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CONCERNING THE ROUGH IDEAL CONVERGENCE OF DOUBLE

SEQUENCES WITHIN THE TOPOLOGY INDUCED BY A FUZZY

2-NORM

NIFEEN H. ALTAWEEL1, M.H.M. RASHID2, NIDAL H.E. ELJANEID1 AND RAZAN ALBALAWI1, §

Abstract. This research paper presents a thorough exploration of rough I2-convergence,
rough I∗

2 -convergence, rough I2-limit points, and rough I2-cluster points for double se-
quences within a fuzzy 2-normed linear space. A key contribution is the proof of a specific
decomposition theorem related to rough I2-convergence of double sequences. Addition-
ally, we introduce the concepts of rough IE

2 -double Cauchy sequences and I∗,E
2 -double

Cauchy sequences, alongside an exploration of their properties. Notably, our investiga-
tion establishes connections between the notion of rough ideal cluster points in a fuzzy
2-normed space and conventional criteria for ideal convergence, highlighting the interplay
between these two seemingly distinct mathematical ideas. This study provides a com-
prehensive analysis of various aspects of rough convergence, the set of rough limit points,
and rough cluster points in the context of sequences within fuzzy 2-normed spaces.

Keywords: rough I2-convergence, rough I2-Cauchy, rough I2-limit, rough I2-cluster,
fuzzy 2-normed space
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1. Introduction

In 1951, both Fast [14] and Steinhaus [33] independently introduced the concept of
statistical convergence for sequences of real numbers. Since then, various researchers,
including those mentioned in [25], have further expanded upon and explored this idea.
Additionally, one of its intriguing generalizations, known as I-convergence, as described
by Kostyrko et al., is referenced in [23]. Furthermore, Balcerzak et al. [8], who recently
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investigated I-convergence in the context of sequences of functions, are cited in this con-
text.

Statistical convergence and ideal convergence are two distinct modes of convergence
used in mathematical analysis and related fields to study sequences of real or complex
numbers. These convergence concepts differ in their underlying principles and criteria for
determining the convergence of a sequence. Both statistical convergence and ideal conver-
gence offer alternative ways to study the behavior of sequences beyond the classical notion
of pointwise convergence, and they have applications in areas such as functional analysis,
number theory, and summability theory.

Zadeh [34], is credited with pioneering the concept of fuzzy sets. Over the last half-
century, there has been a robust exploration of fuzzy set theory, which has found wide
application in fields such as cybernetics, artificial intelligence, expert systems, and fuzzy
control. Additionally, this concept has been applied in diverse domains, including projec-
tiles, image analysis, probability theory, pattern recognition, operational research, decision
making, agriculture, and weather forecasting. Furthermore, fuzzy set theory has been ex-
tensively applied in various engineering applications, such as the bifurcation analysis of
nonlinear dynamical systems, the control of chaotic systems, nonlinear operators, and the
modeling of population dynamics. Research on the applicability of fuzziness has extended
across the entirety of mathematical sciences. Moreover, the introduction of various types
of sequence spaces and the investigation of their distinctive properties have attracted sig-
nificant attention from researchers in sequence space and summability theory. For more
details, the reader refer to [7, 19, 30].

Phu’s pioneering work [27], marked the inception of rough convergence exploration
within finite-dimensional normed spaces. In his comprehensive study, he established key
properties such as the closedness, convexity, and boundedness of the set LIMr

x. Further-
more, Phu introduced the novel concept of a rough Cauchy sequence. His research also
delved into the intricate interplay between rough convergence and various other forms
of convergence, shedding light on how the set LIMr

x is contingent upon the degree of
roughness denoted as r. Additionally, Phu extended these insights to infinite-dimensional
normed spaces in his subsequent work [28], see also [18, 26, 31].

In a related investigation by Aytar [1], the focus was shifted towards rough statistical
convergence. Aytar identified the set of rough statistical limit points for a given sequence
and established two statistical convergence criteria related to this set. Notably, he proved
that this set is both closed and convex. Aytar’s subsequent research [2] further illuminated
the relationship between the r-limit set of a sequence and the intersection of these sets, as
well as the r-core of the sequence being equivalent to the union of these sets.

Recently, Dündar and Çakan [10, 11] introduced the concepts of rough I-convergence
and the set of rough I-limit points for sequences. In a parallel study, Dündar [12] con-
ducted an in-depth exploration of rough convergence, I2-convergence, and the sets of rough
limit points and rough I2-limit points for double sequences. Notably, within the context
of 2-normed spaces, Arslan and Dündar [3, 4, 5, 6] and Dündar and Ulusu [13] developed
various novel concepts related to rough convergence (see also [18, 20]).

The paper is organized as follows: Section 2 presents a comprehensive overview of the
fundamental principles and definitions concerning 2-normed spaces, emphasizing the sig-
nificance of fuzzy numbers. It delves into the concepts of fuzzy normed and fuzzy 2-normed
spaces, also discussing the topic of ideal convergence. Moving to Section 3, the focus is on

the elucidation of rough IE
2 -convergence and rough I∗,E2 -convergence for a double sequence

within the context of a fuzzy 2-normed space denoted as (E, ∥·, ·∥), providing essential in-
sights into this form of convergence and introducing the concepts of rough (E, ∥·, ·∥)-limit
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point and rough (E, ∥·, ·∥)-cluster point for a double sequence. In Section 4, we present the
notion of rough I2-limit points and rough I2-cluster points for double sequences within
the framework of fuzzy 2-normed linear spaces. Additionally, we introduce the concept of
a rough I2-Cauchy sequence in a fuzzy 2-normed space (E, ∥·, ·∥) and explore significant
outcomes within this specific framework. Finally, Section 5 concludes by summarizing the
key findings related to rough I2-convergence in fuzzy 2-normed spaces, discussing potential
future research directions, and identifying areas for further investigation.

2. Preliminaries

In this section, we provide an overview of key principles and definitions related to 2-
normed spaces, fuzzy numbers, as well as fuzzy normed and fuzzy 2-normed spaces. We
also delve into the topic of ideal convergence.

Definition 2.1. ([16]) Let X be a real vector space of dimension ν, 2 ≤ ν < ∞. A 2-norm
on X is a function ∥·, ·∥ : X× X → R which satisfies:

(i) ∥x, y∥ = 0 if and only if x and y are linearly dependent;
(ii) ∥x, y∥ = ∥y, x∥ for all x, y ∈ X;
(iii) ∥cx, y∥ = |c| ∥x, y∥ for all x, y ∈ X and c ∈ R ;
(iv) ∥x+ y, z∥ ≤ ∥x, z∥+ ∥y, z∥ for all x, y, z ∈ X.

The pair (X, ∥·, ·∥) is called a 2-normed space.

Example 2.1. Let X = R2. Define ∥·, ·∥ on R2 by ∥x, y∥ = |x1y2 − x2y1|, where x =
(x1, x2), y = (y1, y2) ∈ R2. Then (X, ∥·, ·∥) is a 2-normed space.

