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ON FIBONACCI CORDIAL LABELING OF SOME PLANAR GRAPHS

S. MITRA1∗, A. PRITCHARD1, S. BHOUMIK2, §

Abstract. An injective function f from vertex set V (G) of a graph G to the set
{F0, F1, F2, · · · , Fn}, where Fi is the ith Fibonacci number (i = 0, 1, · · · , n), is said to be
Fibonacci cordial labeling if the induced function f∗ from the edge set E(G) the set {0, 1}
defined by f∗(uv) = (f(u) + f(v)) (mod 2) satisfies the condition |ef (0) − ef (1)| ≤ 1,
where ef (0) is the number of edges with label 0 and ef (1) is the number of edges with
label 1. A graph that admits Fibonacci cordial labeling is called a Fibonacci cordial
graph. In this paper we discuss Fibonacci cordial labeling of the families of planar graph
(Comb graphs, Coconut trees, Jellyfish Graphs, H−graph and W−graph).

Keywords: Fibonacci Cordial labelling, Comb graph, Jellyfish, coconut tree, H−graph,
W−graph.

AMS Subject Classification: 05C78

1. Introduction

Graph labeling focuses on the assignment of values to the vertices V (G) and edges E(G)
of a graph G. In this paper we will consider graphs that are simple, finite, connected and
undirected. In 1987, Cahit introduced Cordial Labeling as a variation of both graceful
and harmonious labeling[1]. Till now many researchers worked on the various type of
cordial labelings. A dynamic survey of graph labeling is published and updated every year
by Gallian [2]. In 2013, Sridevi et. al [6] proved that Path, Cycle are Fibonacci divisor
cordial graph. Fibonacci cordial labeling was introduced by Rokhad and Ghodasara [4].
This method of graph labeling assigns the vertices numbers from the Fibonacci sequence.

Definition 1.1. A function f : V (G) → {0, 1} is said to be Cordial Labeling if the induced
function f∗ : E(G) → {0, 1} defined by

f∗(uv) = |f(u)− f(v)|
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satisfies the conditions |vf (0)− vf (1)| ≤ 1, as well as |ef (0)− ef (1)| ≤ 1, where
vf (0) := number of vertices with label 0,
vf (1) := number of vertices with label 1,
ef (0) := number of edges with label 0,
ef (1) := number of edges with label 1.

Fibonacci Cordial labeling is an extension of Cordial labeling, where we label the vertices
with Fibonacci numbers instead of 0 and 1.

Definition 1.2. The sequence Fn of Fibonacci numbers is defined by the recurrence rela-
tion:

Fn = Fn−1 + Fn−2; F0 = 0, F1 = F2 = 1,

Definition 1.3. An injective function f : V (G) → {F0, F1, · · · , Fn} is said to be Fibonacci
cordial labeling if the induced function f∗ : E(G) → {0, 1} defined by

f∗(uv) = (f(u) + f(v)) (mod 2)

satisfies the condition |ef (0)− ef (1)| ≤ 1.

Rokad and Ghodasara provided the result for Petersen graph, Wheel graph, Shell graph,
Bistar, and some product families of graphs (corona etc.) [5]. Later in 2017, Fibonacci
cordial labeling was explored for more families of graphs by Rokad [4]. In [3] Mitra and
Bhoumik provided the Fibonacci cordial labeling for complete graphs, cycles, and corona
products. We have consider the families of Comb graphs, Jellyfish graphs, Coconut trees,
and finally Bipartite graph Km,n. First let us define the families of graphs that we are
considering in this paper.

Definition 1.4. A Comb graph consists of a path of length k and a series of single pendant
vertices attached to each vertex in the path.

Definition 1.5. A Jellyfish graph consists of four vertices v1, v2, v3, v4 joined in a cycle
with an additional edge between v1 and v3. There are additionally m pendant vertices
attached to v2 and n pendant vertices attached to v4.

Definition 1.6. A Coconut Tree consists of a path of length n with m pendant vertices
attached to the final vertex in the path, vn.

