � 3 and n C 4, SE�H�S � 6n and for m C 4 and n � 3, SE�H�S � 6m.
When m � 3 and n � 3, SE�H�S � 6.

Considering hyperedges of H to be blocks of a design, we now find pararmeters of this design.
H being a 3-uniform hypergraph from Remark 2.1, we get the block size k to be 3. Next, we find
repetition number of the design. There are exactly two hyperedges in H containing a particular
vertex, say, aibj (where 1 B i Bm and 1 B j B n) corresponding to a particular pair of hyperedges
in E�H1�Cm�� and E�H1�Cn��, respectively. For example, suppose �a1, a2, a3� > E�H1�Cm��
and �b1, b2, b3� > E�H1�Cn�� be any two hyperedges, then we get exactly two hyperedges con-
taining the vertex a1b1 in H of the form �a1b1, a2b2, a3b3� and �a1b1, a2b3, a3b2�. There are
atmost three hyperedges in H1�Cm� containing vertex ai and similarly atmost three hyperedges
in H1�Cn� containing vertex bi. Thus, there are atmost 18 hyperedges in H containing the vertex
aibj where 1 B i Bm and 1 B j B n. Equality is attained when both m and n are greater than 3. If
m � 3 and n C 4 (or m C 4 and n � 3), repetition number of the design becomes 6 and when both
m and n are equal to 3, repetition number reduces to 2.

To obtain the values of λi, for 1 B i B 5, we consider different cases. Let ai > V �H1�Cm�� and
bi > V �H1�Cn��. λ1 gives the number of blocks in H containing a pair of vertices a1b1 and a2b2
where vertices a1 and a2 are at distance 1 in Cm and vertices b1 and b2 are at distance 1 in Cn. If
b1 and b3 are vertices at distance 2 in Cn, then the number of blocks containing the pair of vertices
a1b1 and a2b3 is λ2. Similarly, if a1 and a3 are vertices at distance 2 in Cm, then number of blocks
containing the pair of vertices a1b1 and a3b2 is λ3. λ4 gives the number of blocks containing a
pair of vertices a1b1 and a3b3 where vertices a1 and a3 are at distance 2 in Cm and vertices b1 and
b3 are at distance 2 in Cn. Number of blocks containing a pair of vertices which is different from
those mentioned above gives the value of λ�5 . Clearly, λ�5 is always 0.

Case i) : m � 3 and n � 3.
Since H1�C3� has a unique hyperedge and all vertices are mutually adjacent to each other in C3

we get the value of λ1 as 1. Remaining all λi, 2 B i B 5 goes to zero. Thus, design parameters are
(9, 6, 2, 3, 1, 0, 0, 0, 0).

Case ii) : m � 3 and n � 4.
There are two hyperedges each in H1�C4� containing a pair of vertices at distance 1 in C4 and at
distance 2 in C4. Thus, we get the value of λ1 and λ2 as 2. C3 being a complete graph, λ3 and λ4

becomes 0. Thus, design parameters are (12, 24, 6, 3, 2, 2, 0, 0, 0).
Case iii) : m � 3 and n C 5.

There are two and one hyperedges each in H1�Cn� containing a pair of vertices at distance 1
and 2 respectively in Cn. Thus, we get the values of λ1 and λ2 as 2 and 1 respectively. Hence,
parameters of design obtained are �3n,6n,6,3,2,1,0,0,0�.

Case iv) : m � 4 and n � 3.
The parameters of design obtained in this case is similar to design parameters obtained in Case ii�
where only the values of λ2 and λ3 are interchanged as m and n values are interchanged. Thus,
design parameters are (12, 24, 6, 3, 2, 0, 2, 0, 0).

Case v) : m C 5 and n � 3.
Here, only the values of λ2 and λ3 are interchanged from that in Case iii�. Remaining all param-
eters are same. Hence the parameters of design are �3m,6m,6,3,2,0,1,0,0�.
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Case vi) : m � 4 and n � 4.
There are two hyperedges each in H containing a pair of vertices which are at distance 1 as well as
at distance 2 in C4. Hence, we get the values of λi for 1 B i B 4 as 4. Therefore, design parameters
are (16, 96, 18, 3, 4, 4, 4, 4, 0).