Definition 2.2. ([9], [15], [22]) A fuzzy real number, or simply fuzzy number, is a fuzzy
set X : R → [0, 1] having the following properties:

(a) X is normal (i.e., there exists a t0 ∈ R such that X(t0) = 1);
(b) X is fuzzy convex (i.e., for r, s ∈ R and λ ∈ J = [0, 1], X(λr + (1 − λ)s) ≥

min{X(r),X(s)});
(c) X is upper semi-continuous (i.e., X←([0, t + ε)) is open in R for each t ∈ J and

each ε > 0);
(d) The closure of the set [X]0 := {t ∈ R : X(t) > 0} is compact.

Let F(R) be the set of all fuzzy real numbers. For X ∈ F(R), the α-level set of X [15] is
defined as:

[X]α =

{
{t ∈ R : X(t) ≥ α}, if 0 < α ≤ 1;
Cl({t ∈ R : X(t) > 0}), if α = 0.

i.e., R can be embedded in F(R).
It is easy to show that X is a fuzzy number if and only if [X]α is a nonempty bounded and
closed interval for each α ∈ [0, 1]. We denote this interval [X]α = [X−α ,X

+
α ] (see [17]).

Remark 2.1. The definition of fuzzy numbers presented earlier exhibits a slight variation
compared to the one found in [15]. In the latter, it allows for the inclusion of X−α = −∞
and X+

α = +∞ as admissible values, and it does not take into account the zero-level set.

A fuzzy number X is referred to as a “non-negative fuzzy number” when X(t) = 0 for
t < 0. Let’s denote the set of all non-negative fuzzy numbers as F∗(R). It’s evident that
X ∈ F∗(R) if and only if, X−α ≥ 0 for each α ∈ J , and 0 ∈ F∗(R).

We define a partial order ⪯ on F(R) such that X ⪯ Y if and only if X−α ≤ Y−α and
X+
α ≤ Y+

α for all α ∈ J . Additionally, we establish a strict inequality ≺ on F(R), defined
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as X ≺ Y if and only if X−α < Y−α and X+
α < Y+

α for all α ∈ J .
Let X,Y ∈ F(R), define

ϱ(X,Y) = sup
α∈[0,1]

max{|X−α −Y−α |, |X+
α −Y+

α |}.

Then ϱ is called the supremum metric on F(R). It is known that (F(R), ϱ) is a complete
metric space (for details see [22]).

Let (Xk) be a sequence in F(R) and X0 ∈ F(R). We say that (Xk) converges to X0

with respect to the metric ϱ if lim
k→∞

ϱ(Xk,X0) = 0. In this case, we write Xk
ϱ−→ X0 or

ϱ− lim
k→∞

Xk = X0.

Now, we define the notion of fuzzy 2-normed space.

Let E be a real vector space with the zero element θ, let ∥·, ·∥ : E× E → F(R), and let
the mappings L,R : [0, 1]× [0, 1] → [0, 1] be symmetric, non-decreasing in both arguments
and satisfy L(0, 0) = 0 and R(1, 1) = 1.

Definition 2.3. The quadruple (E, ∥·, ·∥ ,L,R) is called a fuzzy 2-normed space and ∥·, ·∥
a fuzzy 2-norm, if the following axioms are satisfied:

(2FN1) ∥X,Y∥ = 0 if and only if X and Y are linearly dependent;
(2FN2) ∥λX,Y∥ = |λ| ∥X,Y∥, λ ∈ R;
(2FN3) For all X,Y,Z ∈ E,

(i) ∥X+Y,Z∥ (r + s) ≥ L(∥X,Z∥ (r), ∥Y,Z∥ (s)), whenever r ≤ ∥X,Z∥−1 , s ≤
∥Y,Z∥−1 and r + s ≤ ∥X+Y,Z∥−1 ,

(ii) ∥X+Y,Z∥ (r + s) ≥ R(∥X,Z∥ (r), ∥Y,Z∥ (s)), whenever r ≥ ∥X,Z∥−1 , s ≥
∥Y,Z∥−1 and r + s ≥ ∥X+Y,Z∥−1 .

In the sequel we take L(p, q) = min{p, q} and R(p, q) = max{p, q}, for all p, q ∈ [0, 1]
and write (E, ∥·, ·∥) or simply E, for such L and R.

For X ∈ E, ε > 0 and α ∈ [0, 1], the (ε, α)-neighborhood of X is the set

UX(ε, α) = {Y ∈ E : ∥X−Y,Z∥+α < ε, for all Z ∈ E}.
The (ε, α)-neighborhood system at X is the collection

UX = {UX(ε, α) : ε > 0, α ∈ [0, 1]}

and the (ε, α)-neighborhood system for E is the union U =
⋃
X∈E

UX. It is easy to see that U

generates a first countable Hausdorff topology on E.

Definition 2.4. Let (E, ∥·, ·∥) be a fuzzy 2-norm space. A sequence {Xk} in E is said to
be convergent to X0 ∈ E with respect to the norm on E, and we denote this by Xk → X0,
provided ϱ − lim

k→∞
∥Xk − X0,Z∥ = 0 for all Z ∈ E, i.e., for every ε > 0 there exists an

integer k0 = k0(ε) in N such that ϱ(∥Xk − X0,Z∥ , 0) < ε, for k ≥ k0.

This can be restated as follows: For any given ε > 0, there exists an integer k0(ε) in
the set of natural numbers N such that, for all k ≥ k0, it holds that

sup
α∈[0,1]

∥Xk − X0,Z∥α+ = ∥Xk − X0,Z∥ 0+ < ε.

Regarding neighborhoods, the convergence Xk → X0 is assured if, for any given ε > 0,
there exists an integer k0(ε) in the set of natural numbers N such that Xk belongs to the
neighborhood UX0(ε, 0) for all k ≥ k0 and for all Z ∈ E.
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Now, we provide some fundamental information concerning classical concepts of ideals
and filters.

Definition 2.5. [32] A non-empty set I ⊆ 2N is termed an “ideal” when it satisfies two
properties: additivity (i.e., if A,B ∈ I, then A ∪ B ∈ I) and heredity (i.e., if A ∈ I and
B ⊆ A, then B ∈ I). An ideal I is considered “non-trivial” if it is not equal to the entire

power set 2N. If a non-trivial ideal I includes every finite subset of N, it is designated as
an “admissible” ideal. For any given non trivial ideal, there exists a corresponding filter
denoted as F(I), which can be defined as follows:

F(I) = {K ⊆ N : N \K ∈ I}.

In what follows the symbol I2 denotes an ideal on N × N, and (E, ∥·, ·∥) is a fuzzy
2-normed space.

3. Rough ideal convergence in fuzzy 2-normed linear space

In this section, we present the notions of rough IE
2 -convergence and rough I∗,E2 -convergence

for a double sequence within the framework of a fuzzy 2-normed space denoted as (E, ∥·, ·∥).
We also offer some foundational insights into this type of convergence. Additionally, we
introduce the concepts of rough (E, ∥·, ·∥)-limit point and rough (E, ∥·, ·∥)-cluster point for
a double sequence with respect to an ideal I2 ⊆ 2N×N.

We commence with the following definition.