2. Main Results

•
F0 F1

• •
F2 F3

• •
F4 F5

• •
F6

•
F12 F13

• •
F11 F10

• •
F9 F8

• •
F7

Figure 1. Fibonacci cordial labeling of a comb graph of length n = 7

2.1. Comb graphs. In this section we prove that comb graphs are Fibonacci cordial.

Theorem 2.1. Comb graphs are Fibonacci cordial.
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Proof. Identify the vertices of a comb graph as V (G) = {u0, u2, · · · , un−1} ∪ {v0, v2, · · · ,
vn−1} where u0, u1, · · · , un−1 are the vertices of the path Pn and v0, v2, · · · , vn−1 are the
attached pendant vertices (see Figure 1). As every Fibonacci number Fn is even if 3|n, we
will consider three different cases, n = 3k, 3k+1, and 3k+2 for all n ∈ Z+. We denote the
total number of odd edges by ε1 (analogously ε0 for even edges). We start will labeling
f(ui) = Fi, for i ∈ {0, 1, 2, · · · , n− 1}, and label the pendant vertices as follows:
Case 1. n = 3k

f(vi) =



F6k−1, if i = 0

F6k−i, if 1 ≤ i ≤ 3⌊k/2⌋, i ≡ 0 (mod 3)

F6k−i−1, if 1 ≤ i ≤ 3⌊k/2⌋, i ≡ 1 (mod 3)

F6k−i−2, if 1 ≤ i ≤ 3⌊k/2⌋, i ≡ 2 (mod 3)

F6k−i−1, if 1 + 3⌊k/2⌋ ≤ i ≤ n− 1

This produces ε0 = 3k + ⌊k/2⌋ and ε1 = 4k − ⌊k/2⌋. Thus, | ε0 − ε1 |=| k − 2⌊k/2⌋ |.
Note that k ≡ 0 ( mod 2) implies | ε0− ε1 |= 0 and k ≡ 1( mod 2) implies | ε0− ε1 |= 1.
Therefore, comb graph in this case admits Fibonacci cordial labeling.
Case 2. n = 3k + 1

f(vi) =


F6k−i, if 0 ≤ i ≤ 3⌈k/2⌉ − 1, i ≡ 0 (mod 3)

F6k−i+2, if 0 ≤ i ≤ 3⌈k/2⌉ − 1, i ≡ 1 (mod 3)

F6k−i+1, if 0 ≤ i ≤ 3⌈k/2⌉ − 1, i ≡ 2 (mod 3)

F6k−i+1, if 3⌈k/2⌉ ≤ i ≤ n− 1

This produces ε0 = 3k + ⌊k/2⌋ and ε1 = 4k − ⌊k2⌋. Thus, | ε0 − ε1 |=| k − 2⌊k/2⌋ |.
Similar to the previous case, k ≡ 0 ( mod 2) implies to | ε0 − ε1 |= 0 and otherwise we
have | ε0 − ε1 |= 1.
Case 3. n = 3k + 2

f(vi) =


F6k−i+3, if 0 ≤ i ≤ 3⌊k/2⌋+ 1

F6k−i+2, if 3⌊k/2⌋+ 2 ≤ i ≤ n− 1, i ≡ 0 (mod 3)

F6k−i+4, if 3⌊k/2⌋+ 2 ≤ i ≤ n− 1, i ≡ 1 (mod 3)

F6k−i+3, if 3⌊k/2⌋+ 2 ≤ i ≤ n− 1, i ≡ 2 (mod 3)

This above labeling generated ε0 = n + 3⌊k/2⌋ + ⌈k/2⌉ + 2 and ε1 = 2k + 2⌈k/2⌉ + 1.
Thus, | ε1−ε0 |=| k−3⌊k/2⌋+⌈k/2⌉−1 |. It can be easily observed that k ≡ 0, 1 (mod 2)
both lead to | ε1 − ε0 |= 1. Therefore, comb graphs in this case admit Fibonacci cordial
labeling.

□

2.2. Coconut Tree Graphs. A Coconut tree CT(n,m) is the graph,for all positive in-
teger m,n ≥ 2 is obtained from the path Pn by appending m many pendant edges
at an end vertex of Pn. We identify the vertices of a coconut tree graph as V (G) =
{u1, u2, · · · , un} ∪ {v1, v2, · · · , vm}, where u1, u2, · · · , un are the vertices of path Pn and
v1, v2, · · · , vm are the pendant vertices adjacent to un.