Case vii) : m � 4 and n C 5.
Clearly, there are 2 hyperedges in H1�Cn� containing a pair of vertices at distance 1 in Cn

and a single hyperedge containing a pair of vertices at distance 2 in Cn. Hence, λ1 is 4 and
λ2 is 2. As m � 4, we get the value of λ3 as 4 and λ4 as 2. Thus, design parameters are
�4n,24n,18,3,4,2,4,2,0�.

Case viii) : m C 5 and n � 4.
The parameters of design obtained in this case is similar to that of Case vii� except that the values
of λ2 and λ3 gets interchanged as m and n values are interchanged. Thus, we get the parameters
as �4m,24m,18,3,4,4,2,2,0�.

Case ix) : m C 5 and n C 5.
This is the general case for direct product of hypergraphsH1 of cycles of order greater than 4. The
design parameters are �mn,6mn,18,3,4,2,2,1,0�.

Parameters of second kind differ depending on diameters of Cm and Cn as explained in Remark
3.1. Each vertex will have �
m~2� � 
n~2�� � �
m~2� � 
n~2�� number of associates. For explicit
values of m and n, we can get parameters of second kind in similar way as illustrated in Remark
3.1. □

Next subsection deals with yet another important graph product, the strong product, where
edges are union of edges obtained from cartesian product and direct product.

3.3. Strong product of hypergraphs. We begin this subsection with an illustration showing
strong product of hypergraphs.
Illustration: Consider cycles C3 and C4 given in Figures 3 and 4, respectively. From Definition
2.8 of strong product, we see that hyperedges of hypergraph H , where H �H1�C3� u H1�C4� is
union of hyperedges present in hypergraphs obtained by taking cartesian product and direct prod-
uct of H1�C3� and H1�C4�. Therefore,
V �H� � �a1b1, a1b2, a1b3, a1b4, a2b1, a2b2, a2b3, a2b4, a3b1, a3b2, a3b3, a3b4� and
E�H� � ��a1b1, a1b2, a1b3�,�a1b2, a1b3, a1b4�,�a1b1, a1b3, a1b4�,�a1b1, a1b2, a1b4�,
�a2b1, a2b2, a2b3�,�a2b2, a2b3, a2b4�,�a2b1, a2b3, a2b4�,�a2b1, a2b2, a2b4�,�a3b1, a3b2, a3b3�,
�a3b2, a3b3, a3b4�,�a3b1, a3b3, a3b4�,�a3b1, a3b2, a3b4�,�a1b1, a2b1, a3b1�,�a1b2, a2b2, a3b2�,
�a1b3, a2b3, a3b3�,�a1b4, a2b4, a3b4�,�a1b1, a2b2, a3b3�,�a1b1, a2b3, a3b2�,�a1b2, a2b1, a3b3�,
�a1b2, a2b3, a3b1�,�a1b3, a2b1, a3b2�,�a1b3, a2b2, a3b1�,�a1b2, a2b3, a3b4�,�a1b2, a2b4, a3b3�,
�a1b3, a2b2, a3b4�,�a1b3, a2b4, a3b2�,�a1b4, a2b2, a3b3�,�a1b4, a2b3, a3b2�,�a1b1, a2b3, a3b4�,
�a1b1, a2b4, a3b3�,�a1b3, a2b1, a3b4�,�a1b3, a2b4, a3b1�,�a1b4, a2b1, a3b3�,�a1b4, a2b3, a3b1�,
�a1b1, a2b2, a3b4�,�a1b1, a2b4, a3b2�,�a1b2, a2b1, a3b4�,�a1b2, a2b4, a3b1�,�a1b4, a2b1, a3b2�,
�a1b4, a2b2, a3b1��.