Definition 3.1. Let r be a nonnegative real number. A double sequence denoted as
X = {Xjk}, residing within a fuzzy 2-normed space (E, ∥·, ·∥), is considered to exhibit
“rough E-convergence to X0” if, for any ε > 0 and for each Z ∈ E, there exists a positive
integer n0 = n0(ε) such that:

Xjk,Z ∈ UX0(r + ε, 0) for each j, k ≥ n0.

In this scenario, it is denoted as rE-lim ∥Xjk − X0,Z∥+0 = 0.
This can equivalently be expressed as follows: For any given ε > 0, there exists an

integer N0(ε) in the set of natural numbers N such that:

∥Xjk − X0,Z∥+0 < r + ε for all j, k ≥ N0.

Definition 3.2. Let (E, ∥·, ·∥) be a fuzzy 2-normed space, r be a nonnegative real number

and I2 an ideal on N×N. A double sequence {Xjk} in E is said to be rough IE
2 -convergent

to X0 ∈ E with respect to the fuzzy 2-norm on E if for each ε > 0 and each Z ∈ E, the set
A(r, ε) := {(j, k) ∈ N× N : ∥Xjk − X0,Z∥+0 ≥ r + ε} belongs to I2.

In this case, we write Xjk
rIE2−−→ X0. In general, it is important to note that the rough I2-

limit of a sequence X = {Xjk} may not have a unique value when considering a roughness
degree r > 0. To address this, we introduce the notation:

I2 − LIMr
X =

{
X0 ∈ E : X

rIE2−−→ X0

}
.

We say that the sequence X is “rI2-convergent” if and only if I2 − LIMr
X is not an empty

set. The element X0 is called the rough IE
2 -limit of {Xjk} in E.

Remark 3.1. The I2-convergence of a sequence {Xjk} in E doesn’t necessarily guarantee
the existence of a sequence {Yjk} in E that is I2-convergent and fulfills the condition that
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(j, k) ∈ N2 : ∥Xjk −Yjk,Z∥+0 ≥ r

}
∈ I2 for every non-zero Z ∈ E. For any ε > 0 and a

non-zero Z ∈ E, the following relationship holds:{
(j, k) ∈ N2 : ∥Xjk − X0,Z∥+0 ≥ r + ε

}
⊂

{
(j, k) ∈ N2; ∥Xjk −Yjk,Z∥+0 ≥ r

}
∪

{
(j, k) ∈ N2 : ∥Yjk − X0,Z∥+0 ≥ ε

}
.

Theorem 3.1. Consider a fuzzy 2-normed space denoted as (E, ∥·, ·∥), and let r be a
nonnegative real number. For a given sequence X = {Xjk} within E, it can be observed
that the diameter of I2−LIMr

X is bounded by 2r, i.e., diam(I2−LIMr
X) ≤ 2r. However, it

should be noted that in general, there is no smaller bound for the diameter of I2 − LIMr
X.

Proof. Assume that diam(I2 − LIMr
X) > 2r. Then there exists X1,X2 ∈ I2 − LIMr

X such

that ∥X1 − X2,Z∥+0 > 2r for each Z ∈ E. Choose 0 < ε <
∥X1 − X2,Z∥+0

2
− r.

A1(r, ε) =
{
(j, k) ∈ N× N : ∥Xjk − X1,Z∥+0 ≥ r + ε

}
and

A2(r, ε) =
{
(j, k) ∈ N× N : ∥Xjk − X2,Z∥+0 ≥ r + ε

}
.

Then A1(r, ε), A2(r, ε) ∈ I2 and hence B = N × N \ (A1(r, ε) ∪ A2(r, ε)) ∈ F (I2) and
so B ̸= ∅. Let (j, k) ∈ B. Then (j, k) /∈ A1(r, ε) and (j, k) /∈ A2(r, ε) and so we have
∥Xjk − X1,Z∥+0 < r + ε and ∥Xjk − X2,Z∥+0 < r + ε. Consequently,

∥X1 − X2,Z∥+0 ≤ ∥Xjk − X1,Z∥+0 + ∥Xjk − X2,Z∥+0 < 2(r + ε) < ∥X1 − X2,Z∥+0 ,

which is a contradiction. Thus diam(I2 − LIMr
X) ≤ 2r.

To prove the converse part, consider a sequence X = {Xjk} such that I2-limX = X0.
Let ε > 0 be given. Then for each Z ∈ E, the set

A =
{
(j, k) ∈ N× N : ∥Xjk − X0,Z∥+0 ≥ ε

}
∈ I2.

Now for each Q ∈ B
r
= {Q ∈ E : ∥Q− X0,Z∥+0 ≤ r}, we have

∥Xjk −Q,Z∥+0 ≤ ∥Xjk − X0,Z∥+0 + ∥X0 −Q,Z∥+0 < r + ε

whenever (j, k) /∈ A. This shows that Q ∈ I2−LIMr
X and hence we can write I2−LIMr

X =

B
r
(X0). This shows that in general upper bound 2r of the diameter of the set I2 − LIMr

X

can not be decreased anymore. ■

Remark 3.2. Let (E, ∥·, ·∥) be a fuzzy 2-normed linear space and r be a nonnegative real
number. Then

(i) In terms of neighborhoods, we have Xjk
rIE2−−→ X0, provided that for each ε > 0 and

Z ∈ E,

{(j, k) ∈ N× N : Xjk,Z /∈ UX0(r + ε, 0)} ∈ I2.
The above definition can be expressed also in the following way:

Xjk
rIE2−−→ X0 ⇐⇒ rIE

2 − lim
j,k→∞

∥Xjk − X0,Z∥+0 = 0, for all Z ∈ E.

(ii) Note that rIE
2 − lim

j,k→∞
∥Xjk − X0,Z∥+0 = 0, for all Z ∈ E implies

rIE
2 − lim ∥Xjk − X0,Z∥−α = rIE

2 − lim ∥Xjk − X0,Z∥+α
for each α ∈ [0, 1] and each Z ∈ E. (It is because 0 ≤ ∥Xjk − X0,Z∥−α ≤
lim ∥Xjk − X0,Z∥+α ≤ ∥Xjk − X0,Z∥+0 , holds for each (j, k) ∈ N × N, α ∈ [0, 1]
and each Z ∈ E.)
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Proposition 3.1. Let (E, ∥·, ·∥) be a fuzzy 2-normed linear space and r be a nonnegative
real number. Then we have

(i) If rE-lim ∥Xjk − X0,Z∥+0 = 0, rIE
2 -lim ∥Xjk − X0,Z∥+0 = 0;

(ii) If Xjk
rIE2−−→ X0 and Yjk

rIE2−−→ Y0, Xjk +Yjk
rIE2−−→ X0 +Y0;

(iii) If Xjk
rIE2−−→ X0 and c ∈ R, cXjk

rIE2−−→ cX0;

(iv) If Xjk
rIE2−−→ X0 and Yjk

rIE2−−→ Y0, XjkYjk
rIE2−−→ X0Y0;

(v) If Xjk ⪯ Yjk ⪯ Zjk for all (j, k) ∈ N × N belonging to the set B ∈ F(I2), and

Xjk
rIE2−−→ X0 and Zjk

rIE2−−→ X0, Yjk
rIE2−−→ X0.