Theorem 2.2. CT(n,m) graphs is not Fibonacci cordial if

m−
⌊m+ n

3

⌋
≥

{
3, if n ≡ 0 (mod2)

4, otherwise
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Proof. This graph produces a total amount of usable even vertices VT (0) = ⌊n+m
3 ⌋+1 and

a total amount of usable odd vertices VT (1) = n+m− ⌊n+m
3 ⌋ − 1. First we assume n is

even. Now in order to achieve the optimum (minimum) value on ε0− ε1 we assign t many
even Fibonacci labels on u1, u2, · · · , u2t−1 of Pn. The rest of the even Fibonacci labels
we can assign on k many pendant vertices. Clearly k + t ≤ ⌊n+m

3 ⌋ + 1, and t ≤ ⌊n/2⌋.
Thus in order CT(n,m) be Fibonacci cordial, |ε0 − ε1| ≤ |(n − 4t + 1) + (m − 2k)| =
|m+ n− 2(k + t)− 2t+ 1| must be less than 2. However m+ n− 2(k + t)− 2t+ 1 is less
than 2, when m+ n ≤ 2(⌊n+m

3 ⌋+ 1) + 2(n/2) + 1, or m ≤ 2⌊n+m
3 ⌋+ 3.

Similar argument shows that CT(n,m) is Fibonacci cordial only when m ≤ 2⌊n+m
3 ⌋+4

for n being odd. □

See Fibonacci cordial labeling for a coconut tree graph with n = 6 and m = 4 in Figure
2.

F0
• •

F3 F1
• •

F2 F4
• •

F6

•
F5

• F7

• F8

•
F9

Figure 2. Fibonacci cordial labeling of a coconut tree graph

2.3. Jellyfish Graphs.

Theorem 2.3. All Jellyfish graphs are Fibonacci cordial.

Proof. Let us define the Jellyfish graph as follows: v1v3v2v4v1 are the vertices forming
C4, where there is a chord between v3 and v4. {uij : 1 ≤ j ≤ mi} are pendant vertices
connected with vi for i = 1, 2 (see Figure 3). In order to show that this graph is Fibonacci
cordial we label the vertices in the following manner.

• we label v1 by even, and other vi’s (for i = 2, 3, 4) by odd Fibonacci numbers.
• Among the pendant vertices, for i = 1, 2, {ui1, ui2, · · · , uipi} are labeled with odd
and the rest {uipi+1 , uipi+2 , · · · , uimi} by even Fibonacci numbers

From the above labeling it is clear that the number of odd labels used is p1 + p2 + p3 + 3
and even labels is (m1 − p1) + (m2 − p2) + 1. Note that

ε1 − ε0 = 2p1 +m2 −m1 − 2p2 − 1 (1)

Let f : V (G) → S, where S = {F0, F1, · · · , Fm1+m2+4}, assign the Fibonacci labeling to
the vertices of the graph. As the number of even Fibonacci numbers in S depends on the
value of m1 and m2, we consider the following cases. Let qi = ⌊mi/3⌋, and qi = 4ki + ri,
for i = 1, 2.
Case 1. In this case we consider m1 = 3q1, m2 = 3q2. First we skip one even Fibonacci
number, i.e., we use q1 + q2 + 1 many even Fibonacci numbers to assign on vertices.
This leads to p1 + p2 = 2(q1 + q2). Now with this relation Equation (1) simplifies to



S. MITRA, ET AL.: ON FIBONACCI CORDIAL LABELING ... 1157

ε1 − ε0 = 2p1 + 3q2 − 3q1 − 2(2(q1 + q2) − p1) − 1 = 4p1 − q2 − 7q1 − 1. In order to be
Fibonacci cordial, ε1 − ε0 needs be either 1, 0, or −1.

• Considering ε1 − ε0 = 1 implies p1 = (7q1 + q2 + 2)/4 which is an integer only if
r2 ≡ r1 + 2 (mod 4).

• ε1 − ε0 = 0 implies p1 = (7q1 + q2 + 1)/4 which is an integer only if r2 ≡ r1 +
3 (mod 4).

• Finally ε1 − ε0 = −1 implies p1 = (7q1 + q2)/4 which is an integer only if r2 ≡
r1 (mod 4).