Let us define the association scheme for the design arising from strong product of hypergraphs
H1 of two cycles Cm and Cn. Since, the edges in strong product is union of edges of cartesian
product and direct product which are disjoint, we get a 10 class association scheme for the design
arising from strong product of hypergraphs.
The number of blocks containing a pair of vertices whose
�i� first coordinates are same and second coordinates are at distance 1 in Cn is λ1.
�ii� first coordinates are same and second coordinates are at distance 2 in Cn is λ2.
�iii� first coordinates are at distance 1 in Cm and second coordiantes are same is λ3.
�iv� first coordinates are at distance 2 in Cm and second coordinates are same is λ4.
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�v� atleast one of the coordinates are at distance greater than or equal to 3 in their respective
graphs and the other coordinates are same is λ�5 .
�vi� first coordinates are at distance 1 in Cm and second coordinates are at distance 1 in Cn is λ6.
�vii� first coordinates are at distance 1 in Cm and second coordinates are at distance 2 in Cn is λ7.
�viii� first coordinates are at distance 2 in Cm and second coordiantes at distance 1 in Cn is λ8.
�ix� first coordinates are at distance 2 in Cm and second coordinates are at distance 2 in Cn is λ9.
�x� atleast one of the coordinates are at distance greater than or equal to 3 in their respective
graphs is λ�10.

The following result is obtained using the above association scheme.

Theorem 3.3. The collection of all hyperedges of strong product, H � H1�Cm� u H1�Cn�, of
hypergraphs H1 of two cycles Cm and Cn forms a partially balanced incomplete block (PBIB)-
design with 10-class association scheme having parameters �v, b, r, k, λi� for 1 B i B 10 as fol-
lows.

(i) �9,12,4,3,1,0,1,0,0,1,0,0,0,0� when m � 3 and n � 3.
(ii) �12,40,10,3,2,2,1,0,0,2,2,0,0,0� when m � 3 and n � 4.
(iii) �3n,10n,10,3,2,1,1,0,0,2,1,0,0,0� when m � 3 and n C 5.
(iv) �12,40,10,3,1,0,2,2,0,2,0,2,0,0� when m � 4 and n � 3.
(v) �3m,10m,10,3,1,0,2,1,0,2,0,1,0,0� when m C 5 and n � 3.
(vi) �16,128,24,3,2,2,2,2,0,4,4,4,4,0� when m � 4 and n � 4.
(vii) �4n,32n,24,3,2,1,2,2,0,4,2,4,2,0� when m � 4 and n C 5.
(viii) �4m,32m,24,3,2,2,2,1,0,4,4,2,2,0� when m C 5 and n � 4.
(ix) �mn,8mn,24,3,2,1,2,1,0,4,2,2,1,0� when m C 5 and n C 5.

Proof. Let H � H1�Cm� u H1�Cn�. Order of hypergraph H is mn. From Definition 2.8 [13],
E�H� � E�H1�Cm�2H1�Cn��8E�H1�Cm��H1�Cn��. That is, edge set of hypergraph H can
be partitioned into two subsets E1 and E2 where E1 contains cartesian product hyperedges and
E2 contains direct product hyperedges. These two sets , E1 and E2 are clearly disjoint. Therefore,
SE�H�S � SE1S � SE2S.
SE�H�S � SE�H1�Cm�2H1�Cn��S � SE�H1�Cm� �H1�Cn��S.
For m C 4 and n C 4, SE�H�S � 8mn.
When m � 3 and n C 4, SE�H� � 10n annd for m C 4 and n � 3, SE�H�S � 10m.
When n � 3 and m � 3, SE�H�S � 12.

We now find parameters of the design taking hyperedges of H as blocks. Since H is 3-uniform
hypergraph from Remark 2.1, block size k is 3. As edge sets E1 and E2 are disjoint, repetition
number of this design is sum of the repetition numbers of the designs obtained in Theorem 3.1 and
Theorem 3.2. When both m and n are greater than 3, repetition number is 24. For m � 3 and n C 4
(or m C 4 and n � 3) repetition number becomes 10 and when both m and n are 3, it reduces to 4.