Proof. (i) Assume that rE-lim ∥Xjk − X0,Z∥+0 = 0. Take any ε > 0, and let Z be
any nonzero element in E. We can then find a positive integer N0 ∈ N such that
∥Xjk − X0,Z∥+0 < r + ε for all pairs of indices j and k greater than or equal to N0.
This holds true because

A = {(j, k) ∈ N× N : ∥Xjk − X0,Z∥+0 ≥ ε+ r} ⊆ {1, 2, · · · , N0 − 1} × {1, 2, · · · , N0 − 1}

and the ideal I2 is admissible, we have A ∈ I2. This shows that rIE
2 -lim ∥Xjk − X0,Z∥+0 =

0.

(ii) Suppose that Xjk
rIE2−−→ X0 and Yjk

rIE2−−→ Y0. Since ∥·, ·∥+0 is a 2-norm in the usual
sense, we get

∥(Xjk +Yjk)− (X0 +Y0),Z∥+0 ≤ ∥Xjk − X0,Z∥+0 + ∥Yjk −Y0,Z∥+0 (1)

for all (j, k) ∈ N× N. Put
B(r, ε) = {(j, k) ∈ N× N : ∥(Xjk +Yjk)− (X0 +Y0),Z∥+0 ≥ 2r + 2ε},
A1(r, ε) = {(j, k) ∈ N× N : ∥Xjk − X0,Z∥+0 ≥ r + ε},
A2(r, ε) = {(j, k) ∈ N× N : ∥Yjk −Y0,Z∥+0 ≥ r + ε}.

By assumption, we have that A1(r, ε) and A2(r, ε) belong to I2. So, A1(r, ε)∪A2(r, ε) ∈ I2.
From (1) it follows that B(r, ε) ⊆ A1(r, ε) ∪ A2(r, ε). This implies that B(r, ε) ∈ I2.

Consequently, Xjk +Yjk
rIE2−−→ X0 +Y0.

(iii) Let c ∈ R. If c = 0, we have nothing to prove, so we assume that c ̸= 0. Let ε > 0 be
given. Since ∥·, ·∥+0 is a 2-norm in the usual sense, ∥cXjk,Z∥+0 = |c| ∥Xjk,Z∥+0 .

Since Xjk
rIE2−−→ X0, we have

A(r, ε) = {(j, k) ∈ N× N : ∥Xjk − X0,Z∥+0 ≥ r + ε} ∈ I2.

Let A1(r, ε) = {(j, k) ∈ N×N : ∥cXjk − cX0,Z∥+0 ≥ r+ε}. We need to show that A1(r, ε) is

contained in A(r1, ε1). Let (p, q) ∈ A1(r, ε), then r+ε ≤ ∥cXpq − cX0∥+0 = |c| ∥Xpq − X0∥+0 .
This implies that ∥Xpq − X0∥+0 ≥ ε+ r

|c|
= r1 + ε1. Therefore (p, q) ∈ A(r1, ε1). Then we

have A1(r, ε) ⊂ A(r1, ε1). By the definition of the ideal, we get A1(r, ε) ∈ I2 and hence

cXjk
rIE2−−→ cX0.

(iv) Since Xjk
rIE2−−→ X0, we have

A(1) = {(j, k) ∈ N× N : ∥Xjk − X0,Z∥+0 < 1} ∈ F(I2).

Now ∥·, ·∥+0 is a 2-norm in the usual sense, so that

∥XjkYjk − X0Y0,Z∥+0 ≤ ∥Xjk,Z∥+0 ∥Yjk −Y0,Z∥+0 + ∥Y0,Z∥+0 ∥Xjk − X0,Z∥+0 .
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For (j, k) ∈ A(1), we have ∥Xjk,Z∥+0 ≤ ∥X0,Z∥+0 + 1 and it follows that

∥XjkYjk − X0Y0,Z∥+0 ≤ (∥X0,Z∥+0 + 1) ∥Yjk −Y0,Z∥+0 + ∥Y0,Z∥+0 ∥Xjk − X0,Z∥+0 . (2)

Let ε > 0 be given. Choose γ > 0 such that

0 < γ <
ε− r

(
∥Y0,Z∥+0 + ∥X0,Z∥+0

)
∥Y0,Z∥+0 + ∥X0,Z∥+0 + 1

(3)

Since Xjk
rIE2−−→ X0 and Yjk

rIE2−−→ Y0 , the sets

A1(r, γ) = {(j, k) ∈ N× N : ∥Xjk − X0,Z∥+0 < r + γ}

and

A2(r, γ) = {(j, k) ∈ N× N : ∥Yjk −Y0,Z∥+0 < r + γ}
belong to F(I2).

Obviously, A(1) ∩ A1(r, γ) ∩ A2(r, γ) ∈ F(I2) and for each (j, k) ∈ A(1) ∩ A1(r, γ) ∩
A2(r, γ), we have from (2) and (3),

∥XjkYjk − X0Y0∥+0 < r + ε.

This implies that {(j, k) ∈ N×N : ∥Xjk ·Yjk − X0 ·Y0∥+0 ≥ r+ε} ∈ I2, i.e., Xjk ·Yjk
rIE2−−→

X0 ·Y0.

(v) Let ε > 0 and W ∈ E be given. From Xjk
rIE2−−→ X0 it follows

A1(r, ε) = {(j, k) ∈ N× N : ∥Xjk − X0,W∥+0 ≥ r + ε} ∈ I2,

and from Zjk
rIE2−−→ X0 it follows

A2(r, ε) = {(j, k) ∈ N× N : ∥Zjk − X0,W∥+0 ≥ r + ε} ∈ I2.

We shall prove

C := {(j, k) ∈ N× N : ∥Yjk − X0,W∥+0 ≥ r + ε} ⊂ A1(r, ε) ∪A2(r, ε) ∪ (N× N \B).

Let (m,n) ∈ C. If (m,n) ∈ N × N \ B, then (m,n) ∈ A1(r, ε) ∪ A2(r, ε) ∪ (N × N \ B).
Assume now (m,n) ∈ B. Then ∥Ypq − X0,W∥+0 ≥ r + ε. Since Zmn ⪰ Ymn we have

∥Zmn − X0,W∥+0 ≥ r+ ε, hence (m,n) ∈ A2(r, ε). Therefore, (m,n) ∈ A1(r, ε)∪A2(r, ε)∪

(N× N \B). Since the last set is in I2, we get C ∈ I2, i.e., Yjk
rIE2−−→ X0. ■

Lemma 3.1. [21] Let I2 be an admissible ideal with the property (AP). If {Pj}∞j=1 is a
countable collection of subsets of N×N such that Pj ∈ F(I2) for each j, then there exists
a set P ⊂ N× N such that P ∈ F(I2) and the set P \ Pj is finite for all j.

Theorem 3.2. Let I2 be an admissible ideal with the property (AP) and r be a nonnegative
real number. Let (E, ∥·, ·∥) be a fuzzy 2-normed space and {Xjk} be a double sequence in E.

Then {Xjk} is an rIE
2 -convergent sequence in E if and only if there is an rE-convergent

double sequence {Yjk} such that {(j, k) ∈ N× N : Xjk ̸= Yjk} ∈ I2.