On the other hand, skipping one odd Fibonacci number gives p1 + p2 = 2(q1 + q2)− 1,
and consequently (from Equation 1) ε1 − ε0 = 4p1 − q2 − 7q1 + 1. As ε1 − ε0 = 1 and −1
lead to the previous result, the only conclusion we can make is p1 = (7q1+ q2− 1)/4, from
ε1 − ε0 = 0. Clearly p1 is an integer r2 ≡ r1 + 1 ( mod 4). We can summarize the result
as follows:

p1 =


(7q1 + q2)/4, if r2 ≡ r1 (mod 4)

(7q1 + q2 − 1)/4, if r2 ≡ r1 + 1 (mod 4)

(7q1 + q2 + 2)/4, if r2 ≡ r1 + 2 (mod 4)

(7q1 + q2 + 1)/4, if r2 ≡ r1 + 3 (mod 4)

It is easy to verify that

p2 =

{
2(q1 + q2)− 1− p1, if r2 ≡ r1 + 1 (mod 4)

2(q1 + q2)− p1, otherwise

Now we consider other cases, and provide the values of p1 and p2. We skip the computation
as it would be very similar to the previous case.
Case 2. Next we consider m1 = 3q1, m2 = 3q2 + 1

p1 =


(7q1 + q2)/4, if r2 ≡ r1 (mod 4)

(7q1 + q2 + 3)/4, if r2 ≡ r1 + 1 (mod 4)

(7q1 + q2 + 2)/4, if r2 ≡ r1 + 2 (mod 4)

(7q1 + q2 + 1)/4, if r2 ≡ r1 + 3 (mod 4)

p2 =

{
2(q1 + q2)− p1, if r2 ≡ r1 + 1 (mod 4)

2(q1 + q2) + 1− p1, otherwise

Case 3. Next we consider m1 = 3q1, m2 = 3q2 + 2

p1 =


(7q1 + q2)/4, if r2 ≡ r1 (mod 4)

(7q1 + q2 − 1)/4, if r2 ≡ r1 + 1 (mod 4)

(7q1 + q2 + 2)/4, if r2 ≡ r1 + 2 (mod 4)

(7q1 + q2 + 1)/4, if r2 ≡ r1 + 3 (mod 4)

p2 =

{
2(q1 + q2)− p1, if r2 ≡ r1 + 1 (mod 4)

2(q1 + q2)− p1 + 1, otherwise

Case 4. Next we consider m1 = 3q1 + 1, m2 = 3q2 + 1
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p1 =


(7q1 + q2 + 4)/4, if r2 ≡ r1 (mod 4)

(7q1 + q2 + 3)/4, if r2 ≡ r1 + 1 (mod 4)

(7q1 + q2 + 2)/4, if r2 ≡ r1 + 2 (mod 4)

(7q1 + q2 + 1)/4, if r2 ≡ r1 + 3 (mod 4)

p2 =

{
2(q1 + q2)− p1, if r2 ≡ r1 + 3 (mod 4)

2(q1 + q2) + 1− p1, otherwise

Case 5. Next we consider m1 = 3q1 + 1, m2 = 3q2 + 2

p1 =


(7q1 + q2 + 4)/4, if r2 ≡ r1 (mod 4)

(7q1 + q2 − 1)/4, if r2 ≡ r1 + 1 (mod 4)

(7q1 + q2 + 2)/4, if r2 ≡ r1 + 2 (mod 4)

(7q1 + q2 + 5)/4, if r2 ≡ r1 + 3 (mod 4)

p2 =

{
2(q1 + q2) + 1− p1, if r2 ≡ r1 + 2 (mod 4)

2(q1 + q2) + 2− p1, otherwise

Case 6. Finally we consider m1 = 3q1 + 2, m2 = 3q2 + 2

p1 =


(7q1 + q2 + 8)/4, if r2 ≡ r1 (mod 4)

(7q1 + q2 + 7)/4, if r2 ≡ r1 + 1 (mod 4)

(7q1 + q2 + 6)/4, if r2 ≡ r1 + 2 (mod 4)

(7q1 + q2 + 5)/4, if r2 ≡ r1 + 3 (mod 4)

p2 =

{
2(q1 + q2) + 2− p1, if r2 ≡ r1 + 3 (mod 4)

2(q1 + q2) + 3− p1, otherwise

□

•
F1

•
F2

•
F4

•
F0

•
F3

• F7

• F9

•
F11

•
F5

•F6

•F8

•
F10

Figure 3. Jellyfish graph with n = 4

Fibonacci cordial labeling of a symmetrical Jellyfish graph with n = 4 has been shown
in Figure 3.
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•
F3

•
F1

•
F6

•
F2

•
F4

•
F9

•
F5

•
F12

•
F7

•
F15

•
F8

•
F10

•
F11

•
F13

•
F14

•
F16

Figure 4. Fibonacci Cordial Labeling of H−graph of order 8

2.4. H−Graph. Let P 1
n and P 2

n be any two paths with n vertices. Let V (P 1
n) = {u1, u2,

· · · , un} and V (P 2
n) = {v1, v2, · · · , vn}. We generate H−graph of order n by joining

u⌊(n+1)/2⌋ and v⌈(n+1)/2⌉ by an edge (see Figure 4). Clearly the cardinality of the vertex
set and edge set of H−graph is 2n and 2n− 1 respectively.