Since, edge sets E1 and E2 are disjoint, we get 10-class association scheme for this design, that
is, we get 10 λi’s. λ1�λ

�

5 are obtained from cartesian product edges of hypergraph H as explained
in proof of Theorem 3.1 and λ6 �λ�10 are obtained from direct product edges of H as explained in
proof of Theorem 3.2. Thus nine different cases arise depending on the values of m nad n where
design parameters follow from Theorem 3.1 and Theorem 3.2.

Each vertex will have �
m~2��
n~2����
m~2��
n~2�� number of assocciates in H . Therefore,
parameters of second kind differ depending on diameters of Cm and Cn as explained in Remark
3.1. For explicit values of m and n, parameters of second kind can be obtained in similar way as
illustrated in Remark 3.1. □

Last subsection deals with another important product - the lexicographic product.
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3.4. Lexicographic product of hypergraphs. This is one of the four standard products that dif-
fers from the other three in being non-commutative. Let us give an illustration to understand
lexicographic product in detail.
Illustration: Consider cycles C3 and C4 given in Figures 3 and 4, respectively. Let H �H1�C3� X
H1�C4� be a hypergraph. Then from Definition 2.9 [13],
V �H� � �a1b1, a1b2, a1b3, a1b4, a2b1, a2b2, a2b3, a2b4, a3b1, a3b2, a3b3, a3b4� and
E�H� � ��a1b1, a2b1, a3b1�,�a1b1, a2b1, a3b2�,�a1b1, a2b1, a3b3�,�a1b1, a2b1, a3b4�,
�a1b1, a2b2, a3b1�,�a1b1, a2b2, a3b2�,�a1b1, a2b2, a3b3�,�a1b1, a2b2, a3b4�,�a1b1, a2b3, a3b1�,
�a1b1, a2b3, a3b2�,�a1b1, a2b3, a3b3�,�a1b1, a2b3, a3b4�,�a1b1, a2b4, a3b1�,�a1b1, a2b4, a3b2�,
�a1b1, a2b4, a3b3�,�a1b1, a2b4, a3b4�,�a1b2, a2b1, a3b1�,�a1b2, a2b1, a3b2�,�a1b2, a2b1, a3b3�,
�a1b2, a2b1, a3b4�,�a1b2, a2b2, a3b1�,�a1b2, a2b2, a3b2�,�a1b2, a2b2, a3b3�,�a1b2, a2b2, a3b4�,
�a1b2, a2b3, a3b1�,�a1b2, a2b3, a3b2�,�a1b2, a2b3, a3b3�,�a1b2, a2b3, a3b4�,�a1b2, a2b4, a3b1�,
�a1b2, a2b4, a3b2�,�a1b2, a2b4, a3b3�,�a1b2, a2b4, a3b4�,�a1b3, a2b1, a3b1�,�a1b3, a2b1, a3b2�,
�a1b3, a2b1, a3b3�,�a1b3, a2b1, a3b4�,�a1b3, a2b2, a3b1�,�a1b3, a2b2, a3b2�,�a1b3, a2b2, a3b3�,
�a1b3, a2b2, a3b4�,�a1b3, a2b3, a3b1�,�a1b3, a2b3, a3b2�,�a1b3, a2b3, a3b3�,�a1b3, a2b3, a3b4�,
�a1b3, a2b4, a3b1�,�a1b3, a2b4, a3b2�,�a1b3, a2b4, a3b3�,�a1b3, a2b4, a3b4�,�a1b4, a2b1, a3b1�,
�a1b4, a2b1, a3b2�,�a1b4, a2b1, a3b3�,�a1b4, a2b1, a3b4�,�a1b4, a2b2, a3b1�,�a1b4, a2b2, a3b2�,
�a1b4, a2b2, a3b3�,�a1b4, a2b2, a3b4�,�a1b4, a2b3, a3b1�,�a1b4, a2b3, a3b2�,�a1b4, a2b3, a3b3�,
�a1b4, a2b3, a3b4�,�a1b4, a2b4, a3b1�,�a1b4, a2b4, a3b2�,�a1b4, a2b4, a3b3�,�a1b4, a2b4, a3b4�,
�a1b1, a1b2, a1b3�,�a1b2, a1b3, a1b4�,�a1b1, a1b3, a1, b4�,�a1b1, a1b2, a1b4�,�a2b1, a2b2, a2b3�,
�a2b2, a2b3, a2b4�,�a2b1, a2b3, a2, b4�,�a2b1, a2b2, a2b4�,�a3b1, a3b2, a3b3�,�a3b2, a3b3, a3b4�,
�a3b1, a3b3, a3b4�,�a3b1, a3b2, a3b4��.