Proof. Suppose Xjk
rIE2−−→ X0. For each n ∈ N and a non-zero Z ∈ E, let

An =

{
(j, k) ∈ N× N : ∥Xjk − X0,Z∥+0 < r +

1

n

}
.

Then An ∈ F(I2) for each n ∈ N.
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Since I2 is admissible ideal with the property (AP), by Lemma 3.1 there exists A ⊂ N×N
such that A ∈ F(I) and the set A\An is finite for each n. Observe that Xjk

r−→ (A)X0, i.e.,
for each ε > 0, there exists an integer n0 = n0(ε) ∈ N such that j, k ≥ n0 and (j, k) ∈ A
implies ∥Xjk − X0,Z∥+0 < r + ε.

Define a sequence {Yjk} in E as

Yjk =

{
Xjk, for (j, k) ∈ A;
X0, for (j, k) ∈ (N× N) \A.

The sequence {Yjk} is rE-convergent to X0 with respect to the fuzzy norm on E. Thus
we have {(j, k) ∈ N× N : Xjk ̸= Yjk} ∈ I2.

Next suppose that {(j, k) ∈ N × N : Xjk ̸= Yjk} ∈ I2 and Yjk
r−→ X0. Let ε > 0 be

given. Then for each n and a non-zero Z ∈ E, we can write

{j, k ≤ n : ∥Yjk − X0,Z∥+0 ≥ r + ε} ⊆
{j, k ≤ n : Xjk ̸= Yjk} ∪ {j, k ≤ n : ∥Xjk − X0,Z∥+0 > r + ε}. (4)

Since first set on the right side of (4) belongs to I2, and the second set is contained
in a fixed number of integers and thus belongs to I2, we conclude that {(j, k) : j, k ≤
n, ∥Xjk − X0,Z∥+0 ≥ r + ε} belongs to I2. This achieves the proof. ■

Now we prove a decomposition theorem for rough IE
2 -convergent sequences.

Theorem 3.3. Let {Xjk} be a double sequence in a fuzzy 2-normed space (E, ∥·, ·∥), r be a
nonnegative real number and I2 be an admissible ideal. If there exist two sequences {Yjk}
and {Zjk} in E such that Xjk = Yjk + Zjk; Yjk rE-converges to X0 and supp(Zjk) =

{(j, k) ∈ N× N : Zjk ̸= θ} ∈ I2, then Xjk
rIE2−−→ X0.

Proof. Let {Yjk} and {Zjk} be double sequences in E as in the statement of the theorem
and H = supp(Zjk). Let ε > 0 and W ∈ E be given. Since A1 = {(j, k) ∈ N × N :∥∥Zjk − 0,W

∥∥+
0
≥ r + ε/2} ⊂ supp(Zjk) = H, we have A1 ∈ I2. Further,

∥Xjk − X0,W∥+0 =
∥∥Yjk + Zjk − 0− X0,W

∥∥+
0
≤ ∥Yjk − X0,W∥+0 +

∥∥Zjk − 0,W
∥∥+
0

implies

{(j, k) ∈ N× N : ∥Xjk − X0,W∥+0 < 2r + ε} ⊃ {(j, k) ∈ N× N : ∥Yjk − X0,W∥+0 < r + ε/2}

∩ {(j, k) ∈ N2 :
∥∥Zjk − 0

∥∥+
0
< r + ε/2}.

The sets on the right side are both in F(I2), so that the set on the left side is also in

F(I2). Therefore, {(j, k) ∈ N2 : ∥Xjk − X0,W∥+0 ≥ 2r + ε} ∈ I2, i.e., Xjk
rIE2−−→ X0. ■

Definition 3.3. Let (E, ∥·, ·∥ be a fuzzy 2-normed space. We say that a double sequence

{Xjk} in E is rough I∗,E2 -convergent to X0 ∈ E with respect to the 2-norm on E if there
exists a subset

K = {(jm, km) : j1 < j2 < · · · ; k1 < k2 < · · · } ⊂ N× N

such that K ∈ F(I2) and rE- lim
m→∞

∥Xjmkm − X0,Z∥+0 = 0 for each non-zero Z ∈ E.

In this case, we write Xjk
rI∗,E2−−−→ X0.
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Remark 3.3. Based on the Definition 3.3, we can construct the following set

I∗2 − LIMr
X =

{
X0 : Xjk

rI∗,E2−−−→ X0

}
.

Hence, we have

I∗2 − LIMr
X ⊆ I2 − LIMr

X.

Theorem 3.4. Let (E, ∥·, ·∥) be a fuzzy 2-normed space, r be a nonnegative real number

and I2 be an admissible ideal. If Xjk
rI∗,E2−−−→ X0, then Xjk

rIE2−−→ X0.

Proof. Suppose that Xjk
rI∗,E2−−−→ X0. Then by definition, there exists

K = {(jm, km) ∈ N× N : j1 < j2 < · · · ; k1 < k2 < · · · } ∈ F(I2)

such that rE- lim
m→∞

∥Xjmkm − X0,Z∥+0 = 0. Let ε > 0 and non-zero Z ∈ E be given. Since

rE- lim
m→∞

∥Xjmkm − X0,Z∥+0 = 0, there exists n0 ∈ N such that ∥Xjmkm − X0,Z∥+0 < r + ε

for every m ≥ n0. Since

A = {(jm, km) ∈ K : ∥Xjmkm − X0,Z∥+0 ≥ r + ε}
is contained in

B = {j1, j2, · · · , jn0−1; k1, k2, · · · , kn0−1}
and the ideal I2 is admissible, we have A ∈ I2. Hence

{(j, k) ∈ N× N : ∥Xjmkm − X0,Z∥+0 ≥ r + ε} ⊆ K ∪B ∈ I2
for ε > 0 and nonzero Z ∈ E. Therefore, we conclude that

Xjk
rIE2−−→ X0.

■

Remark 3.4. In general, Theorem 3.4 does not hold in the converse. However, if the
admissible ideal possesses the (AP) property, the converse becomes true, establishing the
equivalence of the two concepts.

Now, we study the concepts of rough IE2 -Cauchy and rough I∗,E2 -Cauchy double se-
quences in (E, ∥·, ·∥). Moreover, we will study the relations between them. The investiga-
tion of I2-Cauchy and I∗2 -Cauchy double sequences was done in [21].

Definition 3.4. Let (E, ∥·, ·∥) be a fuzzy 2-normed space, r be a non-negative real number
and I2 be an admissible ideal of N×N. A double sequence {Xjk} of elements in E is said
to be

(i) a rough IE
2 -Cauchy sequence in E if for every ε > 0 and a nonzero Z ∈ E, there

exist s = s(ε), t = t(ε) such that

{(j, k) ∈ N× N : ∥Xjk − Xst,Z∥+0 ≥ r + ε} ∈ I2.

(ii) a rough I∗,E2 -Cauchy sequence in E if for every ε > 0 and a nonzero Z ∈ E, there
exists

K = {(jm, km) : j1 < j2 < · · · ; k1 < k2 < · · · } ⊂ N× N

such that K ∈ F(I2) and {Xjmkm} is an ordinary E-Cauchy sequence in E.