Theorem 2.4. H−graph is Fibonacci cordial.

Proof. We consider the following cases for the labeling of H−graph of order n. The vertex
labeling of f : V (H) → {F0, F1, · · · , F2n} is defined as follows:
Case 1. n = 6p.

f(ui) =



F 3(i+1)
2

, for 1 ≤ i ≤ p∗ − 3, i odd

F 3i
2
, for p∗ ≤ i ≤ n, i even

F⌊ 3i−1
4

⌋, for 2 ≤ i ≤ p∗ − 2, i even

F⌈ 3i−1
4

⌉, for p∗ − 1 ≤ i ≤ n− 1, i odd

where

p∗ =

{
3p+ 1, if p is odd

3p+ 2, if p is even

f(vi) =


F⌊ 3n

4
⌋+1, for i = 1

F3(3p+i−1), for 2 ≤ i ≤ p+ 1

Fn+i−⌈n+1−i
2

⌉, for p+ 2 ≤ i ≤ n

Case 2. n = 6p+ 1.

f(ui) =



F 3(i+1)
2

, for 1 ≤ i ≤ p∗ − 4, i odd

F 3i−3
2

, for p∗ ≤ i ≤ n, i odd

F⌊ 3i−1
4

⌋, for 2 ≤ i ≤ p∗ − 3, i even

F⌈ 3i+2
4

⌉, for p∗ − 1 ≤ i ≤ n− 1, i even

F⌈ 3i−2
4

⌉, for i = p∗ − 2,

where

p∗ =

{
3p+ 2, if p is odd

3p+ 3, if p is even

f(vi) =


F⌊ 3n

4
⌋+2, for i = 1

F3(3p+i−1), for 2 ≤ i ≤ p+ 1

Fn+i−⌈n−i−1
2

⌉, for p+ 2 ≤ i ≤ n
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Case 3. n = 6p+ 2.

f(ui) =



F 3(i+1)
2

, for 1 ≤ i ≤ p∗ − 3, i odd

F 3i
2
, for p∗ ≤ i ≤ n, i even

F⌊ 3i−1
4

⌋, for 2 ≤ i ≤ p∗ − 2, i even

F⌈ 3i−1
4

⌉, for p∗ − 1 ≤ i ≤ n− 1, i odd

where

p∗ =

{
3p+ 3, if p is odd

3p+ 2, if p is even

f(vi) =


F⌈ 3n+1

4
⌉, for i = 1

F3(3p+i), for 2 ≤ i ≤ p+ 1

Fn+i−⌈n−i
2

⌉, for p+ 2 ≤ i ≤ n

Case 4. n = 6p+ 3.

f(ui) =



F 3(i+1)
2

, for 1 ≤ i ≤ p∗ − 4, i odd

F 3(i−1)
2

, for p∗ ≤ i ≤ n, i odd

F⌊ 3i−1
4

⌋, for 2 ≤ i ≤ p∗ − 3, i even

F⌈ 3i+1
4

⌉, for p∗ − 1 ≤ i ≤ n− 1, i even

F⌈ 3i−2
4

⌉, for i = p∗ − 2,

where

p∗ =

{
3p+ 4, if p is odd

3p+ 3, if p is even

f(vi) =


F⌈ 3n

4
⌉+1, for i = 1

F3(3p+i), for 2 ≤ i ≤ p+ 2

Fn+i−⌈n−i+1
2

⌉, for p+ 3 ≤ i ≤ n

Case 5. n = 6p+ 4.