Now we give association scheme for the design arising from lexicographic product of hyper-
graphs H1 of two cycles Cm and Cn.
The number of blocks containing a pair of vertices whose
�i� first coordinates are at distance 1 in Cm and no restrictions on the second coordinates is λ1.
�ii� first coordinates are at distance 2 in Cm and no restrictions on the second coordinates is λ2.
�iii� first coordinates are same and second coordinates are at distance 1 in Cn is λ3.
�iv� first coordinates are same and second coordinates are at distance 2 in Cn is λ4.
�v� atleast one of the coordinates are at distance greater than 2 in their respective graphs is λ�5 .

Based on the above association scheme, following result is obtained.

Theorem 3.4. The collection of all hyperedges of lexicographic product, H �H1�Cm�XH1�Cn�,
of hypergraphsH1 of two cycles Cm and Cn forms a partially balanced incomplete block (PBIB)-
design with 5-class association scheme having parameters �v, b, r, k, λi� for 1 B i B 5 as follows.

(i) �9,30,10,3,3,0,1,0,0� when m � 3 and n � 3.
(ii) �12,76,19,3,4,0,2,2,0� when m � 3 and n � 4.
(iii) �3n,n3

� 3n,n2
� 3,3, n,0,2,1,0� when m � 3 and n C 5.

(iv) �12,112,28,3,6,6,1,0,0� when m � 4 and n � 3.
(v) �3m,28m,28,3,6,3,1,0,0� when m C 5 and n � 3.
(vi) �16,272,51,3,8,8,2,2,0� when m � 4 and n � 4.
(vii) �4n,4n3

� 4n,3n2
� 3,3,2n,2n,2,1,0� when m � 4 and n C 5.

(viii) �4m,68m,51,3,8,4,2,2,0� when m C 5 and n � 4.
(ix) �mn,mn3

�mn,3n2
� 3,3,2n,n,2,1,0� when m C 5 and n C 5.

Proof. Let H �H1�Cm� XH1�Cn�.
In order to count the number of hyperedges in hypergraph H , we partition the set of hyperedges

E�H� into two subsets E1 and E2 where
E1 � ��a1b1, a2b2, a3b3� S �a1, a2, a3� > E�H1�Cm�� and �b1, b2, b3� > V �H1�Cn��� and
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E2 � ��ab1, ab2, ab3� S a > V �H1�Cm�� and �b1, b2, b3� > E�H1�Cn���.
For a particular hyperedge �a1, a2, a3� > E�H1�Cm��, we can consider any combinations of
bi > V �H1�Cn�� to form a hyperedge of H which fall in set E1. Since SV �H1�Cn��S is n, we
get a total of n3 hyperedges in H with a fixed hyperedge �a1, a2, a3� > E�H1�Cm��. Since there
are SE�H1�Cm��S number of hyperedges in H1�Cm�, we get SE1S � n3

� SE�H1�Cm��S. Each
hyperedge in E2 is such that first coordinates of vertices are same and set of second coordinates
form a hyperedge in H1�Cn�. Hence, there are m � SE�H1�Cn��S number of hyperedges in E2.
Therefore, SE�H�S � SE1S � SE2S, that is, SE�H�S � �n3

� SE�H1�Cm��S� � �m � SE�H1�Cn��S�.

For m C 4 and n C 4, SE�H�S � n3m �mn.
When m � 3 and n C 4, SE�H�S � n3

� 3n and for m C 4 and n � 3, SE�H�S � 28m.
When m � 3 and n � 3, SE�H�S � 30.