The next theorem gives a relation between IE
2 - and I∗E2 -double Cauchy sequences.
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Theorem 3.5. Let (E, ∥·, ·∥) be a fuzzy 2-normed space, r be a non-negative real number

and I2 be an admissible ideal of N×N. If {Xjk} is a rough I∗,E2 -double Cauchy sequence,

then {Xjk} is a rough IE
2 -double Cauchy sequence.

Proof. Since {Xjk} is a rough I∗,E2 -double Cauchy sequence, for any ε > 0 and any non-zero
Z ∈ E, there exist

K = {(jm, km) : j1 < j2 < · · · ; k1 < k2 < · · · } ∈ F(I2)
and a number n0 ∈ N such that∥∥Xjmkm − Xjpkp,Z

∥∥+
0
< r + ε

for every m, p ≥ n0. Now, fix p = jn0+1, s = kn0+1. Then for every ε > 0 and a non-zero
Z ∈ E, we have

∥Xjmkm − Xps,Z∥+0 < r + ε

for every m ≥ n0. Let H = N× N \K. It is obvious that H ∈ F(I2) and

A(ε) = {(j, k) ∈ N× N : ∥Xjmkm − Xps,Z∥+0 ≥ r + ε}
⊂ H ∪ {j1 < j2 < · · · ; k1 < k2 < · · · } ∈ I2.

Therefore, for every ε > 0 and non-zero Z ∈ E, we can find (p, s) ∈ N × N such that

A(ε) ∈ I2, i.e., {Xjk} is a rough IE
2 -double Cauchy sequence. ■

4. rough I-limit points and rough I-cluster points

In this section, our aim is to present the concept of rough I-limit points and rough
I-cluster points for sequences of real numbers within the setting of fuzzy 2-normed linear
spaces. Additionally, we introduce the idea of a rough I2-Cauchy sequence in the context
of a fuzzy 2-normed space (E, ∥·, ·∥), and then delve into the exploration of important
findings derived from this context.

Definition 4.1. Let X = {Xjk} be a double sequence in a fuzzy 2-normed space (E, ∥·, ·∥),
r be a non-negative real number and I2 be an ideal on N× N. Then an element Y ∈ E is
said to be a rough I2-cluster point of Xjk if for each ε > 0 and a non-zero Z ∈ E, the set

{(j, k) ∈ N× N : ∥Xjk −Y,Z∥+0 < r + ε} /∈ I2.

Example 4.1. Let E = R2 with the 2-norm ∥·, ·∥ as defined in Example 2.1. Consider I2
as an ideal of N×N containing all subsets of N×N with a natural density of zero. Define
{Xjk} in E as follows:

Xjk =

{ (
(−1)jk, 0

)
, if j and k are not a perfect square;

(jk, jk), otherwise.

For r ≥ 1, we have I2 − LIMr
X = Br(−1, 0) ∩B(1, 0), where

Br(X0) =
{
Y ∈ E : ∥Y− X0,Z∥+0 ≤ r

}
for every non-zero Z ∈ E.

Consider 𭟋 ∈ Br(−1, 0) ∩B(1, 0). For this 𭟋, we find that{
(j, k) ∈ N× N : ∥Xjk −𭟋,Z∥+0 ≥ r + ε

}
⊂ {(1, 1), (1, 4), · · · , (4, 1), · · · } .

Since the later set has a natural density of zero, it follows that{
(j, k) ∈ N2 : ∥Xjk −𭟋,Z∥+0 ≥ r + ε

}
∈ I2.

Also, if r < 1, then I2 − LIMr
X = ∅. Moreover, I2 − LIMr

X = ∅ for any r.
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We denote I2 − LIMr
X and IE

2 − CX the set of all rough I2-limit points and rough
I2-cluster points of a sequence {Xjk} in (E, ∥·, ·∥), respectively.

Definition 4.2. We define a sequence {Xjk} in E as I2-bounded with respect to the fuzzy
2-norm if there exists a constant M > 0 such that for every non-zero Z ∈ E, the set{

(j, k) ∈ N2 : ∥Xjk,Z∥+0 ≥ M
}
∈ I2.

It is a known fact that if X = {Xjk} in E is bounded, then LIMr
X ̸= ∅, consequently

implying that I2−LIMr
X ̸= ∅. We can establish a connection between the I2-boundedness

of a sequence and its rough I2-limit set.

Theorem 4.1. Let (E, ∥·, ·∥) be a fuzzy 2-normed space and let X = {Xjk} be a sequence
in E. Then X = {Xjk} is I2-bounded if and only there exists some r > 0 such that
I2 − LIMr

X ̸= ∅.

Proof. First, let’s consider an I2-bounded sequence X = {Xjk}. This implies the existence

of a positive numberM such that for every non-zero Z ∈ E,
{
(j, k) ∈ N2 : ∥Xjk,Z∥+0 ≥ M

}
∈

I2. Let A =
{
(j, k) ∈ N2 : ∥Xjk,Z∥+0 < M

}
and define r = sup

{
∥Xjk,Z∥+0 : (j, k) ∈ A

}
.

Consequently, for (j, k) ∈ A and every non-zero Z ∈ E, if ∥Xjk,Z∥+0 ≤ r, then

∥Xjk −Θ,Z∥+0 < r + ε for any ε > 0, where Θ denotes the zero vector of E. This implies{
(j, k) ∈ N2 : ∥Xjk −Θ,Z∥+0 ≥ r + ε

}
∈ I2.

Thus, Θ ∈ I2 − LIMr
X, leading to the conclusion that I2 − LIMr

X ̸= ∅.
Conversely, suppose I2 − LIMr

X ̸= ∅ for some r > 0, and Γ ∈ I2 − LIMr
X. Let

ε > 0 be given. Then, for each non-zero Z ∈ E,
{
(j, k) ∈ N2 : ∥Xjk − Γ,Z∥+0 ≥ r + ε

}
∈

I2. Define K = sup
{
∥Γ,Z∥+0 : Z ∈ E

}
. Since ∥Xjk,Z∥+0 ≤ ∥Xjk − Γ,Z∥+0 + ∥Γ,Z∥+0 ≤

∥Xjk − Γ,Z∥+0 +K, it follows that{
(j, k) ∈ N2 : ∥Xjk,Z∥+0 ≥ r + ε+K

}
⊆
{
(j, k) ∈ N2 : ∥Xjk − Γ,Z∥+0 ≥ r + ε

}
.

Suppose M = r+ ε+K. Consequently,
{
(j, k) ∈ N2 : ∥Xjk,Z∥+0 ≥ M

}
∈ I2. This proves

that X = {Xjk} is I2-bounded. ■

Next we present some topological and geometrical properties of the r-I-limit set of a
sequence.

Theorem 4.2. Let (E, ∥·, ·∥) be a fuzzy 2-normed space and r be a nonnegative real num-
ber. The r-I2-limit set I2 − LIMr

X of a sequence X = {Xjk} is closed set.