f(ui) =



F 3(i+1)
2

, for 1 ≤ i ≤ p∗ − 3, i odd

F 3i
2
, for p∗ ≤ i ≤ n, i even

F⌊ 3i−1
4

⌋, for 2 ≤ i ≤ p∗ − 2, i even

F⌈ 3i−1
4

⌉, for p∗ − 1 ≤ i ≤ n− 1, i odd

where

p∗ =

{
3p+ 3, if p is odd

3p+ 4, if p is even

f(vi) =


F⌈ 3n+2

4
⌉, for i = 1

F3(3p+i+1), for 2 ≤ i ≤ p+ 1

Fn+i−⌈n−i−1
2

⌉, for p+ 2 ≤ i ≤ n
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Case 6. n = 6p+ 5.

f(ui) =



F 3(i+1)
2

, for 1 ≤ i ≤ p∗ − 4, i odd

F 3(i−1)
2

, for p∗ ≤ i ≤ n, i odd

F⌊ 3i−1
4

⌋, for 2 ≤ i ≤ p∗ − 3, i even

F⌈ 3i+1
4

⌉, for p∗ − 1 ≤ i ≤ n− 1, i even

F⌈ 3i−2
4

⌉, for i = p∗ − 2,

where

p∗ =

{
3p+ 4, if p is odd

3p+ 5, if p is even

f(vi) =


F⌈ 3n

4
⌉+1, for i = 1

F3(3p+i+1), for 2 ≤ i ≤ p+ 2

Fn+i−⌈n−i
2

⌉, for p+ 3 ≤ i ≤ n

□

2.5. W2n+1 graph.

Definition 2.5. Ring sum G1 ⊕G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the
graph G1 ⊕G2 = (V1 ∪ V2, (E1 ∪ E2)− (E1 ∩ E2))

We now construct a family of graph K1,n ⊕K1,n one pendant vertex in the one K1,n is
also a pendant vertex in the other copy of K1,n. This resulting graph is denoted as W2n+1

(see Figure 5). Note that |V (W2n+1)| = 2n+ 1 and |E(W2n+1)| = 2n.

Theorem 2.6. The graph W2n+1 is Fibonacci cordial.

Proof. We only need to prove the result for n ≥ 3, as W3 and W5 both graphs are Path,
and hence Fibonacci cordial [3]. Let us consider n = 3p + q for positive integer p, q such
that q ∈ {0, 1, 2}. Now we first identify the vertices of W2n+1 as follow: u, v are the
apex vertices of star graphs K1,n graphs, and {u1, u2, · · · , un = v1, v2, · · · , vn} are the
pendant vertices. The edge set E(W2n+1) = {uui, vvi : 1 ≤ i ≤ n}. The vertex labeling
of f : V (G) → {F0, F1, · · · , F2n+1} is defined as follows. f(u) = F0, f(v) = F1, and
f(un) = F2

f(ui) =

{
F3i, for 1 ≤ i ≤ p

F3s1+t1+1, for p+ 1 ≤ i ≤ n− 1

where s1 = ⌊(i− p+ 1)/2⌋ and t1 = (i− p+ 1)%2.

f(vi) =

{
F3(p+i−1), for 2 ≤ i ≤ p+ 1

F3p+3s2+t2+1, for p+ 2 ≤ i ≤ n

where s2 = ⌊(i− p+ q − 1)/2⌋ and t2 = (i− p+ q − 1)%2. In view of the above labeling,
it is clear that ef (1) = ef (0) = p+ n− p− 1 + 1 = n, which proves the result. □
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•
F3

•
F4

•
F5

•
F7

•
F2

•
F6

•
F8

•
F10

•
F11

• •
F0 F1

Figure 5. Fibonacci cordial labeling of W11

3. Conclusion

Studying graphs that admit Fibonacci cordial labeling is indeed an intriguing area of
research within graph theory. The concept of Fibonacci cordial labeling, which involves
labeling the vertices of a graph such that certain properties related to Fibonacci numbers
hold, has applications in various fields including computer science and combinatorics.

Investigating whether certain unusual graphs possess Fibonacci cordial labeling can lead
to new insights into the structure and properties of these graphs. Additionally, exploring
equivalent results for different families of graphs presents an open area of research, as it
allows for the comparison and generalization of results across various graph classes.

Researchers in graph theory often seek to identify and understand patterns, properties,
and relationships within different types of graphs, and the study of Fibonacci cordial label-
ing offers a unique perspective in this regard. By investigating the existence and properties
of such labelings in various graph families, researchers can advance our understanding of
graph theory and potentially uncover new connections between seemingly disparate graph
structures.
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