Taking each hyperedge of H to be a block of a design, we now find parameters of the design
obtained. From Remark 2.1, it is clear that block size k is 3 as H is 3-uniform. Next, we find
repetition number of the design. With a fixed hyperedge �a1, a2, a3� > E�H1Cm� and any bi >
V �H1�Cn��, there are n2 number of hyperedges in H containing the vertex a1b1. There are atmost
three hyperedges in H1�Cm� containing the vertex a1. Hence, we get atmost 3n2 hyperedges
in E�H� containing the vertex a1b1 and they lie in set E1. Similarly, there are atmost three
hyperedges in E�H1�Cn�� containing vertex b1. Hence, we get atmost 3 hyperedges containing
a1b1 in E2. Hence repetition number is atmost 3n2

� 3. When m � 3 and n C 4, repetition number
is n2

�3 and when m C 4 and n � 3, repetition number becomes 28 as it depends only on the value
of n. When both m and n are equal to 3, repetition number reduces to 10.

To obtain the values of λi, for 1 B i B 5, we consider different cases. Let ai > V �H1�Cm��
and bi > V �H1�Cn��. λ1 gives the number of blocks in H containing a pair of vertices a1bi and
a2bj where a1 and a2 are vertices at distance 1 in Cm and bi and bj are random vertices of Cn.
Clearly, n times the number of hyperedges containing a pair of vertices at distance 1 in Cm gives
the value of λ1. If vertices a1 and a3 are at distance 2 in Cm and bi and bj are random vertices
of Cn, then the number of blocks with vertices a1bi and a3bj gives the value of λ2. Similar to the
above case, n times the number of hyperedges containing a pair of vertices at distance 2 in Cm

gives the value of λ2. Number of blocks containing the pairs of vertices of the form a1b1 and a1b2
where a1 > V �H1�Cm�� and vertices b1 and b2 are at distance 1 in Cn gives the value of λ3. λ4

is the number of blocks containing a pair of vertices a1b1 and a1b3 where a > V �H1�Cm�� and
vertices b1 and b3 are at distance 2 in Cn. Number of blocks containing a pair of vertices, say,
�apbi, aqbj� (or �aibk, aibl�) where ap and aq are vertices at distance greater than 2 in Cm and bi
and bj are random vertices in Cn (or bk and bl are vertices at distance greater than 2 in Cn) is λ5.
It is obvious that λ�5 is 0 as there is no hyperedge in hypergraph H1 of cycles containing a pair of
vertices at distance greater than 2.

Case i) : When m � 3 and n � 3.
As H1�C3� has a single hyperedge and all vertices are mutually adjacent to each other in C3, we
get design parameters as (9, 30, 10, 3, 3, 0, 1, 0, 0).

Case ii) : m � 3 and n � 4.
There are two hyperedges each in H1�C4� containing a pair of vertices at distance 1 as well as 2
in C4. Hence, we get the value of λ3 and λ4 as 2. Therefore, design parameters are (12, 76, 19, 3,
4, 0, 2, 2, 0).

Case iii) : m � 3 and n C 5.
There are two hyperedges in hypergraph H1 of cycle Cn containing a pair of vertices at distance
1 in Cn and a single hyperedge containing a pair of vertices at distance 2 in Cn. Hence the
values of λ3 and λ4 are 2 and 1 respectively. Thus, the design parameters are �3n,n3

� 3n,n2
�

3,3, n,0,2,1,0�.
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Case iv) : m � 4 and n � 3.
Since m is 4, values of λ1 and λ2 are 6 and 6, respectively, and hence, the design parameters are
(12, 112, 28, 3, 6, 6, 1, 0, 0).

Case v) : m C 5 and n � 3.
As there are two hyperedges in hypergraphH1 of cycle Cm containing a pair of vertices at distance
1 in Cm and a single hyperedge containing a pair of vertices at distance 2 in Cm, the values of λ1

and λ2 are 6 and 3 respectively. Hence, the parameters of design are �3m,28m,28,3,6,3,1,0,0�.
Case vi) : m � 4 and n � 4.