Proof. If I2 − LIMr
X = ∅, then there is nothing to prove. So assume that I2 − LIMr

X ̸= ∅.
Suppose that {Yjk} ⊂ I2 − LIMr

X and Yjk → Y as j, k → ∞. Let ε > 0 be given. Then

for each Z ∈ E there exists j(ε), k(ε) ∈ N such that ∥Yjk −Y,Z∥+0 < ε for all j > j(ε)
and k > k(ε) Let j0, k0 ∈ N such that Yj0k0 ∈ {Yjk} ⊂ I2−LIMr

X. Consequently we have

A =
{
(j, k) ∈ N× N; ∥Yjk −Yj0k0 ,Z∥

+
0 ≥ r + ε

}
∈ I2.

Clearly M = N × N \ A ∈ F(I2) and so M ̸= ∅. Choose (s, t) ∈ M . Choose an j0 >
j(ε), k0 > k(ε). We have

∥Yst −Y,Z∥+0 ≤ ∥Yst −Yj0k0 ,Z∥
+
0 + ∥Yj0k0 −Y,Z∥+0 < r + 2ε.

Hence

M =
{
(j, k) ∈ N× N : ∥Yjk −Yj0k0 ,Z∥

+
0 < r + ε

}
⊆
{
(j, k) ∈ N× N : ∥Yjk −Y,Z∥+0 < r + 2ε

}
,
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where {(j, k) ∈ N×N : ∥Yjk −Yj0k0 ,Z∥
+
0 < r+ε} ∈ F(I2). Consequently {(j, k) ∈ N×N :

∥Yjk −Y,Z∥+0 < r + 2ε} ∈ F(I2) and so {(j, k) ∈ N× N : ∥Yjk −Y,Z∥+0 ≥ r + 2ε} ∈ I.
This completes the proof. ■

Theorem 4.3. Let (E, ∥·, ·∥) be a fuzzy 2-normed space and r be a nonnegative real num-
ber. Then I2 − LIMr

X is convex.

Proof. Let Γ1,Γ2 ∈ I2 − LIMr
X. Then for every ε > 0 and each nonzero Z ∈ E, the sets

A =
{
(j, k) ∈ N2 : ∥Xjk − Γ1,Z∥+0 ≥ r + ε

}
and

B =
{
(j, k) ∈ N2 : ∥Xjk − Γ2,Z∥+0 ≥ r + ε

}
belong to I2. Now, for (j, k) ∈ Ac ∩Bc and for each λ ∈ [0, 1],

∥Xjk − (λΓ1 + (1− λ)Γ2) ,Z∥+0 = ∥λ(Xjk − Γ1) + (1− λ)(Xjk − Γ2),Z∥+0
≤ λ ∥Xjk − Γ1,Z∥+0 + (1− λ) ∥Xjk − Γ2,Z∥+0
< λ(r + ε) + (1− λ)(r + ε) = r + ε.

Consequently,{
(j, k) ∈ N2 : ∥Xjk − (λΓ1 + (1− λ)Γ2) ,Z∥+0 ≥ r + ε

}
⊂ A ∪B ∈ I2.

This gives λΓ1 + (1− λ)Γ2 ∈ I2 − LIMr
X, i.e., I2 − LIMr

X is a convex set. ■

Definition 4.3. (I2-cluster point). Let X = {Xjk} be a double sequence in a fuzzy 2-
normed space (E, ∥·∥)and I2 be an ideal on N × N. Then an element Y ∈ E is said to be
an I2-cluster point of {Xjk} if for each ε and a non-zero Z ∈ E, the set{

(j, k) ∈ N× N : ∥Xjk −Y,Z∥+0 < ε
}
/∈ I2. (5)

Theorem 4.4. Let (E, ∥·, ·∥) be a fuzzy 2-normed space. For an arbitrary Γ ∈ IE
2 − CX

and each nonzero Z ∈ E we have ∥Φ− Γ,Z∥+0 ≤ r for all Φ ∈ I2 − LIMr
X.

Proof. Suppose there exist Γ ∈ IE
2 − CX and Φ ∈ I2 − LIMr

X such that for each non-zero

Z ∈ E, ∥Φ− Γ,Z∥+0 > r. Choose ε =
∥Φ− Γ,Z∥+0 − r

2
. Consequently, for every non-zero

Z ∈ E, the sets

A1 =
{
(j, k) ∈ N2 : ∥Xjk − Γ,Z∥+0 < ε

}
and

A2 =
{
(j, k) ∈ N2 : ∥Xjk − Φ,Z∥+0 < r + ε

}
do not belong to I2. For every (j, k) ∈ N2, we have

∥Xjk − Φ,Z∥+0 > ∥Γ− Φ,Z∥+0 − ∥Xjk − Γ,Z∥+0 > 2ε+ r − ε = r + ε.

This indicates that (j, k) ∈ A2, and thus, A1 ⊂ A2. Since A1 ∈ I2, this would imply that
A1 ∈ I2, which leads to a contradiction. This completes the proof. ■

Theorem 4.5. Let (E, ∥·, ·∥) be a fuzzy 2-normed space. A sequence X = {Xjk} is I2-
convergent if and only if I2 − LIMr

X = Br(Φ).

Proof. The necessity component has already been established in Theorem 3.1. Regarding
the sufficiency, assuming that I2 −LIMr

X = Br(Φ) ̸= ∅, according to Theorem 4.1, the set
X = {Xjk} is bounded under I2. Let’s suppose the sequence X = {Xjk} possesses another
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I2-cluster point Γ distinct from Φ. Let Λ = Φ+
r

∥Φ− Γ,Z∥+0
(Φ−Γ). The point Λ satisfies

the condition

∥Λ− Γ,Z∥+0 =

(
r

∥Φ− Γ,Z∥+0
+ 1

)
∥Φ− Γ,Z∥+0 = r + ∥Φ− Γ,Z∥+0 > r.

Given that Γ ∈ IE
2 −CX, it follows from Theorem 4.4 that Λ /∈ I2 − LIMr

X. However, this

is contradictory since ∥Λ− Γ,Z∥+0 = r and IE
2 − LIMXr = Br(Φ). Thus, Φ stands as the

exclusive I2-cluster point of X = {Xjk}. Consequently, X = {Xjk} converges under I2 to
Φ. This concludes the proof. ■

Theorem 4.6. Let X = {Xjk} be a sequence in a fuzzy 2-normed space (E, ∥·, ·∥). Then
the following assertions hold:

(a) If Γ ∈ IE
2 − CX, then I2 − LIMr

X ⊆ Br(Γ),

(b) I2 − LIMr
X =

⋂
Γ∈IE2 −CX

Br(Γ) =
{
X0 ∈ E : IE

2 − CX ⊆ Br(X0)
}
.

Proof. (a) Consider Φ ∈ I2 − LIMr
X and Γ ∈ IE

2 − CX. For any nonzero Z ∈ E and in
accordance with Theorem 4.4, it follows that ∥Φ− Γ,Z∥+0 ≤ r. This leads to the inference

that Φ resides in Br(Γ), thus establishing that I2 − LIMr
X is a subset of Br(Γ).