Since n is 4, we get 2 as the values of both λ3 and λ4. Therefore, parameters of the design are (16,
272, 51, 3, 8, 8, 2, 2, 0).

Case vii) : m � 4 and n C 5.
In this case, we get the values of λ1 and λ2 as 2n as m is 4. Thus, design parameters are �4n,4n3

�

4n,3n2
� 3,3,2n,2n,2,1,0�.

Case viii) : m C 5 and n � 4,
Since m C 5, λ1 is 8 and λ2 is 4. Parameters of the design obtained is �4m,68m,51,3,8,4,2,2,0�.

Case ix) : m C 5 and n C 5.
This is the general case for lexicographic product of hypergraphs H1 of cycles of order greater
than 4. Therefore, the design parameters are �mn,mn3

�mn,3n2
� 3,3,2n,n,2,1,0�.

In the association scheme given above, λ�5 includes the number of blocks containing a pair of
vertices where first coordinates are at distance greater than 2 upto 
m~2� in Cm and no restrictions
on second coordinates, or pair of vertices whose first coordinates are same and second coordinates
are at distance greater than 2 upto 
n~2� in Cn. Therefore, parameters of second kind differ
depending on diameters of Cm and Cn as explained in Remark 3.1 and hence for explicit values
of m and n, we can get parameters of second kind in a similar manner as illustrated in Remark
3.1. □

Here, we observe that the number of hyperedges in hypergraph H �H1�Cm�XH1�Cn� depends
on the cube of n value. Also the degree of each vertex in H depends only on the value of n. Thus,
we can conclude that hypergraphs obtained from lexicographic product of hypergraphs of two
cycles are not isomorphic, that is H1�Cm� XH1�Cn� is not isomorphic to H1�Cn� XH1�Cm�.

3.5. Application. We now give one of the applications of designs arising from cartesian product
of graphs. Suppose vertices of graph A represent dominant traits and vertices of graph B represent
recessive traits of a plant, then their cartesian product represents all possible traits that can be
observed in the offsprings based on Mendelian genetics. Taking these traits as experimental units,
incomplete block designs can be constructed for crop sequence experiments for the next generation
offsprings. By applying the above results and Algorithm 1, we readily get the applications in
agricultural sciences. Similar applications can be envisaged for different products considered
above, wherever cross property considerations are involved in multi element sets, for example
groups of people from different backgrounds, ethnicity, culture, social network groups, etc. in
demography studies.

4. CONCLUSIONS

Hypergraph theory finds a lot of applications in real world problems such as to model gene inter-
actions, computer networks, visual classification and social media. Products of hypergraphs find
their applications in chemistry, computer science and networking. Applications of graph products
naturally extend to hypergraph products as well. In this paper, we have considered hypergraph
H1 of a cycle which is obtained by taking closed neighbourhood of each vertex of the cycle as
hyperedges. We have obtained fundamental product hypergraphs viz. cartesian product, direct
product, strong product and lexicographic product of cycles using closed neighbourhoods. We
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have defined association scheme for each product explicitly and obtained PBIB-designs arising
from these hypergraph products, where hyperedges are taken as blocks. We have also given an al-
gorithm to construct cartesian product hypergraph along with the associates of each vertex which
helps in determining the design parameters. Just by tweaking steps in this alogorithm, one can
easily construct algorithmically product hypergraphs, association schemes and repective PBIB-
designs. To maintain uniform block sizes for designs, we have used products of hypergraphs of
cycles. This ensuresH1�Cn� to be 3-uniform as cycles are 2-regular. As some of the designs con-
structed in this paper have less replication number, they can be considered to be used in various
experiments, because of their appropriateness in situations where experiments are constrained of
resources. Such designs have high efficiency and can be beneficial in varietal trials in the field of
agriculture where a large number of cultivars are being tested. Hence our results have paramount
importance in real world applications with strong theoretical background. Further research can be
carried out in obtaining new design parameters in similar way from other hypergraph constructions
and their respective products over different classes of graphs.
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