(b) Utilizing part(a), we establish that I2−LIMr
X =

⋂
Γ∈IE2 −CX

Br(Γ). Let Λ ∈
⋂

Γ∈IE2 −CX

Br(Γ).

Consequently, for any nonzero Z ∈ E, we find ∥Λ− Γ,Z∥+0 ≤ r for all Γ ∈ IE
2 − CX ⊆

Br(X0). Now, assume Λ /∈ I2 − LIMr
X. This assumption implies the existence of an ε > 0

such that for each nonzero Z ∈ E, the set
{
(j, k) ∈ N2 : ∥X− Λ,Z∥+0 ≥ r + ε

}
/∈ I2, imply-

ing the existence of an I2-cluster point Γ of the sequence {Xjk} satisfying ∥Λ− Γ,Z∥+0 ≥
r+ ε. Hence, IE

2 −CX ⊈ Br(Λ) and Λ /∈
{
X0 ∈ E : IE

2 − CX ⊆ Br(X0)
}
. This leads to the

deduction that {
X0 ∈ E : IE

2 − CX ⊆ Br(X0)
}
⊆ I2 − LIMr

X.

Thus, we conclude that I2 − LIMr
X =

⋂
Γ∈IE2 −CX

Br(Γ) =
{
X0 ∈ E : IE

2 − CX ⊆ Br(X0)
}
,

thereby completing the proof. ■

Theorem 4.7. Let X = {Xjk} be a sequence in a fuzzy 2-normed space (E, ∥·, ·∥). Then

IE
2 − CX ⊆ I2 − LIMr

X, where r = diam
(
IE
2 − CX

)
.

Proof. Suppose Y /∈ I2 − LIMr
X. Consequently, there exists an ε > 0 such that for every

nonzero Z ∈ E, the set
{
(j, k) ∈ N2 : ∥X−Y,Z∥+0 ≥ r + ε

}
/∈ I2. Furthermore, given that

the sequence X = {Xjk} is I2-bounded, there exists another I2-cluster point Y1 ∈ E

such that ∥Y1 −Y,Z∥+0 > r +
ε

2
for each nonzero Z ∈ E. As a result, it follows that

Y /∈ IE
2 − CX, thereby establishing the conclusion. ■

Presently, we introduce the concept of a rough I2-Cauchy sequence within a fuzzy 2-
normed space (E, ∥·, ·∥), subsequently exploring significant results within this framework.

Definition 4.4. Let X = {Xjk} be a sequence in a fuzzy 2-normed space (E, ∥·, ·∥). Then
X = {Xjk} is said to be a rough I2-Cauchy sequence of roughness degree ϑ > 0 if for every

ε > 0 there exists (j, k) ∈ N2 such that the set
{
(j, k) ∈ N2 : ∥Xjk − Xnm,Z∥+0 ≥ ε+ ϑ

}
∈
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I2 for each nonzero Z ∈ E. Also, we call ϑ as a I2-Cauchy degree of X and the sequence
X = {Xjk} is called a ϑ-I2-Cauchy sequence in E.

Lemma 4.1. Let X = {Xjk} be a ϑ-I2-Cauchy sequence in E and ϑ0 > ϑ. Then ϑ0 is
also a I2-Cauchy degree of X = {Xjk}.

Lemma 4.2. A sequence X = {Xjk} in a fuzzy 2-normed space (E, ∥·, ·∥) is I2-bounded if
and only if there exists a ϑ > 0 such that X = {Xjk} is a ϑ-I2-Cauchy sequence in E.

Theorem 4.8. Let X = {Xjk} be a sequence in a fuzzy 2-normed space (E, ∥·, ·∥). Then
I2 − LIMr

X ̸= ∅ if and only if for every ϑ ≥ 2r, X = {Xjk} is a ϑ-I2-Cauchy sequence.

Proof. Suppose Φ ∈ I2 − LIMr
X. For any ε > 0 and any nonzero Z ∈ E, the set A ={

(j, k) ∈ N2 : ∥X− Φ,Z∥+0 ≥ r +
ε

2

}
∈ I2. Hence,

Ac =
{
(j, k) ∈ N2 : ∥X− Φ,Z∥+0 < r +

ε

2

}
∈ F(I2).

Consequently, there exists (n,m) ∈ Ac such that ∥Xnm − Φ,Z∥+0 < r+
ε

2
for every nonzero

Z ∈ E. Moreover, for (j, k) ∈ Ac, we have

∥Xnm − Xjk,Z∥+0 ≤ ∥Xnm − Φ,Z∥+0 + ∥Xjk − Φ,Z∥+0
≤ r +

ε

2
+ r +

ε

2
= 2r + ε.

Hence,
{
(j, k) ∈ N2 : ∥Xnm − Xjk,Z∥+0 ≥ 2r + ε

}
∈ I2 holds. Consequently, according to

Lemma 4.1, for every ϑ ≥ 2r, X = {Xjk} constitutes a ϑ-I2-Cauchy sequence.
Conversely, assume that ϑ represents a I2-Cauchy degree of X = {Xjk} for every ϑ ≥

2r > 0. It then follows from Lemma 4.2 that the sequence X = {Xjk} is I2-bounded.
Consequently, in line with Theorem 4.1, X = {Xjk} demonstrates rough I2-convergence
with a roughness degree ϑ > 0. This concludes the proof. ■

5. Conclusions

In this study, we have advanced our understanding of rough convergence and its applica-
tions in fuzzy 2-normed linear spaces. By introducing and exploring rough I2-convergence,
rough I∗2 -convergence, rough I2-limit points, and rough I2-cluster points, we’ve estab-
lished a foundation for further exploration in diverse mathematical domains. The proof
of a decomposition theorem specific to rough I2-convergence for double sequences is a
fundamental result, providing insight into their structure within fuzzy 2-normed linear
spaces. Definitions and properties of rough I2-double Cauchy sequences and I∗2 -double
Cauchy sequences have expanded our understanding, enabling deeper investigations into
their convergence properties.

Acknowledgement. The authors express their heartfelt appreciation to the referees for
their valuable comments and corrections, which significantly contribute to improving the
quality of the research paper.
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[21] Kočinac, L.D.R., Rashid, M.H.M., (2017), On ideal convergence of double sequences in the topology

induced by a fuzzy 2-norm, TWMS J. Pure Appl. Math., 8 (1), pp. 97–111.
[22] Kaleva, O., Seikkala, S., (1984), On fuzzy metric spaces, Fuzzy Sets Syst., 12, pp. 215–229.
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[25] Mačaj, M., Šalát, T., (2001), Statistical convergence of subsequences of a given sequence, Math.

Bohem., 126 ,pp. 191–208.
[26] Pal, S. K., Chandra, D., Dutta, S., (2013), Rough ideal convergence, Hacet. J. Math. Stat., 42 (6),pp.

633–640.
[27] Phu, H. X., (2001), Rough Convergence in normed linear spaces, Numer. Funct. Anal. Optim., 22,

pp. 201–224.
[28] Phu, H. X., (2003), Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal.

Optim., 24 ,pp. 285–301.
[29] Phu, H. X., (2002), Rough continuity of linear operators, Numer. Funct. Anal. Optim. 23, pp. 139–146.
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